summaryrefslogtreecommitdiff
path: root/help/en_US/fmincon.xml
blob: a6bef9f001f8cf5db297fc6c9ddaa917a9417de9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from fmincon.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="fmincon" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>fmincon</refname>
    <refpurpose>Solves a multi-variable constrainted optimization problem</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   xopt = fmincon(f,x0,A,b)
   xopt = fmincon(f,x0,A,b,Aeq,beq)
   xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub)
   xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc)
   xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc,options)
   [xopt,fopt] = fmincon(.....)
   [xopt,fopt,exitflag]= fmincon(.....)
   [xopt,fopt,exitflag,output]= fmincon(.....)
   [xopt,fopt,exitflag,output,lambda]=fmincon(.....)
   [xopt,fopt,exitflag,output,lambda,gradient]=fmincon(.....)
   [xopt,fopt,exitflag,output,lambda,gradient,hessian]=fmincon(.....)
   
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Parameters</title>
   <variablelist>
   <varlistentry><term>f :</term>
      <listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry>
   <varlistentry><term>x0 :</term>
      <listitem><para> a vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables</para></listitem></varlistentry>
   <varlistentry><term>A :</term>
      <listitem><para> a matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints</para></listitem></varlistentry>
   <varlistentry><term>b :</term>
      <listitem><para> a vector of doubles, related to 'A' and containing the the Right hand side equation of the linear inequality constraints of size (m X 1)</para></listitem></varlistentry>
   <varlistentry><term>Aeq :</term>
      <listitem><para> a matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints</para></listitem></varlistentry>
   <varlistentry><term>beq :</term>
      <listitem><para> a vector of doubles, related to 'Aeq' and containing the the Right hand side equation of the linear equality constraints of size (m1 X 1)</para></listitem></varlistentry>
   <varlistentry><term>lb :</term>
      <listitem><para> a vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables</para></listitem></varlistentry>
   <varlistentry><term>ub :</term>
      <listitem><para> a vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables</para></listitem></varlistentry>
   <varlistentry><term>nlc :</term>
      <listitem><para> a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.</para></listitem></varlistentry>
   <varlistentry><term>options :</term>
      <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
   <varlistentry><term>xopt :</term>
      <listitem><para> a vector of doubles, cointating the computed solution of the optimization problem</para></listitem></varlistentry>
   <varlistentry><term>fopt :</term>
      <listitem><para> a scalar of double, containing the the function value at x</para></listitem></varlistentry>
   <varlistentry><term>exitflag :</term>
      <listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
   <varlistentry><term>output :</term>
      <listitem><para> a structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
   <varlistentry><term>lambda :</term>
      <listitem><para> a structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.</para></listitem></varlistentry>
   <varlistentry><term>gradient :</term>
      <listitem><para> a vector of doubles, containing the Objective's gradient of the solution.</para></listitem></varlistentry>
   <varlistentry><term>hessian  :</term>
      <listitem><para> a matrix of doubles, containing the Lagrangian's hessian of the solution.</para></listitem></varlistentry>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
Search the minimum of a constrained optimization problem specified by :
Find the minimum of f(x) such that
   </para>
   <para>
<latex>
\begin{eqnarray}
&amp;\mbox{min}_{x}
&amp; f(x) \\
&amp; \text{subject to} &amp; A*x \leq b \\
&amp; &amp; Aeq*x \ = beq\\
&amp; &amp; c(x) \leq  0\\
&amp; &amp; ceq(x) \ =  0\\
&amp; &amp; lb \leq x \leq ub \\
\end{eqnarray}
</latex>
   </para>
   <para>
The routine calls Ipopt for solving the Constrained Optimization problem, Ipopt is a library written in C++.
   </para>
   <para>
The options allows the user to set various parameters of the Optimization problem.
It should be defined as type "list" and contains the following fields.
<itemizedlist>
<listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "Hessian", ---, "GradCon", ---);</listitem>
<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
<listitem>GradObj : a function, representing the gradient function of the Objective in Vector Form.</listitem>
<listitem>Hessian : a function, representing the hessian function of the Lagrange in Symmetric Matrix Form with Input parameters x, Objective factor and Lambda. Refer Example for definition of Lagrangian Hessian function.</listitem>
<listitem>GradCon : a function, representing the gradient of the Non-Linear Constraints (both Equality and Inequality) of the problem. It is declared in such a way that gradient of non-linear inequality constraints are defined first as a separate Matrix (cg of size m2 X n or as an empty), followed by gradient of non-linear equality constraints as a separate Matrix (ceqg of size m2 X n or as an empty) where m2 &amp; m3 are number of non-linear inequality and equality constraints respectively.</listitem>
<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
</itemizedlist>
   </para>
   <para>
The exitflag allows to know the status of the optimization which is given back by Ipopt.
<itemizedlist>
<listitem>exitflag=0 : Optimal Solution Found </listitem>
<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
<listitem>exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
<listitem>exitflag=3 : Stop at Tiny Step.</listitem>
<listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
</itemizedlist>
   </para>
   <para>
For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
   </para>
   <para>
The output data structure contains detailed informations about the optimization process.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>output.Iterations: The number of iterations performed during the search</listitem>
<listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
<listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
<listitem>output.Message: The output message for the problem</listitem>
</itemizedlist>
   </para>
   <para>
The lambda data structure contains the Lagrange multipliers at the end
of optimization. In the current version the values are returned only when the the solution is optimal.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
<listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
<listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
<listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
<listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem>
<listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem>
</itemizedlist>
   </para>
   <para>
</para>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//Find x in R^2 such that it minimizes:
//f(x)= -x1 -x2/3
//x0=[0,0]
//constraint-1 (c1): x1 + x2 <= 2
//constraint-2 (c2): x1 + x2/4 <= 1
//constraint-3 (c3): x1 - x2 <= 2
//constraint-4 (c4): -x1/4 - x2 <= 1
//constraint-5 (c5): -x1 - x2 <= -1
//constraint-6 (c6): -x1 + x2 <= 2
//constraint-7 (c7): x1 + x2 = 2
//Objective function to be minimised
function y=f(x)
y=-x(1)-x(2)/3;
endfunction
//Starting point, linear constraints and variable bounds
x0=[0 , 0];
A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1];
b=[2;1;2;1;-1;2];
Aeq=[1,1];
beq=[2];
lb=[];
ub=[];
nlc=[];
//Gradient of objective function
function y= fGrad(x)
y= [-1,-1/3];
endfunction
//Hessian of lagrangian
function y= lHess(x,obj,lambda)
y= obj*[0,0;0,0]
endfunction
//Options
options=list("GradObj", fGrad, "Hessian", lHess);
//Calling Ipopt
[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
// Press ENTER to continue

   ]]></programlisting>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//Find x in R^3 such that it minimizes:
//f(x)= x1*x2 + x2*x3
//x0=[0.1 , 0.1 , 0.1]
//constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2
//constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10
//Objective function to be minimised
function y=f(x)
y=x(1)*x(2)+x(2)*x(3);
endfunction
//Starting point, linear constraints and variable bounds
x0=[0.1 , 0.1 , 0.1];
A=[];
b=[];
Aeq=[];
beq=[];
lb=[];
ub=[];
//Nonlinear constraints
function [c,ceq]=nlc(x)
c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
ceq = [];
endfunction
//Gradient of objective function
function y= fGrad(x)
y= [x(2),x(1)+x(3),x(2)];
endfunction
//Hessian of the Lagrange Function
function y= lHess(x,obj,lambda)
y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,-2,0;0,0,2] + lambda(2)*[2,0,0;0,2,0;0,0,2]
endfunction
//Gradient of Non-Linear Constraints
function [cg,ceqg] = cGrad(x)
cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
ceqg=[];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
//Calling Ipopt
[x,fval,exitflag,output] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
// Press ENTER to continue

   ]]></programlisting>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//The below problem is an unbounded problem:
//Find x in R^3 such that it minimizes:
//f(x)= -(x1^2 + x2^2 + x3^2)
//x0=[0.1 , 0.1 , 0.1]
//  x1 <= 0
//  x2 <= 0
//  x3 <= 0
//Objective function to be minimised
function y=f(x)
y=-(x(1)^2+x(2)^2+x(3)^2);
endfunction
//Starting point, linear constraints and variable bounds
x0=[0.1 , 0.1 , 0.1];
A=[];
b=[];
Aeq=[];
beq=[];
lb=[];
ub=[0,0,0];
//Options
options=list("MaxIter", [1500], "CpuTime", [500]);
//Calling Ipopt
[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,[],options)
// Press ENTER to continue

   ]]></programlisting>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//The below problem is an infeasible problem:
//Find x in R^3 such that in minimizes:
//f(x)=x1*x2 + x2*x3
//x0=[1,1,1]
//constraint-1 (c1): x1^2 <= 1
//constraint-2 (c2): x1^2 + x2^2 <= 1
//constraint-3 (c3): x3^2 <= 1
//constraint-4 (c4): x1^3 = 0.5
//constraint-5 (c5): x2^2 + x3^2 = 0.75
// 0 <= x1 <=0.6
// 0.2 <= x2 <= inf
// -inf <= x3 <= 1
//Objective function to be minimised
function y=f(x)
y=x(1)*x(2)+x(2)*x(3);
endfunction
//Starting point, linear constraints and variable bounds
x0=[1,1,1];
A=[];
b=[];
Aeq=[];
beq=[];
lb=[0 0.2,-%inf];
ub=[0.6 %inf,1];
//Nonlinear constraints
function [c,ceq]=nlc(x)
c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
endfunction
//Gradient of objective function
function y= fGrad(x)
y= [x(2),x(1)+x(3),x(2)];
endfunction
//Hessian of the Lagrange Function
function y= lHess(x,obj,lambda)
y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,0,0;0,0,0] + lambda(2)*[2,0,0;0,2,0;0,0,0] +lambda(3)*[0,0,0;0,0,0;0,0,2] + lambda(4)*[6*x(1    ),0,0;0,0,0;0,0,0] + lambda(5)*[0,0,0;0,2,0;0,0,2];
endfunction
//Gradient of Non-Linear Constraints
function [cg,ceqg] = cGrad(x)
cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
ceqg = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
//Calling Ipopt
[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
// Press ENTER to continue
   ]]></programlisting>
</refsection>

<refsection>
   <title>Authors</title>
   <simplelist type="vert">
   <member>R.Vidyadhar , Vignesh Kannan</member>
   </simplelist>
</refsection>
</refentry>