summaryrefslogtreecommitdiff
path: root/macros/lsqcurvefit.sci
diff options
context:
space:
mode:
Diffstat (limited to 'macros/lsqcurvefit.sci')
-rw-r--r--macros/lsqcurvefit.sci439
1 files changed, 439 insertions, 0 deletions
diff --git a/macros/lsqcurvefit.sci b/macros/lsqcurvefit.sci
new file mode 100644
index 0000000..10e8e48
--- /dev/null
+++ b/macros/lsqcurvefit.sci
@@ -0,0 +1,439 @@
+// Copyright (C) 2015 - IIT Bombay - FOSSEE
+//
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+// Author: Harpreet Singh
+// Organization: FOSSEE, IIT Bombay
+// Email: toolbox@scilab.in
+
+function [xopt,resnorm,residual,exitflag,output,lambda] = lsqcurvefit (varargin)
+ // Solves a non linear data fitting problems.
+ //
+ // Calling Sequence
+ // xopt = lsqcurvefit(fun,x0,xdata,ydata)
+ // xopt = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
+ // xopt = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
+ // [xopt,resnorm] = lsqcurvefit( ... )
+ //
+ // Parameters
+ // C : a matrix of double, represents the multiplier of the solution x in the expression C⋅x - d. Number of columns in C is equal to the number of elements in x.
+ // d : a vector of double, represents the additive constant term in the expression C⋅x - d. Number of elements in d is equal to the number of rows in C matrix.
+ // A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ // b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ // Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
+ // beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
+ // lb : a vector of double, contains lower bounds of the variables.
+ // ub : a vector of double, contains upper bounds of the variables.
+ // x0 : a vector of double, contains initial guess of variables.
+ // param : a list containing the parameters to be set.
+ // xopt : a vector of double, the computed solution of the optimization problem.
+ // resnorm : a double, objective value returned as the scalar value norm(C⋅x-d)^2.
+ // residual : a vector of double, solution residuals returned as the vector d-C⋅x.
+ // exitflag : The exit status. See below for details.
+ // output : The structure consist of statistics about the optimization. See below for details.
+ // lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
+ //
+ // Description
+ // Search the minimum of a constrained linear least square problem specified by :
+ //
+ // <latex>
+ // \begin{eqnarray}
+ // &\mbox{min}_{x}
+ // & 1/2||C⋅x - d||_2^2 \\
+ // & \text{subject to} & A⋅x \leq b \\
+ // & & Aeq⋅x = beq \\
+ // & & lb \leq x \leq ub \\
+ // \end{eqnarray}
+ // </latex>
+ //
+ // The routine calls Ipopt for solving the linear least square problem, Ipopt is a library written in C++.
+ //
+ // The options allows the user to set various parameters of the Optimization problem.
+ // It should be defined as type "list" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---]);</listitem>
+ // <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
+ // <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
+ // <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
+ // </itemizedlist>
+ //
+ // The exitflag allows to know the status of the optimization which is given back by Ipopt.
+ // <itemizedlist>
+ // <listitem>exitflag=0 : Optimal Solution Found </listitem>
+ // <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
+ // <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
+ // <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
+ // <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
+ // <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
+ // </itemizedlist>
+ //
+ // For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
+ //
+ // The output data structure contains detailed informations about the optimization process.
+ // It has type "struct" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>output.iterations: The number of iterations performed during the search</listitem>
+ // <listitem>output.constrviolation: The max-norm of the constraint violation.</listitem>
+ // </itemizedlist>
+ //
+ // The lambda data structure contains the Lagrange multipliers at the end
+ // of optimization. In the current version the values are returned only when the the solution is optimal.
+ // It has type "struct" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
+ // <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
+ // <listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
+ // <listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
+ // </itemizedlist>
+ //
+ // Examples
+ // //A simple linear least square example
+ // C = [ 2 0;
+ // -1 1;
+ // 0 2]
+ // d = [1
+ // 0
+ // -1];
+ // A = [10 -2;
+ // -2 10];
+ // b = [4
+ // -4];
+ // [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // //A basic example for equality, inequality constraints and variable bounds
+ // C = [1 1 1;
+ // 1 1 0;
+ // 0 1 1;
+ // 1 0 0;
+ // 0 0 1]
+ // d = [89;
+ // 67;
+ // 53;
+ // 35;
+ // 20;]
+ // A = [3 2 1;
+ // 2 3 4;
+ // 1 2 3];
+ // b = [191
+ // 209
+ // 162];
+ // Aeq = [1 2 1];
+ // beq = 10;
+ // lb = repmat(0.1,3,1);
+ // ub = repmat(4,3,1);
+ // [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
+ // Authors
+ // Harpreet Singh
+
+
+ //To check the number of input and output argument
+ [lhs , rhs] = argn();
+
+ //To check the number of argument given by user
+ if ( rhs < 4 | rhs == 5 | rhs == 7 | rhs > 10 ) then
+ errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [4 6 8 9 10]"), "lsqlin", rhs);
+ error(errmsg)
+ end
+
+// Initializing all the values to empty matrix
+ C=[];
+ d=[];
+ A=[];
+ b=[];
+ Aeq=[];
+ beq=[];
+ lb=[];
+ ub=[];
+ x0=[];
+
+ C = varargin(1);
+ d = varargin(2);
+ A = varargin(3);
+ b = varargin(4);
+ nbVar = size(C,2);
+
+ if(nbVar == 0) then
+ errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input objective coefficients is empty"), "lsqlin");
+ error(errmsg);
+ end
+
+ if ( rhs<5 ) then
+ Aeq = []
+ beq = []
+ else
+ Aeq = varargin(5);
+ beq = varargin(6);
+ end
+
+ if ( rhs<7 ) then
+ lb = repmat(-%inf,nbVar,1);
+ ub = repmat(%inf,nbVar,1);
+ else
+ lb = varargin(7);
+ ub = varargin(8);
+ end
+
+
+ if ( rhs<9 | size(varargin(9)) ==0 ) then
+ x0 = repmat(0,nbVar,1)
+ else
+ x0 = varargin(9);
+ end
+
+ if ( rhs<10 | size(varargin(10)) ==0 ) then
+ param = list();
+ else
+ param =varargin(10);
+ end
+
+ if (size(lb,2)==0) then
+ lb = repmat(-%inf,nbVar,1);
+ end
+
+ if (size(ub,2)==0) then
+ ub = repmat(%inf,nbVar,1);
+ end
+
+ if (type(param) ~= 15) then
+ errmsg = msprintf(gettext("%s: param should be a list "), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check type of variables
+ Checktype("lsqlin", C, "C", 1, "constant")
+ Checktype("lsqlin", d, "d", 2, "constant")
+ Checktype("lsqlin", A, "A", 3, "constant")
+ Checktype("lsqlin", b, "b", 4, "constant")
+ Checktype("lsqlin", Aeq, "Aeq", 5, "constant")
+ Checktype("lsqlin", beq, "beq", 6, "constant")
+ Checktype("lsqlin", lb, "lb", 7, "constant")
+ Checktype("lsqlin", ub, "ub", 8, "constant")
+ Checktype("lsqlin", x0, "x0", 9, "constant")
+
+ if (modulo(size(param),2)) then
+ errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqlin");
+ error(errmsg);
+ end
+
+ options = list( "MaxIter" , [3000], ...
+ "CpuTime" , [600] ...
+ );
+
+ for i = 1:(size(param))/2
+
+ select convstr(param(2*i-1),'l')
+ case "maxiter" then
+ options(2*i) = param(2*i);
+ case "cputime" then
+ options(2*i) = param(2*i);
+ else
+ errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1));
+ error(errmsg)
+ end
+ end
+
+ nbConInEq = size(A,1);
+ nbConEq = size(Aeq,1);
+
+ // Check if the user gives row vector
+ // and Changing it to a column matrix
+
+ if (size(d,2)== [nbVar]) then
+ d=d';
+ end
+
+ if (size(lb,2)== [nbVar]) then
+ lb = lb';
+ end
+
+ if (size(ub,2)== [nbVar]) then
+ ub = ub';
+ end
+
+ if (size(b,2)==nbConInEq) then
+ b = b';
+ end
+
+ if (size(beq,2)== nbConEq) then
+ beq = beq';
+ end
+
+ if (size(x0,2)== [nbVar]) then
+ x0=x0';
+ end
+
+ //Check the size of d which should equal to the number of variable
+ if ( size(d,1) ~= size(C,1)) then
+ errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of inequality constraint which should be equal to the number of variables
+ if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
+ errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of columns in C"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of equality constraint which should be equal to the number of variables
+ if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
+ errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of columns in C"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of Lower Bound which should be equal to the number of variables
+ if ( size(lb,1) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of Upper Bound which should equal to the number of variables
+ if ( size(ub,1) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of constraints of Lower Bound which should equal to the number of constraints
+ if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then
+ errmsg = msprintf(gettext("%s: The number of rows in A must be the same as the number of elements of b"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of constraints of Upper Bound which should equal to the number of constraints
+ if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then
+ errmsg = msprintf(gettext("%s: The number of rows in Aeq must be the same as the number of elements of beq"), "lsqlin");
+ error(errmsg);
+ end
+
+ //Check the size of initial of variables which should equal to the number of variables
+ if ( size(x0,1) ~= nbVar) then
+ warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "lsqlin");
+ warning(warnmsg);
+ x0 = repmat(0,nbVar,1);
+ end
+
+ //Check if the user gives a matrix instead of a vector
+
+ if ((size(d,1)~=1)& (size(d,2)~=1)) then
+ errmsg = msprintf(gettext("%s: d should be a vector"), "lsqlin");
+ error(errmsg);
+ end
+
+ if (size(lb,1)~=1)& (size(lb,2)~=1) then
+ errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "lsqlin");
+ error(errmsg);
+ end
+
+ if (size(ub,1)~=1)& (size(ub,2)~=1) then
+ errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "lsqlin");
+ error(errmsg);
+ end
+
+ if (nbConInEq) then
+ if ((size(b,1)~=1)& (size(b,2)~=1)) then
+ errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "lsqlin");
+ error(errmsg);
+ end
+ end
+
+ if (nbConEq) then
+ if (size(beq,1)~=1)& (size(beq,2)~=1) then
+ errmsg = msprintf(gettext("%s: Constraint should be a vector"), "lsqlin");
+ error(errmsg);
+ end
+ end
+
+ for i = 1:nbConInEq
+ if (b(i) == -%inf)
+ errmsg = msprintf(gettext("%s: Value of b can not be negative infinity"), "lsqlin");
+ error(errmsg);
+ end
+ end
+
+ for i = 1:nbConEq
+ if (beq(i) == -%inf)
+ errmsg = msprintf(gettext("%s: Value of beq can not be negative infinity"), "lsqlin");
+ error(errmsg);
+ end
+ end
+
+ for i = 1:nbVar
+ if(lb(i)>ub(i))
+ errmsg = msprintf(gettext("%s: Problem has inconsistent variable bounds"), "lsqlin");
+ error(errmsg);
+ end
+ end
+
+ //Converting it into Quadratic Programming Problem
+
+ H = C'*C;
+ f = [-C'*d]';
+ op_add = d'*d;
+ lb = lb';
+ ub = ub';
+ x0 = x0';
+ conMatrix = [Aeq;A];
+ nbCon = size(conMatrix,1);
+ conLB = [beq; repmat(-%inf,nbConInEq,1)]';
+ conUB = [beq;b]' ;
+ [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,conMatrix,conLB,conUB,lb,ub,x0,options);
+
+ xopt = xopt';
+ residual = d-C*xopt;
+ resnorm = residual'*residual;
+ exitflag = status;
+ output = struct("Iterations" , [], ..
+ "ConstrViolation" ,[]);
+ output.Iterations = iter;
+ output.ConstrViolation = max([0;norm(Aeq*xopt-beq, 'inf');(lb'-xopt);(xopt-ub');(A*xopt-b)]);
+ lambda = struct("lower" , [], ..
+ "upper" , [], ..
+ "eqlin" , [], ..
+ "ineqlin" , []);
+
+ lambda.lower = Zl;
+ lambda.upper = Zu;
+ lambda.eqlin = lmbda(1:nbConEq);
+ lambda.ineqlin = lmbda(nbConEq+1:nbCon);
+
+ select status
+ case 0 then
+ printf("\nOptimal Solution Found.\n");
+ case 1 then
+ printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
+ case 2 then
+ printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
+ case 3 then
+ printf("\nStop at Tiny Step\n");
+ case 4 then
+ printf("\nSolved To Acceptable Level\n");
+ case 5 then
+ printf("\nConverged to a point of local infeasibility.\n");
+ case 6 then
+ printf("\nStopping optimization at current point as requested by user.\n");
+ case 7 then
+ printf("\nFeasible point for square problem found.\n");
+ case 8 then
+ printf("\nIterates diverging; problem might be unbounded.\n");
+ case 9 then
+ printf("\nRestoration Failed!\n");
+ case 10 then
+ printf("\nError in step computation (regularization becomes too large?)!\n");
+ case 12 then
+ printf("\nProblem has too few degrees of freedom.\n");
+ case 13 then
+ printf("\nInvalid option thrown back by Ipopt\n");
+ case 14 then
+ printf("\nNot enough memory.\n");
+ case 15 then
+ printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
+ else
+ printf("\nInvalid status returned. Notify the Toolbox authors\n");
+ break;
+ end
+
+endfunction