summaryrefslogtreecommitdiff
path: root/help/en_US/fminimax.xml
blob: ddab0781e2a39eb630a324f448c1f294598f9813 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from fminimax.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="fminimax" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>fminimax</refname>
    <refpurpose>Solves minimax constraint problem</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   x = fminimax(fun,x0)
   x = fminimax(fun,x0,A,b)
   x = fminimax(fun,x0,A,b,Aeq,beq)
   x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
   x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlinfun)
   x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlinfun,options)
   [x, fval] = fmincon(.....)
   [x, fval, maxfval]= fmincon(.....)
   [x, fval, maxfval, exitflag]= fmincon(.....)
   [x, fval, maxfval, exitflag, output]= fmincon(.....)
   [x, fval, maxfval, exitflag, output, lambda]= fmincon(.....)
   
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Parameters</title>
   <variablelist>
   <varlistentry><term>fun:</term>
      <listitem><para> The function to be minimized. fun is a function that accepts a vector x and returns a vector F, the objective functions evaluated at x.</para></listitem></varlistentry>
   <varlistentry><term>x0:</term>
      <listitem><para> a nx1 or 1xn matrix of doubles, where n is the number of variables, the initial guess for the optimization algorithm</para></listitem></varlistentry>
   <varlistentry><term>A:</term>
      <listitem><para> a nil x n matrix of doubles, where n is the number of variables and nil is the number of linear inequalities. If A==[] and b==[], it is assumed that there is no linear inequality constraints. If (A==[] &amp; b&lt;&gt;[]), fminimax generates an error (the same happens if (A&lt;&gt;[] &amp; b==[]))</para></listitem></varlistentry>
   <varlistentry><term>b:</term>
      <listitem><para> a nil x 1 matrix of doubles, where nil is the number of linear inequalities</para></listitem></varlistentry>
   <varlistentry><term>Aeq:</term>
      <listitem><para> a nel x n matrix of doubles, where n is the number of variables and nel is the number of linear equalities. If Aeq==[] and beq==[], it is assumed that there is no linear equality constraints. If (Aeq==[] &amp; beq&lt;&gt;[]), fminimax generates an error (the same happens if (Aeq&lt;&gt;[] &amp; beq==[]))</para></listitem></varlistentry>
   <varlistentry><term>beq:</term>
      <listitem><para> a nel x 1 matrix of doubles, where nel is the number of linear equalities</para></listitem></varlistentry>
   <varlistentry><term>lb:</term>
      <listitem><para> a nx1 or 1xn matrix of doubles, where n is the number of variables. The lower bound for x. If lb==[], then the lower bound is automatically set to -inf</para></listitem></varlistentry>
   <varlistentry><term>ub:</term>
      <listitem><para> a nx1 or 1xn matrix of doubles, where n is the number of variables. The upper bound for x. If ub==[], then the upper bound is automatically set to +inf</para></listitem></varlistentry>
   <varlistentry><term>nonlinfun:</term>
      <listitem><para> function that computes the nonlinear inequality constraints c(x) &lt;= 0 and nonlinear equality constraints ceq(x) = 0.</para></listitem></varlistentry>
   <varlistentry><term>x:</term>
      <listitem><para> a nx1 matrix of doubles, the computed solution of the optimization problem</para></listitem></varlistentry>
   <varlistentry><term>fval:</term>
      <listitem><para> a vector of doubles, the value of fun at x</para></listitem></varlistentry>
   <varlistentry><term>maxfval:</term>
      <listitem><para> a 1x1 matrix of doubles, the maximum value in vector fval</para></listitem></varlistentry>
   <varlistentry><term>exitflag:</term>
      <listitem><para> a 1x1 matrix of floating point integers, the exit status</para></listitem></varlistentry>
   <varlistentry><term>output:</term>
      <listitem><para> a struct, the details of the optimization process</para></listitem></varlistentry>
   <varlistentry><term>lambda:</term>
      <listitem><para> a struct, the Lagrange multipliers at optimum</para></listitem></varlistentry>
   <varlistentry><term>options:</term>
      <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
fminimax minimizes the worst-case (largest) value of a set of multivariable functions, starting at an initial estimate. This is generally referred to as the minimax problem.
   </para>
   <para>
<latex>
\min_{x} \max_{i} F_{i}(x)\: \textrm{such that} \:\begin{cases}
&amp; c(x) \leq 0 \\
&amp; ceq(x) = 0 \\
&amp; A.x \leq b \\
&amp; Aeq.x = beq \\
&amp; minmaxLb \leq x \leq minmaxUb
\end{cases}
</latex>
   </para>
   <para>
Currently, fminimax calls fmincon which uses the ip-opt algorithm.
   </para>
   <para>
max-min problems can also be solved with fminimax, using the identity
   </para>
   <para>
<latex>
\max_{x} \min_{i} F_{i}(x) = -\min_{x} \max_{i} \left( -F_{i}(x) \right)
</latex>
   </para>
   <para>
The options allows the user to set various parameters of the Optimization problem.
It should be defined as type "list" and contains the following fields.
<itemizedlist>
<listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "GradCon", ---);</listitem>
<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
<listitem>GradObj : a function, representing the gradient function of the Objective in Vector Form.</listitem>
<listitem>GradCon : a function, representing the gradient of the Non-Linear Constraints (both Equality and Inequality) of the problem. It is declared in such a way that gradient of non-linear inequality constraints are defined first as a separate Matrix (cg of size m2 X n or as an empty), followed by gradient of non-linear equality constraints as a separate Matrix (ceqg of size m2 X n or as an empty) where m2 &amp; m3 are number of non-linear inequality and equality constraints respectively.</listitem>
<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
</itemizedlist>
   </para>
   <para>
The objective function must have header :
<programlisting>
F = fun(x)
</programlisting>
where x is a n x 1 matrix of doubles and F is a m x 1 matrix of doubles where m is the total number of objective functions inside F.
On input, the variable x contains the current point and, on output, the variable F must contain the objective function values.
   </para>
   <para>
By default, the gradient options for fminimax are turned off and and fmincon does the gradient opproximation of minmaxObjfun. In case the GradObj option is off and GradConstr option is on, fminimax approximates minmaxObjfun gradient using numderivative toolbox.
   </para>
   <para>
If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
   </para>
   <para>
Furthermore, we must enable the "GradObj" option with the statement :
<programlisting>
minimaxOptions = list("GradObj",fGrad);
</programlisting>
This will let fminimax know that the exact gradient of the objective function is known, so that it can change the calling sequence to the objective function. Note that, fGrad should be mentioned in the form of N x n where n is the number of variables, N is the number of functions in objective function.
   </para>
   <para>
The constraint function must have header :
<programlisting>
[c, ceq] = confun(x)
</programlisting>
where x is a n x 1 matrix of dominmaxUbles, c is a 1 x nni matrix of doubles and ceq is a 1 x nne matrix of doubles (nni : number of nonlinear inequality constraints, nne : number of nonlinear equality constraints).
On input, the variable x contains the current point and, on output, the variable c must contain the nonlinear inequality constraints and ceq must contain the nonlinear equality constraints.
   </para>
   <para>
By default, the gradient options for fminimax are turned off and and fmincon does the gradient opproximation of confun. In case the GradObj option is on and GradCons option is off, fminimax approximates confun gradient using numderivative toolbox.
   </para>
   <para>
If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
   </para>
   <para>
Furthermore, we must enable the "GradCon" option with the statement :
<programlisting>
minimaxOptions = list("GradCon",confunGrad);
</programlisting>
This will let fminimax know that the exact gradient of the objective function is known, so that it can change the calling sequence to the objective function.
   </para>
   <para>
The constraint derivative function must have header :
<programlisting>
[dc,dceq] = confungrad(x)
</programlisting>
where dc is a nni x n matrix of doubles and dceq is a nne x n matrix of doubles.
   </para>
   <para>
The exitflag allows to know the status of the optimization which is given back by Ipopt.
<itemizedlist>
<listitem>exitflag=0 : Optimal Solution Found </listitem>
<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
<listitem>exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
<listitem>exitflag=3 : Stop at Tiny Step.</listitem>
<listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
</itemizedlist>
   </para>
   <para>
For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
   </para>
   <para>
The output data structure contains detailed informations about the optimization process.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>output.Iterations: The number of iterations performed during the search</listitem>
<listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
<listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
</itemizedlist>
   </para>
   <para>
The lambda data structure contains the Lagrange multipliers at the end
of optimization. In the current version the values are returned only when the the solution is optimal.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
<listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
<listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
<listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
<listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem>
<listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem>
</itemizedlist>
   </para>
   <para>
</para>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
// A basic case :
// we provide only the objective function and the nonlinear constraint
// function
function f = myfun(x)
f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;     //Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1) - x(2);
f(5)= x(1) + x(2) - 8;
endfunction
// The initial guess
x0 = [0.1,0.1];
// The expected solution : only 4 digits are guaranteed
//xopt = [4 4]
//fopt = [0 -64 -2 -8 0]
maxfopt = 0
// Run fminimax
[xopt,fopt,maxfval,exitflag,output,lambda] = fminimax(myfun, x0)
// Press ENTER to continue

   ]]></programlisting>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
// A case where we provide the gradient of the objective
// functions and the Jacobian matrix of the constraints.
// The objective function and its gradient
function f = myfun(x)
f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1) - x(2);
f(5)= x(1) + x(2) - 8;
endfunction
// Defining gradient of myfun
function G = myfungrad(x)
G = [ 4*x(1) - 48, -2*x(1), 1, -1, 1;
2*x(2) - 40, -6*x(2), 3, -1, 1; ]'
endfunction
// The nonlinear constraints and the Jacobian
// matrix of the constraints
function [c,ceq] = confun(x)
// Inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2), -x(1)*x(2) - 10]
// No nonlinear equality constraints
ceq=[]
endfunction
// Defining gradient of confungrad
function [DC,DCeq] = cgrad(x)
// DC(:,i) = gradient of the i-th constraint
// DC = [
//   Dc1/Dx1  Dc1/Dx2
//   Dc2/Dx1  Dc2/Dx2
//   ]
DC= [
x(2)-1, -x(2)
x(1)-1, -x(1)
]'
DCeq = []'
endfunction
// Test with both gradient of objective and gradient of constraints
minimaxOptions = list("GradObj",myfungrad,"GradCon",cgrad);
// The initial guess
x0 = [0,10];
// The expected solution : only 4 digits are guaranteed
//xopt = [0.92791 7.93551]
//fopt = [6.73443  -189.778  6.73443  -8.86342  0.86342]
maxfopt = 6.73443
// Run fminimax
[xopt,fopt,maxfval,exitflag,output] = fminimax(myfun,x0,[],[],[],[],[],[], confun, minimaxOptions)
   ]]></programlisting>
</refsection>

<refsection>
   <title>Authors</title>
   <simplelist type="vert">
   <member>Animesh Baranawal</member>
   </simplelist>
</refsection>
</refentry>