summaryrefslogtreecommitdiff
path: root/macros/symphony.sci~
diff options
context:
space:
mode:
Diffstat (limited to 'macros/symphony.sci~')
-rw-r--r--macros/symphony.sci~287
1 files changed, 0 insertions, 287 deletions
diff --git a/macros/symphony.sci~ b/macros/symphony.sci~
deleted file mode 100644
index 4b11ae8..0000000
--- a/macros/symphony.sci~
+++ /dev/null
@@ -1,287 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-function [xopt,fopt,status,output] = symphony (varargin)
- // Solves a mixed integer linear programming constrained optimization problem.
- //
- // Calling Sequence
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB)
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense)
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense,options)
- // [xopt,fopt,status,output] = symphony( ... )
- //
- // Parameters
- // nbVar : a double, number of variables.
- // nbCon : a double, number of constraints.
- // objCoeff : a 1 x n matrix of doubles, where n is number of variables, represents coefficients of the variables in the objective.
- // isInt : a vector of boolean, represents wether a variable is constrained to be an integer.
- // LB : a vector of doubles, represents lower bounds of the variables.
- // UB : a vector of doubles, represents upper bounds of the variables.
- // conMatrix : a matrix of doubles, represents matrix representing the constraint matrix.
- // conLB : a vector of doubles, represents lower bounds of the constraints.
- // conUB : a vector of doubles, represents upper bounds of the constraints
- // objSense : The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here.
- // options : a a list containing the the parameters to be set.
- // xopt : a vector of doubles, the computed solution of the optimization problem.
- // fopt : a double, the function value at x.
- // status : status flag from symphony.
- // output : The output data structure contains detailed informations about the optimization process.
- //
- // Description
- // Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
- // find the minimum or maximum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & f(x) \\
- // & \text{subject to} & conLB \leq C(x) \leq conUB \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.
- //
- // Examples
- // //A basic case :
- // // Objective function
- // c = [350*5,330*3,310*4,280*6,500,450,400,100]';
- // // Lower Bound of variable
- // lb = repmat(0,8,1);
- // // Upper Bound of variables
- // ub = [repmat(1,4,1);repmat(%inf,4,1)];
- // // Constraint Matrix
- // conMatrix = [5,3,4,6,1,1,1,1;
- // 5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
- // 5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
- // // Lower Bound of constrains
- // conlb = [ 25; 1.25; 1.25]
- // // Upper Bound of constrains
- // conub = [ 25; 1.25; 1.25]
- // // Row Matrix for telling symphony that the is integer or not
- // isInt = [repmat(%t,1,4) repmat(%f,1,4)];
- // xopt = [1 1 0 1 7.25 0 0.25 3.5]
- // fopt = [8495]
- // // Calling Symphony
- // [x,f,status,output] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1)
- //
- // Examples
- // // An advanced case where we set some options in symphony
- // // This problem is taken from
- // // P.C.Chu and J.E.Beasley
- // // "A genetic algorithm for the multidimensional knapsack problem",
- // // Journal of Heuristics, vol. 4, 1998, pp63-86.
- // // The problem to be solved is:
- // // Max sum{j=1,...,n} p(j)x(j)
- // // st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
- // // x(j)=0 or 1
- // // The function to be maximize i.e. P(j)
- // p = [ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
- // 825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
- // 877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
- // 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
- // 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
- // 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
- // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
- // //Constraint Matrix
- // conMatrix = [
- // //Constraint 1
- // 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
- // 550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
- // 164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
- // 320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
- // 597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
- // 797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
- // 718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
- // //Constraint 2
- // 509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
- // 350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
- // 638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
- // 892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
- // 158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
- // 252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
- // 708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
- // //Constraint 3
- // 806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
- // 883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
- // 137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
- // 482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
- // 280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
- // 73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
- // 382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
- // //Constraint 4
- // 404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
- // 263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
- // 817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
- // 967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
- // 987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
- // 68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
- // 689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
- // //Constrain 5
- // 475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
- // 515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
- // 447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
- // 768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
- // 420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
- // 483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
- // 893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
- // ];
- // nbCon = size(conMatrix,1)
- // nbVar = size(conMatrix,2)
- // // Lower Bound of variables
- // lb = repmat(0,nbVar,1)
- // // Upper Bound of variables
- // ub = repmat(1,nbVar,1)
- // // Row Matrix for telling symphony that the is integer or not
- // isInt = repmat(%t,1,nbVar)
- // // Lower Bound of constrains
- // conLB=repmat(0,nbCon,1);
- // // Upper Bound of constraints
- // conUB=[11927 13727 11551 13056 13460 ]';
- // options = list("time_limit", 25);
- // // The expected solution :
- // // Output variables
- // xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
- // 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 ..
- // 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
- // // Optimal value
- // fopt = [ 24381 ]
- // // Calling Symphony
- // [x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
-
-//To check the number of input and output argument
- [lhs , rhs] = argn();
-
-//To check the number of argument given by user
- if ( rhs < 9 | rhs > 11 ) then
- errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set [9 10 11]"), "Symphony", rhs);
- error(errmsg)
- end
-
- nbVar = varargin(1);
- nbCon = varargin(2);
- objCoef = varargin(3);
- isInt = varargin(4);
- LB = varargin(5);
- UB = varargin(6);
- conMatrix = varargin(7);
- conLB = varargin(8);
- conUB = varargin(9);
-
- if ( rhs<10 ) then
- objSense = 1;
- else
- objSense = varargin(10);
- end
-
- if (rhs<11|size(varargin(11))==0) then
- options = list();
- else
- options = varargin(11);
- end
-
-// Check if the user gives row vector
-// and Changing it to a column matrix
-
- if (size(isInt,2)== [nbVar]) then
- isInt = isInt';
- end
-
- if (size(LB,2)== [nbVar]) then
- LB = LB';
- end
-
- if (size(UB,2)== [nbVar]) then
- UB = UB';
- end
-
- if (size(conLB,2)== [nbVar]) then
- conLB = conLB';
- end
-
- if (size(conUB,2)== [nbVar]) then
- conUB = conUB';
- end
-
-
- if (size(objCoef,2)~=1) then
- errmsg = msprintf(gettext("%s: Objective Coefficients should be a column matrix"), "Symphony");
- error(errmsg);
- end
-
- if (size(objCoef,1)~=nbVar) then
- errmsg = msprintf(gettext("%s: Number of variables in Objective Coefficients is not equal to number of variables given"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of isInt which should equal to the number of variables
- if(size(isInt,1)~=nbVar) then
- errmsg = msprintf(gettext("%s: The size of isInt is not equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of lower bound of inequality constraint which should equal to the number of constraints
- if ( size(conLB,1) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Lower Bound of constraint is not equal to the number of constraint"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of lower bound of inequality constraint which should equal to the number of constraints
- if ( size(conUB,1) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Upper Bound of constraint is not equal to the number of constraint"), "Symphony");
- error(errmsg);
- end
-
- //Check the row of constraint which should equal to the number of constraints
- if ( size(conMatrix,1) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The number of rows in constraint should be equal to the number of constraints"), "Symphony");
- error(errmsg);
- end
-
- //Check the column of constraint which should equal to the number of variables
- if ( size(conMatrix,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The number of columns in constraint should equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of Lower Bound which should equal to the number of variables
- if ( size(LB,1) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of Upper Bound which should equal to the number of variables
- if ( size(UB,1) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- if (type(options) ~= 15) then
- errmsg = msprintf(gettext("%s: Options should be a list "), "Symphony");
- error(errmsg);
- end
-
- if (modulo(size(options),2)) then
- errmsg = msprintf(gettext("%s: Size of parameters should be even"), "Symphony");
- error(errmsg);
- end
-
- LB = LB';
- UB = UB';
- isInt = isInt';
- objCoef = objCoef';
-
- [xopt,fopt,status,output] = symphony_call(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense,options);
-
-endfunction