diff options
Diffstat (limited to 'macros/fminbnd.sci')
-rw-r--r-- | macros/fminbnd.sci | 356 |
1 files changed, 356 insertions, 0 deletions
diff --git a/macros/fminbnd.sci b/macros/fminbnd.sci new file mode 100644 index 0000000..2ebaa8c --- /dev/null +++ b/macros/fminbnd.sci @@ -0,0 +1,356 @@ +// Copyright (C) 2015 - IIT Bombay - FOSSEE +// +// This file must be used under the terms of the CeCILL. +// This source file is licensed as described in the file COPYING, which +// you should have received as part of this distribution. The terms +// are also available at +// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt +// Author: R.Vidyadhar & Vignesh Kannan +// Organization: FOSSEE, IIT Bombay +// Email: toolbox@scilab.in + + +function [xopt,fopt,exitflag,output,lambda] = fminbnd (varargin) + // Solves a multi-variable optimization problem on a bounded interval + // + // Calling Sequence + // xopt = fminbnd(f,x1,x2) + // xopt = fminbnd(f,x1,x2,options) + // [xopt,fopt] = fminbnd(.....) + // [xopt,fopt,exitflag]= fminbnd(.....) + // [xopt,fopt,exitflag,output]=fminbnd(.....) + // [xopt,fopt,exitflag,output,lambda]=fminbnd(.....) + // + // Parameters + // f : a function, representing the objective function of the problem + // x1 : a vector, containing the lower bound of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables, where n is number of Variables + // x2 : a vector, containing the upper bound of the variables of size (1 X n) or (n X 1) or (0 X 0) where 'n' is the number of Variables. If x2 is empty it means upper bound is +infinity + // options : a list, containing the option for user to specify. See below for details. + // xopt : a vector of doubles, containing the the computed solution of the optimization problem. + // fopt : a scalar of double, containing the the function value at x. + // exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details. + // output : a structure, containing the information about the optimization. See below for details. + // lambda : a structure, containing the Lagrange multipliers of lower bound and upper bound at the optimized point. See below for details. + // + // Description + // Search the minimum of a multi-variable function on bounded interval specified by : + // Find the minimum of f(x) such that + // + // <latex> + // \begin{eqnarray} + // &\mbox{min}_{x} + // & f(x)\\ + // & \text{subject to} & x1 \ < x \ < x2 \\ + // \end{eqnarray} + // </latex> + // + // The routine calls Ipopt for solving the Bounded Optimization problem, Ipopt is a library written in C++. + // + // The options allows the user to set various parameters of the Optimization problem. + // It should be defined as type "list" and contains the following fields. + // <itemizedlist> + // <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], TolX, [----]);</listitem> + // <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem> + // <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem> + // <listitem>TolX : a Scalar, containing the Tolerance value that the solver should take.</listitem> + // <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600], TolX, [1e-4]);</listitem> + // </itemizedlist> + // + // The exitflag allows to know the status of the optimization which is given back by Ipopt. + // <itemizedlist> + // <listitem>exitflag=0 : Optimal Solution Found </listitem> + // <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem> + // <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem> + // <listitem>exitflag=3 : Stop at Tiny Step.</listitem> + // <listitem>exitflag=4 : Solved To Acceptable Level.</listitem> + // <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem> + // </itemizedlist> + // + // For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/ + // + // The output data structure contains detailed informations about the optimization process. + // It has type "struct" and contains the following fields. + // <itemizedlist> + // <listitem>output.Iterations: The number of iterations performed during the search</listitem> + // <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem> + // <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem> + // <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem> + // </itemizedlist> + // + // The lambda data structure contains the Lagrange multipliers at the end + // of optimization. In the current version the values are returned only when the the solution is optimal. + // It has type "struct" and contains the following fields. + // <itemizedlist> + // <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem> + // <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem> + // </itemizedlist> + // + // Examples + // //Find x in R^6 such that it minimizes: + // //f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6) + // //-2 <= x1,x2,x3,x4,x5,x6 <= 2 + // //Objective function to be minimised + // function y=f(x) + // y=0 + // for i =1:6 + // y=y+sin(x(i)); + // end + // endfunction + // //Variable bounds + // x1 = [-2, -2, -2, -2, -2, -2]; + // x2 = [2, 2, 2, 2, 2, 2]; + // //Options + // options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6]) + // //Calling Ipopt + // [x,fval] =fminbnd(f, x1, x2, options) + // // Press ENTER to continue + // + // Examples + // //Find x in R such that it minimizes: + // //f(x)= 1/x^2 + // //0 <= x <= 1000 + // //Objective function to be minimised + // function y=f(x) + // y=1/x^2 + // endfunction + // //Variable bounds + // x1 = [0]; + // x2 = [1000]; + // //Calling Ipopt + // [x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2) + // // Press ENTER to continue + // + // Examples + // //The below problem is an unbounded problem: + // //Find x in R^2 such that it minimizes: + // //f(x)= -[(x1-1)^2 + (x2-1)^2] + // //-inf <= x1,x2 <= inf + // //Objective function to be minimised + // function y=f(x) + // y=-((x(1)-1)^2+(x(2)-1)^2); + // endfunction + // //Variable bounds + // x1 = [-%inf , -%inf]; + // x2 = []; + // //Options + // options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6]) + // //Calling Ipopt + // [x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2, options) + // Authors + // R.Vidyadhar , Vignesh Kannan + + + //To check the number of input and output arguments + [lhs , rhs] = argn(); + + //To check the number of arguments given by the user + if ( rhs<3 | rhs>4 ) then + errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 3 or 4"), "fminbnd", rhs); + error(errmsg) + end + + //Storing the 1st and 2nd Input Parameters + fun = varargin(1); + x1 = varargin(2); + x2 = varargin(3); + + //Converting the User defined Objective function into Required form (Error Detectable) + function [y,check] = f(x) + if(execstr('y=fun(x)','errcatch')==32 | execstr('y=fun(x)','errcatch')==27) + y=zeros(1,1); + check=1; + else + if (isreal(y)==%F) then + y=zeros(1,1); + check=1; + else + y=fun(x); + check=0; + end + end + endfunction + + //To check whether the 2nd Input argument (x1) is a vector/scalar + if (type(x1) ~= 1) then + errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Lower Bound Vector (2nd Parameter)"), "fminbnd"); + error(errmsg); + end + + if (size(x1,2)==0) then + errmsg = msprintf(gettext("%s: Lower Bound (2nd Parameter) cannot be empty"), "fminbnd"); + error(errmsg); + end + + if (size(x1,1)~=1) & (size(x1,2)~=1) then + errmsg = msprintf(gettext("%s: Lower Bound (2nd Parameter) should be a vector"), "fminbnd"); + error(errmsg); + elseif (size(x1,2)==1) then + x1=x1; + elseif (size(x1,1)==1) then + x1=x1'; + end + s=size(x1); + + //To check whether the 3rd Input argument (x2) is a vector/scalar + if (type(x2) ~= 1) then + errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Upper Bound Vector (3rd Parameter)"), "fminbnd"); + error(errmsg); + end + + //To check for the correct size and data of x2 (3rd paramter) and convert it to a column vector as required by Ipopt + if (size(x2,2)==0) then + x2 = repmat(%inf,s(1),1); + end + + + if (size(x2,1)~=1) & (size(x2,2)~=1) then + errmsg = msprintf(gettext("%s: Upper Bound (3rd Parameter) should be a vector"), "fminbnd"); + error(errmsg); + elseif(size(x2,1)~=s(1) & size(x2,2)==1) then + errmsg = msprintf(gettext("%s: Upper Bound and Lower Bound are not matching"), "fminbnd"); + error(errmsg); + elseif(size(x2,1)==s(1) & size(x2,2)==1) then + x2=x2; + elseif(size(x2,1)==1 & size(x2,2)~=s(1)) then + errmsg = msprintf(gettext("%s: Upper Bound and Lower Bound are not matching"), "fminbnd"); + error(errmsg); + elseif(size(x2,1)==1 & size(x2,2)==s(1)) then + x2=x2'; + end + + //To check the contents of x1 and x2 (2nd & 3rd Parameter) + + for i = 1:s(2) + if (x1(i) == %inf) then + errmsg = msprintf(gettext("%s: Value of Lower Bound can not be infinity"), "fminbnd"); + error(errmsg); + end + if (x2(i) == -%inf) then + errmsg = msprintf(gettext("%s: Value of Upper Bound can not be negative infinity"), "fminbnd"); + error(errmsg); + end + if(x2(i)-x1(i)<=1e-6) then + errmsg = msprintf(gettext("%s: Difference between Upper Bound and Lower bound should be atleast > 10^6 for variable number= %d "), "fminbnd", i); + error(errmsg) + end + end + + //To check, whether options has been entered by the user + if ( rhs<4 | size(varargin(4)) ==0 ) then + param = list(); + else + param =varargin(4); //Storing the 3rd Input Parameter in an intermediate list named 'param' + end + + options = list("MaxIter",[3000],"CpuTime",[600],"TolX", [1e-4]); + + //To check the user entry for options and storing it + for i = 1:(size(param))/2 + select param(2*i-1) + case "MaxIter" then + options(2*i) = param(2*i); + case "CpuTime" then + options(2*i) = param(2*i); + case "TolX" then + options(2*i) = param(2*i); + else + errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fminbnd", param(2*i-1)); + error(errmsg) + end + end + + + //Defining a function to calculate Gradient or Hessian in an error deductable form. + function [y,check]=gradhess(x,t) + if t==1 then + if(execstr('y=numderivative(fun,x)','errcatch')==10000) + y=zeros(s(1),1); + check=1; + else + y=numderivative(fun,x); + if (isreal(y)==%F) then + y=zeros(s(1),1); + check=1; + else + check=0; + end + end + else + if(execstr('[grad,y]=numderivative(fun,x)','errcatch')==10000) + y=zeros(s(1),1); + check=1; + else + [grad,y]=numderivative(fun,x); + if (isreal(y)==%F) then + y=zeros(s(1),s(1)); + check=1; + else + check=0; + end + end + end + endfunction + + //Calling the Ipopt function for solving the above problem + [xopt,fopt,status,iter,cpu,obj_eval,dual,zl,zu] = solveminbndp(f,gradhess,x1,x2,options); + + //Calculating the values for the output + xopt = xopt'; + exitflag = status; + output = struct("Iterations", [],"Cpu_Time",[],"Objective_Evaluation",[],"Dual_Infeasibility",[]); + output.Iterations = iter; + output.Cpu_Time = cpu; + output.Objective_Evaluation = obj_eval; + output.Dual_Infeasibility = dual; + lambda = struct("lower", zl,"upper",zu); + + //In the cases of the problem not being solved, return NULL to the output matrices + if( status~=0 & status~=1 & status~=2 & status~=3 & status~=4 & status~=7 ) then + xopt=[] + fopt=[] + output = struct("Iterations", [],"Cpu_Time",[]); + output.Iterations = iter; + output.Cpu_Time = cpu; + lambda = struct("lower",[],"upper",[]); + end + + //To print output message + select status + + case 0 then + printf("\nOptimal Solution Found.\n"); + case 1 then + printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n"); + case 2 then + printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n"); + case 3 then + printf("\nStop at Tiny Step\n"); + case 4 then + printf("\nSolved To Acceptable Level\n"); + case 5 then + printf("\nConverged to a point of local infeasibility.\n"); + case 6 then + printf("\nStopping optimization at current point as requested by user.\n"); + case 7 then + printf("\nFeasible point for square problem found.\n"); + case 8 then + printf("\nIterates diverging; problem might be unbounded.\n"); + case 9 then + printf("\nRestoration Failed!\n"); + case 10 then + printf("\nError in step computation (regularization becomes too large?)!\n"); + case 12 then + printf("\nProblem has too few degrees of freedom.\n"); + case 13 then + printf("\nInvalid option thrown back by Ipopt\n"); + case 14 then + printf("\nNot enough memory.\n"); + case 15 then + printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n"); + else + printf("\nInvalid status returned. Notify the Toolbox authors\n"); + break; + end + + +endfunction |