1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from intfmincon.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="intfmincon" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>intfmincon</refname>
<refpurpose>Solves a constrainted multi-variable mixed integer non linear programming problem</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
xopt = intfmincon(f,x0,intcon,A,b)
xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq)
xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub)
xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc)
xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
[xopt,fopt] = intfmincon(.....)
[xopt,fopt,exitflag]= intfmincon(.....)
[xopt,fopt,exitflag,gradient]=intfmincon(.....)
[xopt,fopt,exitflag,gradient,hessian]=intfmincon(.....)
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Input Parameters</title>
<variablelist>
<varlistentry><term>f :</term>
<listitem><para> A function, representing the objective function of the problem.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
<listitem><para> A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
<varlistentry><term>intcon :</term>
<listitem><para> A vector of integers, representing the variables that are constrained to be integers.</para></listitem></varlistentry>
<varlistentry><term>A :</term>
<listitem><para> A matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints.</para></listitem></varlistentry>
<varlistentry><term>b :</term>
<listitem><para> A vector of doubles, related to 'A' and represents the linear coefficients in the linear inequality constraints of size (m X 1).</para></listitem></varlistentry>
<varlistentry><term>Aeq :</term>
<listitem><para> A matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints.</para></listitem></varlistentry>
<varlistentry><term>beq :</term>
<listitem><para> A vector of double, vector of doubles, related to 'Aeq' and represents the linear coefficients in the equality constraints of size (m1 X 1).</para></listitem></varlistentry>
<varlistentry><term>lb :</term>
<listitem><para> A vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
<varlistentry><term>ub :</term>
<listitem><para> A vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
<varlistentry><term>nlc :</term>
<listitem><para> A function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints (c), and the non-linear equality constraints (ceq) are defined as separate single row vectors.</para></listitem></varlistentry>
<varlistentry><term>options :</term>
<listitem><para> A list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title> Outputs</title>
<variablelist>
<varlistentry><term>xopt :</term>
<listitem><para> A vector of doubles, containing the the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
<listitem><para> A double, containing the value of the function at xopt.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
<varlistentry><term>gradient :</term>
<listitem><para> a vector of doubles, containing the Objective's gradient of the solution.</para></listitem></varlistentry>
<varlistentry><term>hessian :</term>
<listitem><para> a matrix of doubles, containing the Objective's hessian of the solution.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Search the minimum of a mixed integer constrained optimization problem specified by :
Find the minimum of f(x) such that
</para>
<para>
<latex>
\begin{eqnarray}
&\mbox{min}_{x}
& f(x) \\
& \text{Subjected to:} & A \boldsymbol{\cdot} x \leq b \\
& & Aeq \boldsymbol{\cdot} x \ = beq\\
& & c(x) \leq 0\\
& & ceq(x) \ = 0\\
& & lb \leq x \leq ub \\
& & x_{i} \in \!\, \mathbb{Z}, i \in \!\, I
\end{eqnarray}
</latex>
</para>
<para>
intfmincon calls Bonmin, an optimization library written in C++, to solve the Constrained Optimization problem.
</para>
<para>
<title>Options</title>
The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by:
</para>
<para>
options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
<itemizedlist>
<listitem>IntegerTolerance : A Scalar, a number with that value of an integer is considered integer.</listitem>
<listitem>MaxNodes : A Scalar, containing the maximum number of nodes that the solver should search.</listitem>
<listitem>CpuTime : A scalar, specifying the maximum amount of CPU Time in seconds that the solver should take.</listitem>
<listitem>AllowableGap : A scalar, that specifies the gap between the computed solution and the the objective value of the best known solution stop, at which the tree search can be stopped.</listitem>
<listitem>MaxIter : A scalar, specifying the maximum number of iterations that the solver should take.</listitem>
<listitem>gradobj : A string, to turn on or off the user supplied objective gradient.</listitem>
<listitem>hessian : A scalar, to turn on or off the user supplied objective hessian.</listitem>
</itemizedlist>
The default values for the various items are given as:
</para>
<para>
options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
</para>
<para>
</para>
<para>
The exitflag allows to know the status of the optimization which is given back by Ipopt.
<itemizedlist>
<listitem>0 : Optimal Solution Found </listitem>
<listitem>1 : InFeasible Solution.</listitem>
<listitem>2 : Objective Function is Continuous Unbounded.</listitem>
<listitem>3 : Limit Exceeded.</listitem>
<listitem>4 : User Interrupt.</listitem>
<listitem>5 : MINLP Error.</listitem>
</itemizedlist>
</para>
<para>
For more details on exitflag, see the Bonmin documentation which can be found on http://www.coin-or.org/Bonmin
</para>
<para>
</para>
</refsection>
<para>
A few examples displaying the various functionalities of intfmincon have been provided below. You will find a series of problems and the appropriate code snippets to solve them.
</para>
<refsection>
<title>Example</title>
<para>
Here we solve a simple objective function, subjected to three linear inequality constraints.
</para>
<para>
Find x in R^2 such that it minimizes:
</para>
<para>
<latex>
\begin{eqnarray}
\mbox{min}_{x}\ f(x) = x_{1}^{2} - x_{1} \boldsymbol{\cdot} x_{2}/3 + x_{2}^{2}
\end{eqnarray}
\\\text{Subjected to:}\\
\begin{eqnarray}
\hspace{70pt} &x_{1} + x_{2}&\leq 2\\
\hspace{70pt} &x_{1} + \dfrac{x_{2}}{4}&\leq 1\\
\hspace{70pt} &-x_{1} + x_{2}&\geq -2\\
\end{eqnarray}\\
\text{With integer constraints as: } \\
\begin{eqnarray}
\begin{array}{c}
[1] \\
\end{array}
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 1:
//Objective function to be minimised
function [y,dy]=f(x)
y=-x(1)-x(2)/3;
dy= [-1,-1/3];
endfunction
//Starting point
x0=[0 , 0];
//Integer constraints
intcon = [1];
//Initializing the linear inequality constraints
A=[1,1 ; 1,1/4 ; 1,-1 ;];
b=[2;1;2];
//Calling Bonmin
[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
Here we build up on the previous example by adding linear equality constraints.
We add the following constraints to the problem specified above:
</para>
<para>
<latex>
\begin{eqnarray}
&x_{1} - x_{2}&= 1
\\&2x_{1} + x_{2}&= 2
\\\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 2:
//Objective function to be minimised
function [y,dy]=f(x)
y=-x(1)-x(2)/3;
dy= [-1,-1/3];
endfunction
//Starting point
x0=[0 , 0];
//Integer constraints
intcon = [1];
//Initializing the linear inequality constraints
A=[1,1 ; 1,1/4 ; 1,-1 ;];
b=[2;1;2];
//Linear equality constraints
Aeq=[1,-1;2,1];
beq=[1,2];
//Calling Bonmin
[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
In this example, we proceed to add the upper and lower bounds to the objective function.
</para>
<para>
Find x in R^2 such that it minimizes:
</para>
<para>
<latex>
\begin{eqnarray}
-1 &\leq x_{1} &\leq \infty\\
-\infty &\leq x_{2} &\leq 1
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 3:
//Objective function to be minimised
function [y,dy]=f(x)
y=-x(1)-x(2)/3;
dy= [-1,-1/3];
endfunction
//Starting point
x0=[0 , 0];
//Integer constraints
intcon = [1];
//Initializing the linear inequality constraints
A=[1,1 ; 1,1/4 ; 1,-1 ;];
b=[2;1;2];
//Linear equality constraints
Aeq=[1,-1;2,1];
beq=[1,2];
//Adding the variable bounds
lb=[-1, -%inf];
ub=[%inf, 1];
//Calling Bonmin
[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
Finally, we add the non-linear constraints to the problem. Note that there is a notable difference in the way this is done as compared to defining the linear constraints.
</para>
<para>
<latex>
\begin{eqnarray}
\mbox{min}_{x}\ f(x) = x_{1} \boldsymbol{\cdot} x_{2} + x_{2} \boldsymbol{\cdot} x_{3}
\end{eqnarray}
\\\text{Subjected to:}\\
\begin{eqnarray}
\hspace{70pt} &x_{1}^{2} - x_{2}^{2} + x_{3}^{2}&\leq 2\\
\hspace{70pt} &x_{1}^{2} + x_{2}^{2} + x_{3}^{2}&\leq 10\\
\end{eqnarray}\\
\text{With integer constraints as: }\\
\begin{eqnarray}
\begin{array}{c}
[2] \\
\end{array}
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 4:
//Objective function to be minimised
function [y,dy]=f(x)
y=x(1)*x(2)+x(2)*x(3);
dy= [x(2),x(1)+x(3),x(2)];
endfunction
//Starting point, linear constraints and variable bounds
x0=[0.1 , 0.1 , 0.1];
intcon = [2]
A=[];
b=[];
Aeq=[];
beq=[];
lb=[];
ub=[];
//Nonlinear constraints
function [c,ceq,cg,cgeq]=nlc(x)
c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
ceq = [];
cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
cgeq=[];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
//Calling Ipopt
[x,fval,exitflag,output] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
We can further enhance the functionality of intfmincon by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 5. We take the following problem and add simple non-linear constraints, specify the gradients and the hessian of the Lagrange Function. We also set solver parameters using the options.
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 5:
//Objective function to be minimised
function [y,dy]=f(x)
y=x(1)*x(2)+x(2)*x(3);
dy= [x(2),x(1)+x(3),x(2)];
endfunction
//Starting point, linear constraints and variable bounds
x0=[0.1 , 0.1 , 0.1];
intcon = [2]
A=[];
b=[];
Aeq=[];
beq=[];
lb=[];
ub=[];
//Nonlinear constraints
function [c,ceq,cg,cgeq]=nlc(x)
c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
ceq = [];
cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
cgeq=[];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
//Calling Ipopt
[x,fval,exitflag,output] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
Infeasible Problems: Find x in R^3 such that it minimizes:
</para>
<para>
<latex>
\begin{eqnarray}
f(x) = x_{1} \boldsymbol{\cdot} x_{2} + x_{2} \boldsymbol{\cdot} x_{3}
\end{eqnarray}
\\\text{Subjected to:}\\
\begin{eqnarray}
\hspace{70pt} &x_{1}^{2} &\leq 1\\
\hspace{70pt} &x_{1}^{2} + x_{2}^{2}&\leq 1\\
\hspace{70pt} &x_{3}^{2}&\leq 1\\
\hspace{70pt} &x_{1}^{3}&\leq 0.5\\
\hspace{70pt} &x_{2}^{2} + x_{3}^{2}&\leq 0.75\\
\end{eqnarray}\\
\text{With variable bounds as: }\\
\begin{eqnarray}
\hspace{70pt} 0 &\leq x_{1} &\leq 0.6\\
\hspace{70pt} 0.2 &\leq x_{2} &\leq \infty\\
\end{eqnarray}\\
\text{With integer constraints as: } \\
\begin{eqnarray}
\begin{array}{c}
[2] \\
\end{array}
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 6:
//Objective function to be minimised
function [y,dy]=f(x)
y=x(1)*x(2)+x(2)*x(3);
dy= [x(2),x(1)+x(3),x(2)];
endfunction
//Starting point, linear constraints and variable bounds
x0=[1,1,1];
intcon = [2]
A=[];
b=[];
Aeq=[];
beq=[];
lb=[0 0.2,-%inf];
ub=[0.6 %inf,1];
//Nonlinear constraints
function [c,ceq,cg,cgeq]=nlc(x)
c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
cgeq = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
//Calling Bonmin
[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
Unbounded Problems: Find x in R^3 such that it minimizes:
</para>
<para>
<latex>
\begin{eqnarray}
\mbox{min}_{x}\ f(x) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2}\\
\end{eqnarray}\\
\text{With variable bounds as: }\\
\begin{eqnarray}
-\infty &\leq x_{1} &\leq 0\\
-\infty &\leq x_{2} &\leq 0\\
-\infty &\leq x_{3} &\leq 0\\
\end{eqnarray}\\
\text{With integer constraints as: } \\
\begin{eqnarray}
\begin{array}{c}
[3] \\
\end{array}
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 7:
//The below problem is an unbounded problem:
//Find x in R^3 such that it minimizes:
//f(x)= -(x1^2 + x2^2 + x3^2)
//x0=[0.1 , 0.1 , 0.1]
// x1 <= 0
// x2 <= 0
// x3 <= 0
//Objective function to be minimised
function y=f(x)
y=-(x(1)^2+x(2)^2+x(3)^2);
endfunction
//Starting point, linear constraints and variable bounds
x0=[0.1 , 0.1 , 0.1];
intcon = [3]
A=[];
b=[];
Aeq=[];
beq=[];
lb=[];
ub=[0,0,0];
//Options
options=list("MaxIter", [1500], "CpuTime", [500]);
//Calling Bonmin
[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,[],options)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Harpreet Singh</member>
</simplelist>
</refsection>
</refentry>
|