1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from fminunc.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="fminunc" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>fminunc</refname>
<refpurpose>Solves a multi-variable unconstrainted optimization problem</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
xopt = fminunc(f,x0)
xopt = fminunc(f,x0,options)
[xopt,fopt] = fminunc(.....)
[xopt,fopt,exitflag]= fminunc(.....)
[xopt,fopt,exitflag,output]= fminunc(.....)
[xopt,fopt,exitflag,output,gradient]=fminunc(.....)
[xopt,fopt,exitflag,output,gradient,hessian]=fminunc(.....)
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>f :</term>
<listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
<listitem><para> a vector of doubles, containing the starting of variables.</para></listitem></varlistentry>
<varlistentry><term>options:</term>
<listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
<varlistentry><term>xopt :</term>
<listitem><para> a vector of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
<listitem><para> a scalar of double, the function value at x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> a structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
<varlistentry><term>gradient :</term>
<listitem><para> a vector of doubles, containing the the gradient of the solution.</para></listitem></varlistentry>
<varlistentry><term>hessian :</term>
<listitem><para> a matrix of doubles, containing the the hessian of the solution.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Search the minimum of an unconstrained optimization problem specified by :
Find the minimum of f(x) such that
</para>
<para>
<latex>
\begin{eqnarray}
&\mbox{min}_{x}
& f(x)\\
\end{eqnarray}
</latex>
</para>
<para>
The routine calls Ipopt for solving the Un-constrained Optimization problem, Ipopt is a library written in C++.
</para>
<para>
The options allows the user to set various parameters of the Optimization problem.
It should be defined as type "list" and contains the following fields.
<itemizedlist>
<listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "Gradient", ---, "Hessian", ---);</listitem>
<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
<listitem>Gradient : a function, representing the gradient function of the Objective in Vector Form.</listitem>
<listitem>Hessian : a function, representing the hessian function of the Objective in Symmetric Matrix Form.</listitem>
<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
</itemizedlist>
</para>
<para>
The exitflag allows to know the status of the optimization which is given back by Ipopt.
<itemizedlist>
<listitem>exitflag=0 : Optimal Solution Found </listitem>
<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
<listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
<listitem>exitflag=3 : Stop at Tiny Step.</listitem>
<listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
</itemizedlist>
</para>
<para>
For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
</para>
<para>
The output data structure contains detailed informations about the optimization process.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>output.Iterations: The number of iterations performed during the search</listitem>
<listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
<listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
<listitem>output.Message: The output message for the problem</listitem>
</itemizedlist>
</para>
<para>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//Find x in R^2 such that it minimizes the Rosenbrock function
//f = 100*(x2 - x1^2)^2 + (1-x1)^2
//Objective function to be minimised
function y= f(x)
y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
endfunction
//Starting point
x0=[-1,2];
//Gradient of objective function
function y= fGrad(x)
y= [-400*x(1)*x(2) + 400*x(1)^3 + 2*x(1)-2, 200*(x(2)-x(1)^2)];
endfunction
//Hessian of Objective Function
function y= fHess(x)
y= [1200*x(1)^2- 400*x(2) + 2, -400*x(1);-400*x(1), 200 ];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess);
//Calling Ipopt
[xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//Find x in R^2 such that the below function is minimum
//f = x1^2 + x2^2
//Objective function to be minimised
function y= f(x)
y= x(1)^2 + x(2)^2;
endfunction
//Starting point
x0=[2,1];
//Calling Ipopt
[xopt,fopt]=fminunc(f,x0)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//The below problem is an unbounded problem:
//Find x in R^2 such that the below function is minimum
//f = - x1^2 - x2^2
//Objective function to be minimised
function y= f(x)
y= -x(1)^2 - x(2)^2;
endfunction
//Starting point
x0=[2,1];
//Gradient of objective function
function y= fGrad(x)
y= [-2*x(1),-2*x(2)];
endfunction
//Hessian of Objective Function
function y= fHess(x)
y= [-2,0;0,-2];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess);
//Calling Ipopt
[xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options)
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>R.Vidyadhar , Vignesh Kannan</member>
</simplelist>
</refsection>
</refentry>
|