1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
mode(1)
//
// Demo of fminbnd.sci
//
//Find x in R^6 such that it minimizes:
//f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6)
//-2 <= x1,x2,x3,x4,x5,x6 <= 2
//Objective function to be minimised
function y=f(x)
y=0
for i =1:6
y=y+sin(x(i));
end
endfunction
//Variable bounds
x1 = [-2, -2, -2, -2, -2, -2];
x2 = [2, 2, 2, 2, 2, 2];
//Options
options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
//Calling Ipopt
[x,fval] =fminbnd(f, x1, x2, options)
// Press ENTER to continue
halt() // Press return to continue
//Find x in R such that it minimizes:
//f(x)= 1/x^2
//0 <= x <= 1000
//Objective function to be minimised
function y=f(x)
y=1/x^2
endfunction
//Variable bounds
x1 = [0];
x2 = [1000];
//Calling Ipopt
[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2)
// Press ENTER to continue
halt() // Press return to continue
//The below problem is an unbounded problem:
//Find x in R^2 such that it minimizes:
//f(x)= -[(x1-1)^2 + (x2-1)^2]
//-inf <= x1,x2 <= inf
//Objective function to be minimised
function y=f(x)
y=-((x(1)-1)^2+(x(2)-1)^2);
endfunction
//Variable bounds
x1 = [-%inf , -%inf];
x2 = [];
//Options
options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
//Calling Ipopt
[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2, options)
//========= E N D === O F === D E M O =========//
|