summaryrefslogtreecommitdiff
path: root/macros/fseminf.sci
diff options
context:
space:
mode:
Diffstat (limited to 'macros/fseminf.sci')
-rw-r--r--macros/fseminf.sci322
1 files changed, 322 insertions, 0 deletions
diff --git a/macros/fseminf.sci b/macros/fseminf.sci
new file mode 100644
index 0000000..2ffcab5
--- /dev/null
+++ b/macros/fseminf.sci
@@ -0,0 +1,322 @@
+// Copyright (C) 2015 - IIT Bombay - FOSSEE
+//
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+// Author: Salman Anis, Harpreet Singh
+// Organization: FOSSEE, IIT Bombay
+// Email: toolbox@scilab.in
+
+function [xopt,fopt,exitflag,output,lambda,gradient,hessian] = fseminf (varargin)
+ // Solves a multi-variable constrainted optimization problem
+ //
+ // Calling Sequence
+ // xopt = fseminf(fun,x0,ntheta,seminfcon)
+ // xopt = fseminf(fun,x0,ntheta,seminfcon,A,b)
+ // xopt = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)
+ // xopt = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
+ // xopt = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
+ // [xopt,fopt] = fseminf(.....)
+ // [xopt,fopt,exitflag]= fseminf(.....)
+ // [xopt,fopt,exitflag,output]= fseminf(.....)
+ // [xopt,fopt,exitflag,output,lambda]=fseminf(.....)
+ // [xopt,fopt,exitflag,output,lambda]=fseminf(.....)
+ // [xopt,fopt,exitflag,output,lambda]=fseminf(.....)
+ //
+ // Parameters
+ // fun : a function, representing the objective function of the problem
+ // x0 : a vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
+ // ntheta : The number of semi-infinite constraints.
+ // seminfcon : a function that calculates the vector of nonlinear inequality constraints c, a vector of nonlinear equality constraints ceq, and ntheta semi-infinite constraints. See below for details.
+ // A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ // b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
+ // Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
+ // beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
+ // lb : a vector of double, contains lower bounds of the variables.
+ // ub : a vector of double, contains upper bounds of the variables.
+ // options : a list, containing the option for user to specify. See below for details.
+
+ // xopt : a vector of double, the computed solution of the optimization problem.
+ // fopt : a double, the value of the function at x.
+ // exitflag : The exit status. See below for details.
+ // output : The structure consist of statistics about the optimization. See below for details.
+ // lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
+ //
+ // Description
+ // Search the minimum of a constrained optimization problem specified by :
+ // Find the minimum of f(x) such that
+ //
+ // <latex>
+ // \begin{eqnarray}
+ // &\mbox{min}_{x}
+ // & f(x) \\
+ // & \text{subject to} & A*x \leq b \\
+ // & & Aeq*x \ = beq\\
+ // & & lb \leq x \leq ub \\
+ // & & c(x) \leq 0\\
+ // & & ceq(x) \ = 0\\
+ // & & K_i(x,w_i) \leq 0, 1 \leq i \leq n.
+ // \end{eqnarray}
+ // </latex>
+ //
+ // The routine calls Ipopt for solving the Constrained Optimization problem, Ipopt is a library written in C++.
+ //
+ // The options allows the user to set various parameters of the Optimization problem.
+ // It should be defined as type "list" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---);</listitem>
+ // <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
+ // <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
+ // <listitem>GradObj : a function, representing the gradient function of the Objective in Vector Form.</listitem>
+ // <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
+ // </itemizedlist>
+ //
+ // The exitflag allows to know the status of the optimization which is given back by Ipopt.
+ // <itemizedlist>
+ // <listitem>exitflag=0 : Optimal Solution Found </listitem>
+ // <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
+ // <listitem>exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
+ // <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
+ // <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
+ // <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
+ // </itemizedlist>
+ //
+ // For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
+ //
+ // The output data structure contains detailed informations about the optimization process.
+ // It has type "struct" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>output.Iterations: The number of iterations performed during the search</listitem>
+ // <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
+ // <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
+ // <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
+ // </itemizedlist>
+ //
+ // The lambda data structure contains the Lagrange multipliers at the end
+ // of optimization. In the current version the values are returned only when the the solution is optimal.
+ // It has type "struct" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
+ // <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
+ // <listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
+ // <listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
+ // <listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem>
+ // <listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem>
+ // </itemizedlist>
+ //
+ // Examples
+ // function [y] = obj(x)
+ // y = (x-1)^2;
+ // endfunction
+ // function [c, ceq, K1, s] = seminfcon(x,s)
+ // // No finite nonlinear inequality and equality constraints
+ // c = [];
+ // ceq = [];
+ // // Sample set
+ // if isnan(s)
+ // // Initial sampling interval
+ // s = [0.01 0];
+ // end
+ // t = 0:s(1):1;
+ // // Evaluate the semi-infinite constraint
+ // K1 = (x - 0.5) - (t - 0.5).^2;
+ // endfunction
+ // x = fseminf(obj,0.2,1,seminfcon)
+ //
+ // Authors
+ // Salman Anis, Harpreet Singh
+
+
+ //To check the number of input and output arguments
+ [lhs , rhs] = argn();
+
+ //To check the number of arguments given by the user
+ if ( rhs<4 | rhs==5 | rhs==7 | rhs>13 ) then
+ errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while it should be 4,6,8,10,11"), "fseminf", rhs);
+ error(errmsg)
+ end
+
+ //Storing the Input Parameters
+ _fun = varargin(1);
+ x0 = varargin(2);
+ ntheta = varargin(3);
+ seminfcon = varargin(4);
+ nbVar = size(x0,'*');
+
+ if(nbVar == 0) then
+ errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input initial guess is empty"), "lsqcurvefit");
+ error(errmsg);
+ end
+
+ A = [];
+ b = [];
+ Aeq = [];
+ beq = [];
+ lb = [];
+ ub = [];
+ nlc = [];
+ param = list();
+
+ if (rhs>4) then
+ A = varargin(5);
+ b = varargin(6);
+ end
+
+ if (rhs>6) then
+ Aeq = varargin(7);
+ beq = varargin(8);
+ end
+
+ if (rhs>8) then
+ lb = varargin(9);
+ ub = varargin(10);
+ end
+
+ if (rhs>10) then
+ param = varargin(10);
+ end
+
+ if (size(lb,2)==0) then
+ lb = repmat(-%inf,nbVar,1);
+ end
+
+ if (size(ub,2)==0) then
+ ub = repmat(%inf,nbVar,1);
+ end
+
+ //Check type of variables
+ Checktype("fseminf", _fun, "fun", 1, "function")
+ Checktype("fseminf", x0, "x0", 2, "constant")
+ Checktype("fseminf", ntheta, "ntheta", 3, "constant")
+ Checktype("fseminf", seminfcon, "seminfcon", 4, ["function","constant"])
+ Checktype("fseminf", A, "A", 5, "constant")
+ Checktype("fseminf", b, "b", 6, "constant")
+ Checktype("fseminf", Aeq, "Aeq", 7, "constant")
+ Checktype("fseminf", beq, "beq", 8, "constant")
+ Checktype("fseminf", lb, "lb", 9, "constant")
+ Checktype("fseminf", ub, "ub", 10, "constant")
+ Checktype("fseminf", param, "param", 10, "list")
+
+ //To check the user entry for options and storing it
+ for i = 1:(size(param))/2
+ select convstr(param(2*i-1),'l')
+ case "maxiter" then
+ Checktype("fseminf", param(2*i), "maxiter", 10, "constant")
+ options(2) = param(2*i); //Setting the maximum number of iterations as per user entry
+ case "cputime" then
+ Checktype("fseminf", param(2*i), "cputime", 10, "constant")
+ options(4) = param(2*i); //Setting the maximum CPU time as per user entry
+ case "gradobj" then
+ Checktype("fseminf", param(2*i), "gradobj", 10, "string")
+ if(convstr(param(2*i),'l') == "on") then
+ function dy = graObj(x)
+
+ endfunction
+ end
+ else
+ errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fmincon", param(2*i-1));
+ error(errmsg);
+ end
+ end
+
+ //To check and convert the 2nd Input argument (x0) to a row vector
+ if((size(x0,1)~=1) & (size(x0,2)~=1)) then
+ errmsg = msprintf(gettext("%s: Expected Vector for initial guess"), "fseminf");
+ error(errmsg);
+ end
+
+ if(size(x0,2)==1) then
+ x0=x0(:);
+ end
+
+ //To check the match between fun (1st Parameter) and x0 (2nd Parameter)
+ if(execstr('init=_fun(x0)','errcatch')==21) then
+ errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "fseminf");
+ error(errmsg);
+ end
+
+ //Check the size of inequality constraint which should be equal to the number of variables
+ if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
+ errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of elements of x0"), "fseminf");
+ error(errmsg);
+ end
+
+ nbConInEq = size(A,"r");
+
+ //Check the size of equality constraint which should be equal to the number of variables
+ if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
+ errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of elements of f"), "fseminf");
+ error(errmsg);
+ end
+
+ b = b(:);
+ beq = beq(:);
+ lb = lb(:);
+ ub = ub(:);
+
+ //To check the contents of lb & ub
+ for i = 1:nbVar
+ if(ub(i)<lb(i)) then
+ errmsg = msprintf(gettext("%s: Problem has inconsistent variable bounds"), "fseminf");
+ error(errmsg);
+ end
+ end
+
+ if(typeof(seminfcon) == "function")
+ sample_S = %nan
+ if(execstr('[sample_c,sample_ceq,sample_K,sample_S] = seminfcon(x0,sample_S)','errcatch')==21)
+ errmsg = msprintf(gettext("%s: Semi-Infinite Constraint function & x0 did not match"), "fseminf");
+ error(errmsg);
+ end
+ [sample_c, sample_ceq, sample_K, sample_S] = seminfcon(x0,sample_S);
+
+ if (size(sample_c,1)~=1 & size(sample_c,1)~=0) then
+ errmsg = msprintf(gettext("%s: c in seminfcon should be a row vector or empty matrix"), "fseminf");
+ error(errmsg)
+ end
+
+ if (size(sample_ceq,1)~=1 & size(sample_ceq,1)~=0) then
+ errmsg = msprintf(gettext("%s: ceq in seminfcon should be a row vector or empty matrix"), "fseminf");
+ error(errmsg)
+ end
+
+ if (size(sample_K,"r")~=ntheta) then
+ errmsg = msprintf(gettext("%s: Number of rows in K should be equal to ntheta"), "fseminf");
+ error(errmsg)
+ end
+
+ if (size(sample_S,"c")~=2) then
+ errmsg = msprintf(gettext("%s: Number of columns in sampling interval should be equal to 2"), "fseminf");
+ error(errmsg)
+ end
+ end
+
+ ierr = execstr('init=_fun(x0)', "errcatch")
+ if ierr <> 0 then
+ lamsg = lasterror();
+ lclmsg = "%s: Error while evaluating the function: ""%s""\n";
+ error(msprintf(gettext(lclmsg), "fseminf", lamsg));
+ end
+
+ S = %nan;
+
+ ierr = execstr('init=seminfcon(x0,S)', "errcatch")
+ if ierr <> 0 then
+ lamsg = lasterror();
+ lclmsg = "%s: Error while evaluating the function: ""%s""\n";
+ error(msprintf(gettext(lclmsg), "fseminf", lamsg));
+ end
+
+ function [c, ceq] = _seminfcon(x)
+ [c, ceq, K, S] = seminfcon(x,S)
+ K_max = max(K,"c");
+ c= [c;K_max];
+ ceq = ceq;
+ endfunction
+
+ //Calling the fmincon function for solving the above problem
+ [xopt,fopt,exitflag,output,lambda,gradient] = fmincon(_fun,x0,A,b,Aeq,beq,lb,ub,_seminfcon,param)
+
+endfunction