diff options
Diffstat (limited to 'macros/lsqcurvefit.sci')
-rw-r--r-- | macros/lsqcurvefit.sci | 439 |
1 files changed, 439 insertions, 0 deletions
diff --git a/macros/lsqcurvefit.sci b/macros/lsqcurvefit.sci new file mode 100644 index 0000000..10e8e48 --- /dev/null +++ b/macros/lsqcurvefit.sci @@ -0,0 +1,439 @@ +// Copyright (C) 2015 - IIT Bombay - FOSSEE +// +// This file must be used under the terms of the CeCILL. +// This source file is licensed as described in the file COPYING, which +// you should have received as part of this distribution. The terms +// are also available at +// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt +// Author: Harpreet Singh +// Organization: FOSSEE, IIT Bombay +// Email: toolbox@scilab.in + +function [xopt,resnorm,residual,exitflag,output,lambda] = lsqcurvefit (varargin) + // Solves a non linear data fitting problems. + // + // Calling Sequence + // xopt = lsqcurvefit(fun,x0,xdata,ydata) + // xopt = lsqcurvefit(fun,x0,xdata,ydata,lb,ub) + // xopt = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options) + // [xopt,resnorm] = lsqcurvefit( ... ) + // + // Parameters + // C : a matrix of double, represents the multiplier of the solution x in the expression C⋅x - d. Number of columns in C is equal to the number of elements in x. + // d : a vector of double, represents the additive constant term in the expression C⋅x - d. Number of elements in d is equal to the number of rows in C matrix. + // A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b. + // b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b. + // Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq. + // beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq. + // lb : a vector of double, contains lower bounds of the variables. + // ub : a vector of double, contains upper bounds of the variables. + // x0 : a vector of double, contains initial guess of variables. + // param : a list containing the parameters to be set. + // xopt : a vector of double, the computed solution of the optimization problem. + // resnorm : a double, objective value returned as the scalar value norm(C⋅x-d)^2. + // residual : a vector of double, solution residuals returned as the vector d-C⋅x. + // exitflag : The exit status. See below for details. + // output : The structure consist of statistics about the optimization. See below for details. + // lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details. + // + // Description + // Search the minimum of a constrained linear least square problem specified by : + // + // <latex> + // \begin{eqnarray} + // &\mbox{min}_{x} + // & 1/2||C⋅x - d||_2^2 \\ + // & \text{subject to} & A⋅x \leq b \\ + // & & Aeq⋅x = beq \\ + // & & lb \leq x \leq ub \\ + // \end{eqnarray} + // </latex> + // + // The routine calls Ipopt for solving the linear least square problem, Ipopt is a library written in C++. + // + // The options allows the user to set various parameters of the Optimization problem. + // It should be defined as type "list" and contains the following fields. + // <itemizedlist> + // <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---]);</listitem> + // <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem> + // <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem> + // <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem> + // </itemizedlist> + // + // The exitflag allows to know the status of the optimization which is given back by Ipopt. + // <itemizedlist> + // <listitem>exitflag=0 : Optimal Solution Found </listitem> + // <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem> + // <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem> + // <listitem>exitflag=3 : Stop at Tiny Step.</listitem> + // <listitem>exitflag=4 : Solved To Acceptable Level.</listitem> + // <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem> + // </itemizedlist> + // + // For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/ + // + // The output data structure contains detailed informations about the optimization process. + // It has type "struct" and contains the following fields. + // <itemizedlist> + // <listitem>output.iterations: The number of iterations performed during the search</listitem> + // <listitem>output.constrviolation: The max-norm of the constraint violation.</listitem> + // </itemizedlist> + // + // The lambda data structure contains the Lagrange multipliers at the end + // of optimization. In the current version the values are returned only when the the solution is optimal. + // It has type "struct" and contains the following fields. + // <itemizedlist> + // <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem> + // <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem> + // <listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem> + // <listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem> + // </itemizedlist> + // + // Examples + // //A simple linear least square example + // C = [ 2 0; + // -1 1; + // 0 2] + // d = [1 + // 0 + // -1]; + // A = [10 -2; + // -2 10]; + // b = [4 + // -4]; + // [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b) + // // Press ENTER to continue + // + // Examples + // //A basic example for equality, inequality constraints and variable bounds + // C = [1 1 1; + // 1 1 0; + // 0 1 1; + // 1 0 0; + // 0 0 1] + // d = [89; + // 67; + // 53; + // 35; + // 20;] + // A = [3 2 1; + // 2 3 4; + // 1 2 3]; + // b = [191 + // 209 + // 162]; + // Aeq = [1 2 1]; + // beq = 10; + // lb = repmat(0.1,3,1); + // ub = repmat(4,3,1); + // [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub) + // Authors + // Harpreet Singh + + + //To check the number of input and output argument + [lhs , rhs] = argn(); + + //To check the number of argument given by user + if ( rhs < 4 | rhs == 5 | rhs == 7 | rhs > 10 ) then + errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [4 6 8 9 10]"), "lsqlin", rhs); + error(errmsg) + end + +// Initializing all the values to empty matrix + C=[]; + d=[]; + A=[]; + b=[]; + Aeq=[]; + beq=[]; + lb=[]; + ub=[]; + x0=[]; + + C = varargin(1); + d = varargin(2); + A = varargin(3); + b = varargin(4); + nbVar = size(C,2); + + if(nbVar == 0) then + errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input objective coefficients is empty"), "lsqlin"); + error(errmsg); + end + + if ( rhs<5 ) then + Aeq = [] + beq = [] + else + Aeq = varargin(5); + beq = varargin(6); + end + + if ( rhs<7 ) then + lb = repmat(-%inf,nbVar,1); + ub = repmat(%inf,nbVar,1); + else + lb = varargin(7); + ub = varargin(8); + end + + + if ( rhs<9 | size(varargin(9)) ==0 ) then + x0 = repmat(0,nbVar,1) + else + x0 = varargin(9); + end + + if ( rhs<10 | size(varargin(10)) ==0 ) then + param = list(); + else + param =varargin(10); + end + + if (size(lb,2)==0) then + lb = repmat(-%inf,nbVar,1); + end + + if (size(ub,2)==0) then + ub = repmat(%inf,nbVar,1); + end + + if (type(param) ~= 15) then + errmsg = msprintf(gettext("%s: param should be a list "), "lsqlin"); + error(errmsg); + end + + //Check type of variables + Checktype("lsqlin", C, "C", 1, "constant") + Checktype("lsqlin", d, "d", 2, "constant") + Checktype("lsqlin", A, "A", 3, "constant") + Checktype("lsqlin", b, "b", 4, "constant") + Checktype("lsqlin", Aeq, "Aeq", 5, "constant") + Checktype("lsqlin", beq, "beq", 6, "constant") + Checktype("lsqlin", lb, "lb", 7, "constant") + Checktype("lsqlin", ub, "ub", 8, "constant") + Checktype("lsqlin", x0, "x0", 9, "constant") + + if (modulo(size(param),2)) then + errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqlin"); + error(errmsg); + end + + options = list( "MaxIter" , [3000], ... + "CpuTime" , [600] ... + ); + + for i = 1:(size(param))/2 + + select convstr(param(2*i-1),'l') + case "maxiter" then + options(2*i) = param(2*i); + case "cputime" then + options(2*i) = param(2*i); + else + errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1)); + error(errmsg) + end + end + + nbConInEq = size(A,1); + nbConEq = size(Aeq,1); + + // Check if the user gives row vector + // and Changing it to a column matrix + + if (size(d,2)== [nbVar]) then + d=d'; + end + + if (size(lb,2)== [nbVar]) then + lb = lb'; + end + + if (size(ub,2)== [nbVar]) then + ub = ub'; + end + + if (size(b,2)==nbConInEq) then + b = b'; + end + + if (size(beq,2)== nbConEq) then + beq = beq'; + end + + if (size(x0,2)== [nbVar]) then + x0=x0'; + end + + //Check the size of d which should equal to the number of variable + if ( size(d,1) ~= size(C,1)) then + errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqlin"); + error(errmsg); + end + + //Check the size of inequality constraint which should be equal to the number of variables + if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then + errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of columns in C"), "lsqlin"); + error(errmsg); + end + + //Check the size of equality constraint which should be equal to the number of variables + if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then + errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of columns in C"), "lsqlin"); + error(errmsg); + end + + //Check the size of Lower Bound which should be equal to the number of variables + if ( size(lb,1) ~= nbVar) then + errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "lsqlin"); + error(errmsg); + end + + //Check the size of Upper Bound which should equal to the number of variables + if ( size(ub,1) ~= nbVar) then + errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "lsqlin"); + error(errmsg); + end + + //Check the size of constraints of Lower Bound which should equal to the number of constraints + if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then + errmsg = msprintf(gettext("%s: The number of rows in A must be the same as the number of elements of b"), "lsqlin"); + error(errmsg); + end + + //Check the size of constraints of Upper Bound which should equal to the number of constraints + if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then + errmsg = msprintf(gettext("%s: The number of rows in Aeq must be the same as the number of elements of beq"), "lsqlin"); + error(errmsg); + end + + //Check the size of initial of variables which should equal to the number of variables + if ( size(x0,1) ~= nbVar) then + warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "lsqlin"); + warning(warnmsg); + x0 = repmat(0,nbVar,1); + end + + //Check if the user gives a matrix instead of a vector + + if ((size(d,1)~=1)& (size(d,2)~=1)) then + errmsg = msprintf(gettext("%s: d should be a vector"), "lsqlin"); + error(errmsg); + end + + if (size(lb,1)~=1)& (size(lb,2)~=1) then + errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "lsqlin"); + error(errmsg); + end + + if (size(ub,1)~=1)& (size(ub,2)~=1) then + errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "lsqlin"); + error(errmsg); + end + + if (nbConInEq) then + if ((size(b,1)~=1)& (size(b,2)~=1)) then + errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "lsqlin"); + error(errmsg); + end + end + + if (nbConEq) then + if (size(beq,1)~=1)& (size(beq,2)~=1) then + errmsg = msprintf(gettext("%s: Constraint should be a vector"), "lsqlin"); + error(errmsg); + end + end + + for i = 1:nbConInEq + if (b(i) == -%inf) + errmsg = msprintf(gettext("%s: Value of b can not be negative infinity"), "lsqlin"); + error(errmsg); + end + end + + for i = 1:nbConEq + if (beq(i) == -%inf) + errmsg = msprintf(gettext("%s: Value of beq can not be negative infinity"), "lsqlin"); + error(errmsg); + end + end + + for i = 1:nbVar + if(lb(i)>ub(i)) + errmsg = msprintf(gettext("%s: Problem has inconsistent variable bounds"), "lsqlin"); + error(errmsg); + end + end + + //Converting it into Quadratic Programming Problem + + H = C'*C; + f = [-C'*d]'; + op_add = d'*d; + lb = lb'; + ub = ub'; + x0 = x0'; + conMatrix = [Aeq;A]; + nbCon = size(conMatrix,1); + conLB = [beq; repmat(-%inf,nbConInEq,1)]'; + conUB = [beq;b]' ; + [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,conMatrix,conLB,conUB,lb,ub,x0,options); + + xopt = xopt'; + residual = d-C*xopt; + resnorm = residual'*residual; + exitflag = status; + output = struct("Iterations" , [], .. + "ConstrViolation" ,[]); + output.Iterations = iter; + output.ConstrViolation = max([0;norm(Aeq*xopt-beq, 'inf');(lb'-xopt);(xopt-ub');(A*xopt-b)]); + lambda = struct("lower" , [], .. + "upper" , [], .. + "eqlin" , [], .. + "ineqlin" , []); + + lambda.lower = Zl; + lambda.upper = Zu; + lambda.eqlin = lmbda(1:nbConEq); + lambda.ineqlin = lmbda(nbConEq+1:nbCon); + + select status + case 0 then + printf("\nOptimal Solution Found.\n"); + case 1 then + printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n"); + case 2 then + printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n"); + case 3 then + printf("\nStop at Tiny Step\n"); + case 4 then + printf("\nSolved To Acceptable Level\n"); + case 5 then + printf("\nConverged to a point of local infeasibility.\n"); + case 6 then + printf("\nStopping optimization at current point as requested by user.\n"); + case 7 then + printf("\nFeasible point for square problem found.\n"); + case 8 then + printf("\nIterates diverging; problem might be unbounded.\n"); + case 9 then + printf("\nRestoration Failed!\n"); + case 10 then + printf("\nError in step computation (regularization becomes too large?)!\n"); + case 12 then + printf("\nProblem has too few degrees of freedom.\n"); + case 13 then + printf("\nInvalid option thrown back by Ipopt\n"); + case 14 then + printf("\nNot enough memory.\n"); + case 15 then + printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n"); + else + printf("\nInvalid status returned. Notify the Toolbox authors\n"); + break; + end + +endfunction |