summaryrefslogtreecommitdiff
path: root/macros/qpipopt.sci
diff options
context:
space:
mode:
Diffstat (limited to 'macros/qpipopt.sci')
-rw-r--r--macros/qpipopt.sci51
1 files changed, 40 insertions, 11 deletions
diff --git a/macros/qpipopt.sci b/macros/qpipopt.sci
index e8c945a..33b31bb 100644
--- a/macros/qpipopt.sci
+++ b/macros/qpipopt.sci
@@ -26,16 +26,16 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// f : a vector of double, represents coefficients of linear in the quadratic problem
// lb : a vector of double, contains lower bounds of the variables.
// ub : a vector of double, contains upper bounds of the variables.
- // A : a matrix of double, contains matrix representing the constraint matrix
+ // A : a matrix of double, contains the constraint matrix
// conLB : a vector of double, contains lower bounds of the constraints.
// conUB : a vector of double, contains upper bounds of the constraints.
// x0 : a vector of double, contains initial guess of variables.
- // param : a list containing the the parameters to be set.
+ // param : a list containing the parameters to be set.
// xopt : a vector of double, the computed solution of the optimization problem.
- // fopt : a double, the function value at x.
- // exitflag : A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.
- // output : Structure containing information about the optimization. This version only contains number of iterations
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.
+ // fopt : a double, the value of the function at x.
+ // exitflag : The exit status. See below for details.
+ // output : The structure consist of statistics about the optimization. See below for details.
+ // lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
//
// Description
// Search the minimum of a constrained linear quadratic optimization problem specified by :
@@ -50,6 +50,35 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// </latex>
//
// The routine calls Ipopt for solving the quadratic problem, Ipopt is a library written in C++.
+ //
+ // The exitflag allows to know the status of the optimization which is given back by Ipopt.
+ // <itemizedlist>
+ // <listitem>exitflag=0 : Optimal Solution Found </listitem>
+ // <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
+ // <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
+ // <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
+ // <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
+ // <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
+ // </itemizedlist>
+ //
+ // For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
+ //
+ // The output data structure contains detailed informations about the optimization process.
+ // It has type "struct" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>output.iterations: The number of iterations performed during the search</listitem>
+ // <listitem>output.constrviolation: The max-norm of the constraint violation.</listitem>
+ // </itemizedlist>
+ //
+ // The lambda data structure contains the Lagrange multipliers at the end
+ // of optimization. In the current version the values are returned only when the the solution is optimal.
+ // It has type "struct" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
+ // <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
+ // <listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
+ // <listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
+ // </itemizedlist>
//
// Examples
// //Ref : example 14 :
@@ -316,12 +345,14 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
end
end
- [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,A,conLB,conUB,lb,ub,x0,options);
+ [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,A,conLB,conUB,lb,ub,x0,options);
xopt = xopt';
exitflag = status;
- output = struct("Iterations" , []);
- output.Iterations = iter;
+ output = struct("Iterations" , [], ..
+ "ConstrViolation" ,[]);
+ output.Iterations = iter;
+ output.ConstrViolation = max([0;(conLB'-A*xopt);(A*xopt - conUB');(lb'-xopt);(xopt-ub')]);
lambda = struct("lower" , [], ..
"upper" , [], ..
"constraint" , []);
@@ -331,7 +362,6 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
lambda.constraint = lmbda;
select status
-
case 0 then
printf("\nOptimal Solution Found.\n");
case 1 then
@@ -367,5 +397,4 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
break;
end
-
endfunction