summaryrefslogtreecommitdiff
path: root/demos/fmincon.dem.sce
blob: 790c67f20fe6e6d32772760d6f603e4b40dd0dea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
mode(1)
//
// Demo of fmincon.sci
//

//Find x in R^2 such that it minimizes:
//f(x)= -x1 -x2/3
//x0=[0,0]
//constraint-1 (c1): x1 + x2 <= 2
//constraint-2 (c2): x1 + x2/4 <= 1
//constraint-3 (c3): x1 - x2 <= 2
//constraint-4 (c4): -x1/4 - x2 <= 1
//constraint-5 (c5): -x1 - x2 <= -1
//constraint-6 (c6): -x1 + x2 <= 2
//constraint-7 (c7): x1 + x2 = 2
//Objective function to be minimised
function y=f(x)
y=-x(1)-x(2)/3;
endfunction
//Starting point, linear constraints and variable bounds
x0=[0 , 0];
A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1];
b=[2;1;2;1;-1;2];
Aeq=[1,1];
beq=[2];
lb=[];
ub=[];
nlc=[];
//Gradient of objective function
function y= fGrad(x)
y= [-1,-1/3];
endfunction
//Hessian of lagrangian
function y= lHess(x,obj,lambda)
y= obj*[0,0;0,0]
endfunction
//Options
options=list("GradObj", fGrad, "Hessian", lHess);
//Calling Ipopt
[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
halt()   // Press return to continue
 
//Find x in R^3 such that it minimizes:
//f(x)= x1*x2 + x2*x3
//x0=[0.1 , 0.1 , 0.1]
//constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2
//constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10
//Objective function to be minimised
function y=f(x)
y=x(1)*x(2)+x(2)*x(3);
endfunction
//Starting point, linear constraints and variable bounds
x0=[0.1 , 0.1 , 0.1];
A=[];
b=[];
Aeq=[];
beq=[];
lb=[];
ub=[];
//Nonlinear constraints
function [c,ceq]=nlc(x)
c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
ceq = [];
endfunction
//Gradient of objective function
function y= fGrad(x)
y= [x(2),x(1)+x(3),x(2)];
endfunction
//Hessian of the Lagrange Function
function y= lHess(x,obj,lambda)
y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,-2,0;0,0,2] + lambda(2)*[2,0,0;0,2,0;0,0,2]
endfunction
//Gradient of Non-Linear Constraints
function [cg,ceqg] = cGrad(x)
cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
ceqg=[];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
//Calling Ipopt
[x,fval,exitflag,output] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
halt()   // Press return to continue
 
//The below problem is an unbounded problem:
//Find x in R^3 such that it minimizes:
//f(x)= -(x1^2 + x2^2 + x3^2)
//x0=[0.1 , 0.1 , 0.1]
//  x1 <= 0
//  x2 <= 0
//  x3 <= 0
//Objective function to be minimised
function y=f(x)
y=-(x(1)^2+x(2)^2+x(3)^2);
endfunction
//Starting point, linear constraints and variable bounds
x0=[0.1 , 0.1 , 0.1];
A=[];
b=[];
Aeq=[];
beq=[];
lb=[];
ub=[0,0,0];
//Options
options=list("MaxIter", [1500], "CpuTime", [500]);
//Calling Ipopt
[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,[],options)
halt()   // Press return to continue
 
//The below problem is an infeasible problem:
//Find x in R^3 such that in minimizes:
//f(x)=x1*x2 + x2*x3
//x0=[1,1,1]
//constraint-1 (c1): x1^2 <= 1
//constraint-2 (c2): x1^2 + x2^2 <= 1
//constraint-3 (c3): x3^2 <= 1
//constraint-4 (c4): x1^3 = 0.5
//constraint-5 (c5): x2^2 + x3^2 = 0.75
// 0 <= x1 <=0.6
// 0.2 <= x2 <= inf
// -inf <= x3 <= 1
//Objective function to be minimised
function y=f(x)
y=x(1)*x(2)+x(2)*x(3);
endfunction
//Starting point, linear constraints and variable bounds
x0=[1,1,1];
A=[];
b=[];
Aeq=[];
beq=[];
lb=[0 0.2,-%inf];
ub=[0.6 %inf,1];
//Nonlinear constraints
function [c,ceq]=nlc(x)
c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
endfunction
//Gradient of objective function
function y= fGrad(x)
y= [x(2),x(1)+x(3),x(2)];
endfunction
//Hessian of the Lagrange Function
function y= lHess(x,obj,lambda)
y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,0,0;0,0,0] + lambda(2)*[2,0,0;0,2,0;0,0,0] +lambda(3)*[0,0,0;0,0,0;0,0,2] + lambda(4)*[6*x(1    ),0,0;0,0,0;0,0,0] + lambda(5)*[0,0,0;0,2,0;0,0,2];
endfunction
//Gradient of Non-Linear Constraints
function [cg,ceqg] = cGrad(x)
cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
ceqg = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
//Calling Ipopt
[x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
//========= E N D === O F === D E M O =========//