diff options
Diffstat (limited to 'macros/lsqnonneg.sci')
-rw-r--r-- | macros/lsqnonneg.sci | 186 |
1 files changed, 186 insertions, 0 deletions
diff --git a/macros/lsqnonneg.sci b/macros/lsqnonneg.sci new file mode 100644 index 0000000..c65b1ba --- /dev/null +++ b/macros/lsqnonneg.sci @@ -0,0 +1,186 @@ +// Copyright (C) 2015 - IIT Bombay - FOSSEE +// +// Author: Harpreet Singh +// Organization: FOSSEE, IIT Bombay +// Email: harpreet.mertia@gmail.com +// This file must be used under the terms of the CeCILL. +// This source file is licensed as described in the file COPYING, which +// you should have received as part of this distribution. The terms +// are also available at +// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + + +function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin) + // Solves nonnegative least-squares curve fitting problems. + // + // Calling Sequence + // x = lsqnonneg(C,d) + // x = lsqnonneg(C,d,param) + // [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg( ... ) + // + // Parameters + // C : a matrix of doubles, represents the multiplier of the solution x in the expression C*x - d. C is M-by-N, where M is the number of equations, and N is the number of elements of x. + // d : a vector of doubles, represents the additive constant term in the expression C*x - d. d is M-by-1, where M is the number of equations. + // xopt : a vector of doubles, the computed solution of the optimization problem. + // resnorm : a double, objective value returned as the scalar value norm(C*x-d)^2. + // residual : a vector of doubles, solution residuals returned as the vector C*x-d. + // exitflag : Integer identifying the reason the algorithm terminated. + // output : Structure containing information about the optimization. + // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type). + // + // Description + // Solves nonnegative least-squares curve fitting problems specified by : + // + // <latex> + // \begin{eqnarray} + // &\mbox{min}_{x} + // & 1/2||C*x - d||_2^2 \\ + // & & x \geq 0 \\ + // \end{eqnarray} + // </latex> + // + // We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++. The code has been written by Andreas Wächter and Carl Laird. + // + // Examples + // A basic lsqnonneg problem + // C = [ + // 0.0372 0.2869 + // 0.6861 0.7071 + // 0.6233 0.6245 + // 0.6344 0.6170]; + // d = [ + // 0.8587 + // 0.1781 + // 0.0747 + // 0.8405]; + // [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d) + // + // Authors + // Harpreet Singh + + + //To check the number of input and output argument + [lhs , rhs] = argn(); + + //To check the number of argument given by user + if ( rhs < 2 | rhs > 3 ) then + errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 3]"), "lsqlin", rhs); + error(errmsg) + end + + C = varargin(1); + d = varargin(2); + nbVar = size(C,2); + if ( rhs<3 | size(varargin(3)) ==0 ) then + param = list(); + else + param =varargin(10); + end + + if (type(param) ~= 15) then + errmsg = msprintf(gettext("%s: param should be a list "), "lsqlin"); + error(errmsg); + end + + + if (modulo(size(param),2)) then + errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqlin"); + error(errmsg); + end + + options = list( "MaxIter" , [3000], ... + "CpuTime" , [600] ... + ); + + for i = 1:(size(param))/2 + + select param(2*i-1) + case "MaxIter" then + options(2*i) = param(2*i); + case "CpuTime" then + options(2*i) = param(2*i); + else + errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1)); + error(errmsg) + end + end + + // Check if the user gives row vector + // and Changing it to a column matrix + + + if (size(d,2)== [nbVar]) then + d=d'; + end + + //Check the size of f which should equal to the number of variable + if ( size(d,1) ~= size(C,1)) then + errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqlin"); + error(errmsg); + end + + //Converting it into Quadratic Programming Problem + + Q = C'*C; + p = [-C'*d]'; + op_add = d'*d; + LB = repmat(0,1,nbVar); + UB = repmat(%inf,1,nbVar); + x0 = repmat(0,1,nbVar);; + conMatrix = []; + nbCon = size(conMatrix,1); + conLB = []; + conUB = [] ; + [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB,x0,options); + + xopt = xopt'; + residual = C*xopt-d; + resnorm = residual'*residual; + exitflag = status; + output = struct("Iterations" , []); + output.Iterations = iter; + lambda = struct("lower" , [], .. + "upper" , [], .. + "constraint" , []); + + lambda.lower = Zl; + lambda.upper = Zu; + lambda.constraint = lmbda; + + select status + case 0 then + printf("\nOptimal Solution Found.\n"); + case 1 then + printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n"); + case 2 then + printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n"); + case 3 then + printf("\nStop at Tiny Step\n"); + case 4 then + printf("\nSolved To Acceptable Level\n"); + case 5 then + printf("\nConverged to a point of local infeasibility.\n"); + case 6 then + printf("\nStopping optimization at current point as requested by user.\n"); + case 7 then + printf("\nFeasible point for square problem found.\n"); + case 8 then + printf("\nIterates diverging; problem might be unbounded.\n"); + case 9 then + printf("\nRestoration Failed!\n"); + case 10 then + printf("\nError in step computation (regularization becomes too large?)!\n"); + case 12 then + printf("\nProblem has too few degrees of freedom.\n"); + case 13 then + printf("\nInvalid option thrown back by IPOpt\n"); + case 14 then + printf("\nNot enough memory.\n"); + case 15 then + printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify IPOPT Authors.\n"); + else + printf("\nInvalid status returned. Notify the Toolbox authors\n"); + break; + end + +endfunction |