summaryrefslogtreecommitdiff
path: root/macros/fmincon.sci
diff options
context:
space:
mode:
Diffstat (limited to 'macros/fmincon.sci')
-rw-r--r--macros/fmincon.sci928
1 files changed, 928 insertions, 0 deletions
diff --git a/macros/fmincon.sci b/macros/fmincon.sci
new file mode 100644
index 0000000..2630683
--- /dev/null
+++ b/macros/fmincon.sci
@@ -0,0 +1,928 @@
+// Copyright (C) 2015 - IIT Bombay - FOSSEE
+//
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+// Author: R.Vidyadhar & Vignesh Kannan
+// Organization: FOSSEE, IIT Bombay
+// Email: toolbox@scilab.in
+
+function [xopt,fopt,exitflag,output,lambda,gradient,hessian] = fmincon (varargin)
+ // Solves a multi-variable constrainted optimization problem
+ //
+ // Calling Sequence
+ // xopt = fmincon(f,x0,A,b)
+ // xopt = fmincon(f,x0,A,b,Aeq,beq)
+ // xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub)
+ // xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc)
+ // xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc,options)
+ // [xopt,fopt] = fmincon(.....)
+ // [xopt,fopt,exitflag]= fmincon(.....)
+ // [xopt,fopt,exitflag,output]= fmincon(.....)
+ // [xopt,fopt,exitflag,output,lambda]=fmincon(.....)
+ // [xopt,fopt,exitflag,output,lambda,gradient]=fmincon(.....)
+ // [xopt,fopt,exitflag,output,lambda,gradient,hessian]=fmincon(.....)
+ //
+ // Parameters
+ // f : a function, representing the objective function of the problem
+ // x0 : a vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
+ // A : a matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints
+ // b : a vector of doubles, related to 'A' and containing the the Right hand side equation of the linear inequality constraints of size (m X 1)
+ // Aeq : a matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints
+ // beq : a vector of doubles, related to 'Aeq' and containing the the Right hand side equation of the linear equality constraints of size (m1 X 1)
+ // lb : a vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
+ // ub : a vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
+ // nlc : a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.
+ // options : a list, containing the option for user to specify. See below for details.
+ // xopt : a vector of doubles, cointating the computed solution of the optimization problem
+ // fopt : a scalar of double, containing the the function value at x
+ // exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
+ // output : a structure, containing the information about the optimization. See below for details.
+ // lambda : a structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.
+ // gradient : a vector of doubles, containing the Objective's gradient of the solution.
+ // hessian : a matrix of doubles, containing the Lagrangian's hessian of the solution.
+ //
+ // Description
+ // Search the minimum of a constrained optimization problem specified by :
+ // Find the minimum of f(x) such that
+ //
+ // <latex>
+ // \begin{eqnarray}
+ // &\mbox{min}_{x}
+ // & f(x) \\
+ // & \text{subject to} & A*x \leq b \\
+ // & & Aeq*x \ = beq\\
+ // & & c(x) \leq 0\\
+ // & & ceq(x) \ = 0\\
+ // & & lb \leq x \leq ub \\
+ // \end{eqnarray}
+ // </latex>
+ //
+ // The routine calls Ipopt for solving the Constrained Optimization problem, Ipopt is a library written in C++.
+ //
+ // The options allows the user to set various parameters of the Optimization problem.
+ // It should be defined as type "list" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "Hessian", ---, "GradCon", ---);</listitem>
+ // <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
+ // <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
+ // <listitem>GradObj : a function, representing the gradient function of the Objective in Vector Form.</listitem>
+ // <listitem>Hessian : a function, representing the hessian function of the Lagrange in Symmetric Matrix Form with Input parameters x, Objective factor and Lambda. Refer Example for definition of Lagrangian Hessian function.</listitem>
+ // <listitem>GradCon : a function, representing the gradient of the Non-Linear Constraints (both Equality and Inequality) of the problem. It is declared in such a way that gradient of non-linear inequality constraints are defined first as a separate Matrix (cg of size m2 X n or as an empty), followed by gradient of non-linear equality constraints as a separate Matrix (ceqg of size m2 X n or as an empty) where m2 & m3 are number of non-linear inequality and equality constraints respectively.</listitem>
+ // <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
+ // </itemizedlist>
+ //
+ // The exitflag allows to know the status of the optimization which is given back by Ipopt.
+ // <itemizedlist>
+ // <listitem>exitflag=0 : Optimal Solution Found </listitem>
+ // <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
+ // <listitem>exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
+ // <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
+ // <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
+ // <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
+ // </itemizedlist>
+ //
+ // For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
+ //
+ // The output data structure contains detailed informations about the optimization process.
+ // It has type "struct" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>output.Iterations: The number of iterations performed during the search</listitem>
+ // <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
+ // <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
+ // <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
+ // </itemizedlist>
+ //
+ // The lambda data structure contains the Lagrange multipliers at the end
+ // of optimization. In the current version the values are returned only when the the solution is optimal.
+ // It has type "struct" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
+ // <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
+ // <listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
+ // <listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
+ // <listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem>
+ // <listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem>
+ // </itemizedlist>
+ //
+ // Examples
+ // //Find x in R^2 such that it minimizes:
+ // //f(x)= -x1 -x2/3
+ // //x0=[0,0]
+ // //constraint-1 (c1): x1 + x2 <= 2
+ // //constraint-2 (c2): x1 + x2/4 <= 1
+ // //constraint-3 (c3): x1 - x2 <= 2
+ // //constraint-4 (c4): -x1/4 - x2 <= 1
+ // //constraint-5 (c5): -x1 - x2 <= -1
+ // //constraint-6 (c6): -x1 + x2 <= 2
+ // //constraint-7 (c7): x1 + x2 = 2
+ // //Objective function to be minimised
+ // function y=f(x)
+ // y=-x(1)-x(2)/3;
+ // endfunction
+ // //Starting point, linear constraints and variable bounds
+ // x0=[0 , 0];
+ // A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1];
+ // b=[2;1;2;1;-1;2];
+ // Aeq=[1,1];
+ // beq=[2];
+ // lb=[];
+ // ub=[];
+ // nlc=[];
+ // //Gradient of objective function
+ // function y= fGrad(x)
+ // y= [-1,-1/3];
+ // endfunction
+ // //Hessian of lagrangian
+ // function y= lHess(x,obj,lambda)
+ // y= obj*[0,0;0,0]
+ // endfunction
+ // //Options
+ // options=list("GradObj", fGrad, "Hessian", lHess);
+ // //Calling Ipopt
+ // [x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // //Find x in R^3 such that it minimizes:
+ // //f(x)= x1*x2 + x2*x3
+ // //x0=[0.1 , 0.1 , 0.1]
+ // //constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2
+ // //constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10
+ // //Objective function to be minimised
+ // function y=f(x)
+ // y=x(1)*x(2)+x(2)*x(3);
+ // endfunction
+ // //Starting point, linear constraints and variable bounds
+ // x0=[0.1 , 0.1 , 0.1];
+ // A=[];
+ // b=[];
+ // Aeq=[];
+ // beq=[];
+ // lb=[];
+ // ub=[];
+ // //Nonlinear constraints
+ // function [c,ceq]=nlc(x)
+ // c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
+ // ceq = [];
+ // endfunction
+ // //Gradient of objective function
+ // function y= fGrad(x)
+ // y= [x(2),x(1)+x(3),x(2)];
+ // endfunction
+ // //Hessian of the Lagrange Function
+ // function y= lHess(x,obj,lambda)
+ // y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,-2,0;0,0,2] + lambda(2)*[2,0,0;0,2,0;0,0,2]
+ // endfunction
+ // //Gradient of Non-Linear Constraints
+ // function [cg,ceqg] = cGrad(x)
+ // cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
+ // ceqg=[];
+ // endfunction
+ // //Options
+ // options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
+ // //Calling Ipopt
+ // [x,fval,exitflag,output] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // //The below problem is an unbounded problem:
+ // //Find x in R^3 such that it minimizes:
+ // //f(x)= -(x1^2 + x2^2 + x3^2)
+ // //x0=[0.1 , 0.1 , 0.1]
+ // // x1 <= 0
+ // // x2 <= 0
+ // // x3 <= 0
+ // //Objective function to be minimised
+ // function y=f(x)
+ // y=-(x(1)^2+x(2)^2+x(3)^2);
+ // endfunction
+ // //Starting point, linear constraints and variable bounds
+ // x0=[0.1 , 0.1 , 0.1];
+ // A=[];
+ // b=[];
+ // Aeq=[];
+ // beq=[];
+ // lb=[];
+ // ub=[0,0,0];
+ // //Options
+ // options=list("MaxIter", [1500], "CpuTime", [500]);
+ // //Calling Ipopt
+ // [x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,[],options)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // //The below problem is an infeasible problem:
+ // //Find x in R^3 such that in minimizes:
+ // //f(x)=x1*x2 + x2*x3
+ // //x0=[1,1,1]
+ // //constraint-1 (c1): x1^2 <= 1
+ // //constraint-2 (c2): x1^2 + x2^2 <= 1
+ // //constraint-3 (c3): x3^2 <= 1
+ // //constraint-4 (c4): x1^3 = 0.5
+ // //constraint-5 (c5): x2^2 + x3^2 = 0.75
+ // // 0 <= x1 <=0.6
+ // // 0.2 <= x2 <= inf
+ // // -inf <= x3 <= 1
+ // //Objective function to be minimised
+ // function y=f(x)
+ // y=x(1)*x(2)+x(2)*x(3);
+ // endfunction
+ // //Starting point, linear constraints and variable bounds
+ // x0=[1,1,1];
+ // A=[];
+ // b=[];
+ // Aeq=[];
+ // beq=[];
+ // lb=[0 0.2,-%inf];
+ // ub=[0.6 %inf,1];
+ // //Nonlinear constraints
+ // function [c,ceq]=nlc(x)
+ // c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
+ // ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
+ // endfunction
+ // //Gradient of objective function
+ // function y= fGrad(x)
+ // y= [x(2),x(1)+x(3),x(2)];
+ // endfunction
+ // //Hessian of the Lagrange Function
+ // function y= lHess(x,obj,lambda)
+ // y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,0,0;0,0,0] + lambda(2)*[2,0,0;0,2,0;0,0,0] +lambda(3)*[0,0,0;0,0,0;0,0,2] + lambda(4)*[6*x(1 ),0,0;0,0,0;0,0,0] + lambda(5)*[0,0,0;0,2,0;0,0,2];
+ // endfunction
+ // //Gradient of Non-Linear Constraints
+ // function [cg,ceqg] = cGrad(x)
+ // cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
+ // ceqg = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
+ // endfunction
+ // //Options
+ // options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
+ // //Calling Ipopt
+ // [x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
+ // Authors
+ // R.Vidyadhar , Vignesh Kannan
+
+
+ //To check the number of input and output arguments
+ [lhs , rhs] = argn();
+
+ //To check the number of arguments given by the user
+ if ( rhs<4 | rhs>13 ) then
+ errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while it should be 4,6,8,9,10,11,12,13"), "fmincon", rhs);
+ error(errmsg)
+ end
+
+ if (rhs==5 | rhs==7) then
+ errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while it should be 4,6,8,9,10,11,12,13"), "fmincon", rhs);
+ error(errmsg)
+ end
+
+ //Storing the Input Parameters
+ fun = varargin(1);
+ x0 = varargin(2);
+ A = varargin(3);
+ b = varargin(4);
+ Aeq = [];
+ beq = [];
+ lb = [];
+ ub = [];
+ nlc = [];
+
+ if (rhs>4) then
+ Aeq = varargin(5);
+ beq = varargin(6);
+ end
+
+ if (rhs>6) then
+ lb = varargin(7);
+ ub = varargin(8);
+ end
+
+ if (rhs>8) then
+ nlc = varargin(9);
+ end
+
+ //To check whether the 1st Input argument (f) is a function or not
+ if (type(f) ~= 13 & type(f) ~= 11) then
+ errmsg = msprintf(gettext("%s: Expected function for Objective (1st Parameter)"), "fmincon");
+ error(errmsg);
+ end
+
+ //To check whether the 2nd Input argument (x0) is a vector/scalar
+ if (type(x0) ~= 1) then
+ errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Starting Point (2nd Parameter)"), "fmincon");
+ error(errmsg);
+ end
+
+ //To check and convert the 2nd Input argument (x0) to a row vector
+ if((size(x0,1)~=1) & (size(x0,2)~=1)) then
+ errmsg = msprintf(gettext("%s: Expected Row Vector or Column Vector for x0 (Starting Point) or Starting Point cannot be Empty"), "fmincon");
+ error(errmsg);
+ end
+
+ if(size(x0,2)==1) then
+ x0=x0'; //Converting x0 to a row vector, if it is a column vector
+ else
+ x0=x0; //Retaining the same, if it is already a row vector
+ end
+ s=size(x0);
+
+ //To check the match between fun (1st Parameter) and x0 (2nd Parameter)
+ if(execstr('init=fun(x0)','errcatch')==21) then
+ errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "fmincon");
+ error(errmsg);
+ end
+
+ //Converting the User defined Objective function into Required form (Error Detectable)
+ function [y,check] = f(x)
+ if(execstr('y=fun(x)','errcatch')==32 | execstr('y=fun(x)','errcatch')==27)
+ y=0;
+ check=1;
+ else
+ y=fun(x);
+ if (isreal(y)==%F) then
+ y=0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ endfunction
+
+ //To check whether the 3rd Input argument (A) is a Matrix/Vector
+ if (type(A) ~= 1) then
+ errmsg = msprintf(gettext("%s: Expected Matrix/Vector for Constraint Matrix A (3rd parameter)"), "fmincon");
+ error(errmsg);
+ end
+
+ //To check for correct size of A(3rd paramter)
+ if(size(A,2)~=s(2) & size(A,2)~=0) then
+ errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear inequality constraints X No of Variables) or an Empty Matrix for Linear Inequality Constraint coefficient Matrix A"), "fmincon");
+ error(errmsg);
+ end
+
+ s1=size(A);
+
+ //To check whether the 4th Input argument (b) is a vector/scalar
+ if (type(b) ~= 1) then
+ errmsg = msprintf(gettext("%s: Expected Vector/Scalar for b (4th Parameter)"), "fmincon");
+ error(errmsg);
+ end
+
+ //To check for the correct size of b (4th paramter) and convert it into a column vector which is required for Ipopt
+ if(s1(2)==0) then
+ if(size(b,2)~=0) then
+ errmsg = msprintf(gettext("%s: As Linear Inequality Constraint coefficient Matrix A (3rd parameter) is empty, b (4th Parameter) should also be empty"), "fmincon");
+ error(errmsg);
+ end
+ else
+ if((size(b,1)~=1) & (size(b,2)~=1)) then
+ errmsg = msprintf(gettext("%s: Expected Non empty Row/Column Vector for b (4th Parameter) for your Inputs "), "fmincon");
+ error(errmsg);
+ elseif(size(b,1)~=s1(1) & size(b,2)==1) then
+ errmsg = msprintf(gettext("%s: Expected Column Vector (number of linear inequality constraints X 1) for b (4th Parameter) "), "fmincon");
+ error(errmsg);
+ elseif(size(b,1)==s1(1) & size(b,2)==1) then
+ b=b;
+ elseif(size(b,1)==1 & size(b,2)~=s1(1)) then
+ errmsg = msprintf(gettext("%s: Expected Row Vector (1 X number of linear inequality constraints) for b (4th Parameter) "), "fmincon");
+ error(errmsg);
+ elseif(size(b,1)==1 & size(b,2)==s1(1)) then
+ b=b';
+ end
+ end
+
+ //To check whether the 5th Input argument (Aeq) is a matrix/vector
+ if (type(Aeq) ~= 1) then
+ errmsg = msprintf(gettext("%s: Expected Matrix/Vector for Equality Constraint Matrix Aeq (5th Parameter)"), "fmincon");
+ error(errmsg);
+ end
+
+ //To check for the correct size of Aeq (5th paramter)
+ if(size(Aeq,2)~=s(2) & size(Aeq,2)~=0) then
+ errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear equality constraints X No of Variables) or an Empty Matrix for Linear Equality Constraint coefficient Matrix Aeq"), "fmincon");
+ error(errmsg);
+ end
+
+ s2=size(Aeq);
+
+ //To check whether the 6th Input argument(beq) is a vector/scalar
+ if (type(beq) ~= 1) then
+ errmsg = msprintf(gettext("%s: Expected Vector/Scalar for beq (6th Parameter)"), "fmincon");
+ error(errmsg);
+ end
+
+ //To check for the correct size of beq(6th paramter) and convert it into a column vector which is required for Ipopt
+ if(s2(2)==0) then
+ if(size(beq,2)~=0) then
+ errmsg = msprintf(gettext("%s: As Linear Equality Constraint coefficient Matrix Aeq (5th parameter) is empty, beq (6th Parameter) should also be empty"), "fmincon");
+ error(errmsg);
+ end
+ else
+ if((size(beq,1)~=1) & (size(beq,2)~=1)) then
+ errmsg = msprintf(gettext("%s: Expected Non empty Row/Column Vector for beq (6th Parameter)"), "fmincon");
+ error(errmsg);
+ elseif(size(beq,1)~=s2(1) & size(beq,2)==1) then
+ errmsg = msprintf(gettext("%s: Expected Column Vector (number of linear equality constraints X 1) for beq (6th Parameter) "), "fmincon");
+ error(errmsg);
+ elseif(size(beq,1)==s2(1) & size(beq,2)==1) then
+ beq=beq;
+ elseif(size(beq,1)==1 & size(beq,2)~=s2(1)) then
+ errmsg = msprintf(gettext("%s: Expected Row Vector (1 X number of linear equality constraints) for beq (6th Parameter) "), "fmincon");
+ error(errmsg);
+ elseif(size(beq,1)==1 & size(beq,2)==s2(1)) then
+ beq=beq';
+ end
+ end
+
+
+ //To check whether the 7th Input argument (lb) is a vector/scalar
+ if (type(lb) ~= 1) then
+ errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Lower Bound Vector (7th Parameter)"), "fmincon");
+ error(errmsg);
+ end
+
+ //To check for the correct size and data of lb (7th paramter) and convert it into a column vector as required by Ipopt
+ if (size(lb,2)==0) then
+ lb = repmat(-%inf,1,s(2));
+ end
+
+ if (size(lb,1)~=1) & (size(lb,2)~=1) then
+ errmsg = msprintf(gettext("%s: Lower Bound (7th Parameter) should be a vector"), "fmincon");
+ error(errmsg);
+ elseif(size(lb,1)~=s(2) & size(lb,2)==1) then
+ errmsg = msprintf(gettext("%s: Expected Column Vector (number of Variables X 1) for lower bound (7th Parameter) "), "fmincon");
+ error(errmsg);
+ elseif(size(lb,1)==s(2) & size(lb,2)==1) then
+ lb=lb;
+ elseif(size(lb,1)==1 & size(lb,2)~=s(2)) then
+ errmsg = msprintf(gettext("%s: Expected Row Vector (1 X number of Variables) for lower bound (7th Parameter) "), "fmincon");
+ error(errmsg);
+ elseif(size(lb,1)==1 & size(lb,2)==s(2)) then
+ lb=lb';
+ end
+
+ //To check whether the 8th Input argument (ub) is a vector/scalar
+ if (type(ub) ~= 1) then
+ errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Upper Bound Vector (8th Parameter)"), "fmincon");
+ error(errmsg);
+ end
+
+ //To check for the correct size and data of ub (8th paramter) and convert it into a column vector as required by Ipopt
+ if (size(ub,2)==0) then
+ ub = repmat(%inf,1,s(2));
+ end
+
+ if (size(ub,1)~=1)& (size(ub,2)~=1) then
+ errmsg = msprintf(gettext("%s: Upper Bound (8th Parameter) should be a vector"), "fmincon");
+ error(errmsg);
+ elseif(size(ub,1)~=s(2) & size(ub,2)==1) then
+ errmsg = msprintf(gettext("%s: Expected Column Vector (number of Variables X 1) for upper bound (8th Parameter) "), "fmincon");
+ error(errmsg);
+ elseif(size(ub,1)==s(2) & size(ub,2)==1) then
+ ub=ub;
+ elseif(size(ub,1)==1 & size(ub,2)~=s(2)) then
+ errmsg = msprintf(gettext("%s: Expected Row Vector (1 X number of Variables) for upper bound (8th Parameter) "), "fmincon");
+ error(errmsg);
+ elseif(size(ub,1)==1 & size(ub,2)==s(2)) then
+ ub=ub';
+ end
+
+ //To check the contents of lb & ub (7th & 8th Parameter)
+ for i = 1:s(2)
+ if (lb(i) == %inf) then
+ errmsg = msprintf(gettext("%s: Value of Lower Bound can not be infinity"), "fmincon");
+ error(errmsg);
+ end
+
+ if (ub(i) == -%inf) then
+ errmsg = msprintf(gettext("%s: Value of Upper Bound can not be negative infinity"), "fmincon");
+ error(errmsg);
+ end
+
+ if(ub(i)-lb(i)<=1e-6) then
+ errmsg = msprintf(gettext("%s: Difference between Upper Bound and Lower bound should be atleast > 10^6 for variable number= %d "), "fmincon", i);
+ error(errmsg)
+ end
+ end
+
+ //To check whether the 10th Input argument (nlc) is a function or an empty matrix
+ if (type(nlc) == 1 & size(nlc,2)==0 ) then
+ addnlc=[];
+ addnlc1=[];
+ no_nlc=0;
+ no_nlic=0;
+ no_nlec=0;
+ elseif (type(nlc) == 13 | type(nlc) == 11) then
+
+ if(execstr('[sample_c,sample_ceq] = nlc(x0)','errcatch')==21)
+ errmsg = msprintf(gettext("%s: Non-Linear Constraint function(9th Parameter) and x0(2nd Parameter) did not match"), "fmincon");
+ error(errmsg);
+ end
+ [sample_c,sample_ceq] = nlc(x0);
+
+ if (size(sample_c,1)~=1 & size(sample_c,1)~=0) then
+ errmsg = msprintf(gettext("%s: Definition of c in Non-Linear Constraint function(9th Parameter) should be in the form of Row Vector or Empty Vector"), "fmincon");
+ error(errmsg)
+ end
+
+ if (size(sample_ceq,1)~=1 & size(sample_ceq,1)~=0) then
+ errmsg = msprintf(gettext("%s: Definition of ceq in Non-Linear Constraint function(9th Parameter) should be in the form of Row Vector or Empty Vector"), "fmincon");
+ error(errmsg)
+ end
+
+ no_nlic = size(sample_c,2);
+ no_nlec = size(sample_ceq,2);
+ no_nlc = no_nlic + no_nlec;
+
+ //Constructing a single output variable function for nlc
+ function y = addnlc(x)
+ [c,ceq] = nlc(x);
+ y = [c';ceq'];
+ endfunction
+
+ //To check the addnlc function
+ if(execstr('sample_allcon = addnlc(x0)','errcatch')==21)
+ errmsg = msprintf(gettext("%s: Non-Linear Constraint function(9th Parameter) and x0(2nd Parameter) did not match"), "fmincon");
+ error(errmsg);
+ end
+ sample_allcon = addnlc(x0);
+
+ if (size(sample_allcon,1)==0 & size(sample_allcon,2)==0) then
+
+ elseif (size(sample_allcon,1)~=no_nlc | size(sample_allcon,2)~=1) then
+ errmsg = msprintf(gettext("%s: Please check the Non-Linear Constraint function (9th Parameter) function"), "fmincon");
+ error(errmsg)
+ end
+
+ //Constructing a nlc function with error deduction
+ function [y,check] = addnlc1(x)
+ if(execstr('y = addnlc(x)','errcatch')==32 | execstr('y = addnlc(x)','errcatch')==27)
+ y = 0;
+ check=1;
+ else
+ y = addnlc(x);
+ if (isreal(y)==%F) then
+ y = 0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ endfunction
+
+ else
+ errmsg = msprintf(gettext("%s: Non Linear Constraint (9th Parameter) should be a function or an Empty Matrix"), "fmincon");
+ error(errmsg)
+ end
+
+ //To check whether options has been entered by the user
+ if ( rhs<10 ) then
+ param = list();
+ else
+ param =varargin(10); //Storing the 3rd Input Parameter in an intermediate list named 'param'
+ end
+
+ //If options has been entered, then check its type for 'list'
+ if (type(param) ~= 15) then
+ errmsg = msprintf(gettext("%s: Options (10th parameter) should be a list"), "fmincon");
+ error(errmsg);
+ end
+
+ //If options has been entered, then check whether an even number of entires has been entered
+ if (modulo(size(param),2)) then
+ errmsg = msprintf(gettext("%s: Size of Options (list) should be even"), "fmincon");
+ error(errmsg);
+ end
+
+
+ //Defining a function to calculate Gradient or Hessian if the respective user entry is OFF
+ function [y,check] = gradhess(x,t)
+ if t==1 then //To return Gradient
+ if(execstr('y=numderivative(fun,x)','errcatch')==10000)
+ y=0;
+ check=1;
+ else
+ y=numderivative(fun,x);
+ if (isreal(y)==%F) then
+ y=0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ elseif t==2 then //To return Hessian
+ if(execstr('[grad,y]=numderivative(fun,x)','errcatch')==10000)
+ y=0;
+ check=1;
+ else
+ [grad,y]=numderivative(fun,x);
+ if (isreal(y)==%F) then
+ y=0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ elseif t==3 then //To return Gradient
+ if(execstr('y=numderivative(addnlc,x)','errcatch')==10000)
+ y=0;
+ check=1;
+ else
+ y=numderivative(addnlc,x);
+ if (isreal(y)==%F) then
+ y=0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ elseif t==4 then //To return Hessian
+ if(execstr('[grad,y]=numderivative(addnlc,x)','errcatch')==10000)
+ y=0;
+ check=1;
+ else
+ [grad,y]=numderivative(addnlc,x);
+ if (isreal(y)==%F) then
+ y=0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ end
+ endfunction
+
+ //To set default values for options, if user doesn't enter options
+ options = list("MaxIter", [3000], "CpuTime", [600]);
+
+ //Flags to check whether Gradient is "ON"/"OFF" and Hessian is "ON"/"OFF"
+ flag1=0;
+ flag2=0;
+ flag3=0;
+
+ //Function for Gradient and Hessian
+ fGrad=[];
+ fGrad1=[];
+ lHess=[];
+ lHess1=[];
+ cGrad=[];
+ addcGrad=[];
+ addcGrad1=[];
+
+ //To check the user entry for options and storing it
+ for i = 1:(size(param))/2
+ select param(2*i-1)
+ case "MaxIter" then
+ options(2*i) = param(2*i); //Setting the maximum number of iterations as per user entry
+ case "CpuTime" then
+ options(2*i) = param(2*i); //Setting the maximum CPU time as per user entry
+ case "GradObj" then
+ flag1=1;
+ fGrad=param(2*i);
+ case "Hessian" then
+ flag2=1;
+ lHess=param(2*i);
+ case "GradCon" then
+ flag3=1;
+ cGrad=param(2*i);
+ else
+ errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fminbnd", param(2*i-1));
+ error(errmsg);
+ end
+ end
+
+ //To check for correct input of Gradient and Hessian functions from the user
+ if (flag1==1) then
+ if (type(fGrad) ~= 11 & type(fGrad) ~= 13) then
+ errmsg = msprintf(gettext("%s: Expected function for Gradient of Objective"), "fmincon");
+ error(errmsg);
+ end
+
+ if(execstr('sample_fGrad=fGrad(x0)','errcatch')==21)
+ errmsg = msprintf(gettext("%s: Gradient function of Objective and x0 did not match "), "fmincon");
+ error(errmsg);
+ end
+
+ sample_fGrad=fGrad(x0);
+
+ if (size(sample_fGrad,1)==s(2) & size(sample_fGrad,2)==1) then
+ elseif (size(sample_fGrad,1)==1 & size(sample_fGrad,2)==s(2)) then
+ elseif (size(sample_fGrad,1)~=1 & size(sample_fGrad,2)~=1) then
+ errmsg = msprintf(gettext("%s: Wrong Input for Objective Gradient function(10th Parameter)---->Vector function is Expected"), "fmincon");
+ error(errmsg);
+ end
+
+ function [y,check] = fGrad1(x)
+ if(execstr('y=fGrad(x)','errcatch')==32 | execstr('y=fGrad(x)','errcatch')==27)
+ y = 0;
+ check=1;
+ else
+ y=fGrad(x);
+ if (isreal(y)==%F) then
+ y = 0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ endfunction
+
+ end
+ if (flag2==1) then
+ if (type(lHess) ~= 11 & type(lHess) ~= 13) then
+ errmsg = msprintf(gettext("%s: Expected function for Hessian of Objective"), "fmincon");
+ error(errmsg);
+ end
+ if(execstr('sample_lHess=lHess(x0,1,1:no_nlc)','errcatch')==21)
+ errmsg = msprintf(gettext("%s: Hessian function of Objective and x0 did not match "), "fmincon");
+ error(errmsg);
+ end
+ sample_lHess=lHess(x0,1,1:no_nlc);
+ if(size(sample_lHess,1)~=s(2) | size(sample_lHess,2)~=s(2)) then
+ errmsg = msprintf(gettext("%s: Wrong Input for Objective Hessian function(10th Parameter)---->Symmetric Matrix function is Expected "), "fmincon");
+ error(errmsg);
+ end
+
+ function [y,check] = lHess1(x,obj,lambda)
+ if(execstr('y=lHess(x,obj,lambda)','errcatch')==32 | execstr('y=lHess(x,obj,lambda)','errcatch')==27)
+ y = 0;
+ check=1;
+ else
+ y=lHess(x,obj,lambda);
+ if (isreal(y)==%F) then
+ y = 0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ endfunction
+
+ end
+ if (flag3==1) then
+ if (type(cGrad) ~= 11 & type(cGrad) ~= 13) then
+ errmsg = msprintf(gettext("%s: Expected function for Gradient of Constraint function"), "fmincon");
+ error(errmsg);
+ end
+
+ if(execstr('[sample_cGrad,sample_ceqg]=cGrad(x0)','errcatch')==21)
+ errmsg = msprintf(gettext("%s: Gradient function of Constraint and x0 did not match "), "fmincon");
+ error(errmsg);
+ end
+ [sample_cGrad,sample_ceqg]=cGrad(x0);
+
+ if (size(sample_cGrad,2)==0) then
+ elseif (size(sample_cGrad,1)~=no_nlic | size(sample_cGrad,2)~=s(2)) then
+ errmsg = msprintf(gettext("%s: Definition of (cGrad) in Non-Linear Constraint function(10th Parameter) should be in the form of (m X n) or Empty Matrix where m is number of Non- linear inequality constraints and n is number of Variables"), "fmincon");
+ error(errmsg);
+ end
+
+ if (size(sample_ceqg,2)==0) then
+ elseif (size(sample_ceqg,1)~=no_nlec | size(sample_ceqg,2)~=s(2)) then
+ errmsg = msprintf(gettext("%s: Definition of (ceqg) in Non-Linear Constraint function(10th Parameter) should be in the form of (m X n) or Empty Matrix where m is number of Non- linear equality constraints and n is number of Variables"), "fmincon");
+ error(errmsg);
+ end
+
+ function y = addcGrad(x)
+ [sample_cGrad,sample_ceqg] = cGrad(x);
+ y = [sample_cGrad;sample_ceqg];
+ endfunction
+
+ sample_addcGrad=addcGrad(x0);
+ if(size(sample_addcGrad,1)~=no_nlc | size(sample_addcGrad,2)~=s(2)) then
+ errmsg = msprintf(gettext("%s: Wrong Input for Constraint Gradient function(10th Parameter) (Refer Help)"), "fmincon");
+ error(errmsg);
+ end
+
+ function [y,check] = addcGrad1(x)
+ if(execstr('y=addcGrad(x)','errcatch')==32 | execstr('y=addcGrad(x)','errcatch')==27)
+ y = 0;
+ check=1;
+ else
+ y=addcGrad(x);
+ if (isreal(y)==%F) then
+ y = 0;
+ check=1;
+ else
+ check=0;
+ end
+ end
+ endfunction
+ end
+
+ //To Convert the Gradient and Hessian into Error Debugable form
+
+
+ //Dummy variable which is used by Ipopt
+ empty=0;
+
+ //Calling the Ipopt function for solving the above problem
+ [xopt,fopt,status,iter,cpu,obj_eval,dual,lambda1,zl,zu,gradient,hessian1] = solveminconp (f,gradhess,A,b,Aeq,beq,lb,ub,no_nlc,no_nlic,addnlc1,flag1,fGrad1,flag2,lHess1,flag3,addcGrad1,x0,options,empty)
+
+ //Calculating the values for the output
+ xopt = xopt';
+ exitflag = status;
+ output = struct("Iterations", [],"Cpu_Time",[],"Objective_Evaluation",[],"Dual_Infeasibility",[]);
+ output.Iterations = iter;
+ output.Cpu_Time = cpu;
+ output.Objective_Evaluation = obj_eval;
+ output.Dual_Infeasibility = dual;
+ lambda = struct("lower", zl,"upper",zu,"ineqlin",[],"eqlin",[],"ineqnonlin",[],"eqnonlin",[]);
+
+ if (no_nlic ~= 0) then
+ for i = 1:no_nlic
+ lambda.ineqnonlin (i) = lambda1(i)
+ end
+ lambda.ineqnonlin = lambda.ineqnonlin'
+ end
+
+ if (no_nlec ~= 0) then
+ j=1;
+ for i = no_nlic+1 : no_nlc
+ lambda.eqnonlin (j) = lambda1(i)
+ j= j+1;
+ end
+ lambda.eqnonlin = lambda.eqnonlin'
+ end
+
+ if (Aeq ~=[]) then
+ j=1;
+ for i = no_nlc+1 : no_nlc + size(Aeq,1)
+ lambda.eqlin (j) = lambda1(i)
+ j= j+1;
+ end
+ lambda.eqlin = lambda.eqlin'
+ end
+
+ if (A ~=[]) then
+ j=1;
+ for i = no_nlc+ size(Aeq,1)+ 1 : no_nlc + size(Aeq,1) + size(A,1)
+ lambda.ineqlin (j) = lambda1(i)
+ j= j+1;
+ end
+ lambda.ineqlin = lambda.ineqlin'
+ end
+
+ //Converting hessian of order (1 x (numberOfVariables)^2) received from Ipopt to order (numberOfVariables x numberOfVariables)
+ s1=size(gradient)
+ for i =1:s1(2)
+ for j =1:s1(2)
+ hessian(i,j)= hessian1(j+((i-1)*s1(2)))
+ end
+ end
+
+ //In the cases of the problem not being solved, return NULL to the output matrices
+ if( status~=0 & status~=1 & status~=2 & status~=3 & status~=4 & status~=7 ) then
+ xopt=[];
+ fopt=[];
+ output = struct("Iterations", [],"Cpu_Time",[]);
+ output.Iterations = iter;
+ output.Cpu_Time = cpu;
+ lambda = struct("lower",[],"upper",[],"ineqlin",[],"eqlin",[],"ineqnonlin",[],"eqnonlin",[]);
+ gradient=[];
+ hessian=[];
+ end
+
+
+ //To print output message
+ select status
+
+ case 0 then
+ printf("\nOptimal Solution Found.\n");
+ case 1 then
+ printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
+ case 2 then
+ printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
+ case 3 then
+ printf("\nStop at Tiny Step\n");
+ case 4 then
+ printf("\nSolved To Acceptable Level\n");
+ case 5 then
+ printf("\nConverged to a point of local infeasibility.\n");
+ case 6 then
+ printf("\nStopping optimization at current point as requested by user.\n");
+ case 7 then
+ printf("\nFeasible point for square problem found.\n");
+ case 8 then
+ printf("\nIterates diverging; problem might be unbounded.\n");
+ case 9 then
+ printf("\nRestoration Failed!\n");
+ case 10 then
+ printf("\nError in step computation (regularization becomes too large?)!\n");
+ case 11 then
+ printf("\nProblem has too few degrees of freedom.\n");
+ case 12 then
+ printf("\nInvalid option thrown back by Ipopt\n");
+ case 13 then
+ printf("\nNot enough memory.\n");
+ case 15 then
+ printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
+ else
+ printf("\nInvalid status returned. Notify the Toolbox authors\n");
+ break;
+ end
+
+
+endfunction