summaryrefslogtreecommitdiff
path: root/help/en_US/intfminunc.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/intfminunc.xml')
-rw-r--r--help/en_US/intfminunc.xml242
1 files changed, 242 insertions, 0 deletions
diff --git a/help/en_US/intfminunc.xml b/help/en_US/intfminunc.xml
new file mode 100644
index 0000000..df2cdda
--- /dev/null
+++ b/help/en_US/intfminunc.xml
@@ -0,0 +1,242 @@
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!--
+ *
+ * This help file was generated from intfminunc.sci using help_from_sci().
+ *
+ -->
+
+<refentry version="5.0-subset Scilab" xml:id="intfminunc" xml:lang="en"
+ xmlns="http://docbook.org/ns/docbook"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns:ns3="http://www.w3.org/1999/xhtml"
+ xmlns:mml="http://www.w3.org/1998/Math/MathML"
+ xmlns:scilab="http://www.scilab.org"
+ xmlns:db="http://docbook.org/ns/docbook">
+
+ <refnamediv>
+ <refname>intfminunc</refname>
+ <refpurpose>Solves an unconstrainted multi-variable mixed integer non linear programming optimization problem</refpurpose>
+ </refnamediv>
+
+
+<refsynopsisdiv>
+ <title>Calling Sequence</title>
+ <synopsis>
+ xopt = intfminunc(f,x0)
+ xopt = intfminunc(f,x0,intcon)
+ xopt = intfminunc(f,x0,intcon,options)
+ [xopt,fopt] = intfminunc(.....)
+ [xopt,fopt,exitflag]= intfminunc(.....)
+ [xopt,fopt,exitflag,gradient,hessian]= intfminunc(.....)
+
+ </synopsis>
+</refsynopsisdiv>
+
+<refsection>
+ <title>Input Parameters</title>
+ <variablelist>
+ <varlistentry><term>f :</term>
+ <listitem><para> A function, representing the objective function of the problem.</para></listitem></varlistentry>
+ <varlistentry><term>x0 :</term>
+ <listitem><para> A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables.</para></listitem></varlistentry>
+ <varlistentry><term>intcon :</term>
+ <listitem><para> A vector of integers, representing the variables that are constrained to be integers.</para></listitem></varlistentry>
+ <varlistentry><term>options :</term>
+ <listitem><para> A list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+<refsection>
+<title> Outputs</title>
+ <variablelist>
+ <varlistentry><term>xopt :</term>
+ <listitem><para> A vector of doubles, containing the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <varlistentry><term>fopt :</term>
+ <listitem><para> A double, containing the the function value at x.</para></listitem></varlistentry>
+ <varlistentry><term>exitflag :</term>
+ <listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>gradient :</term>
+ <listitem><para> A vector of doubles, containing the objective's gradient of the solution.</para></listitem></varlistentry>
+ <varlistentry><term>hessian :</term>
+ <listitem><para> A matrix of doubles, containing the Lagrangian's hessian of the solution.</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+
+<refsection>
+ <title>Description</title>
+ <para>
+Search the minimum of a multi-variable mixed integer non linear programming unconstrained optimization problem specified by :
+Find the minimum of f(x) such that
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+&amp;\mbox{min}_{x}
+&amp; f(x)
+&amp; x_{i} \in \!\, \mathbb{Z}, i \in \!\, I
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+intfminunc calls Bonmin, which is an optimization library written in C++, to solve the bound optimization problem.
+ </para>
+ <para>
+<title>Options</title>
+The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by:
+ </para>
+ <para>
+options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
+<itemizedlist>
+<listitem>IntegerTolerance : A Scalar, a number with that value of an integer is considered integer.</listitem>
+<listitem>MaxNodes : A Scalar, containing the maximum number of nodes that the solver should search.</listitem>
+<listitem>CpuTime : A scalar, specifying the maximum amount of CPU Time in seconds that the solver should take.</listitem>
+<listitem>AllowableGap : A scalar, that specifies the gap between the computed solution and the the objective value of the best known solution stop, at which the tree search can be stopped.</listitem>
+<listitem>MaxIter : A scalar, specifying the maximum number of iterations that the solver should take.</listitem>
+<listitem>gradobj : A string, to turn on or off the user supplied objective gradient.</listitem>
+<listitem>hessian : A scalar, to turn on or off the user supplied objective hessian.</listitem>
+</itemizedlist>
+ The default values for the various items are given as:
+ </para>
+ <para>
+ options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
+ </para>
+ <para>
+ </para>
+ <para>
+The exitflag allows to know the status of the optimization which is given back by Ipopt.
+<itemizedlist>
+<listitem>0 : Optimal Solution Found </listitem>
+<listitem>1 : InFeasible Solution.</listitem>
+<listitem>2 : Objective Function is Continuous Unbounded.</listitem>
+<listitem>3 : Limit Exceeded.</listitem>
+<listitem>4 : User Interrupt.</listitem>
+<listitem>5 : MINLP Error.</listitem>
+</itemizedlist>
+ </para>
+ <para>
+For more details on exitflag, see the Bonmin documentation which can be found on http://www.coin-or.org/Bonmin
+ </para>
+ <para>
+</para>
+</refsection>
+<para>
+A few examples displaying the various functionalities of intfminunc have been provided below. You will find a series of problems and the appropriate code snippets to solve them.
+ </para>
+
+<refsection>
+ <title>Example</title>
+<para>
+We begin with the minimization of a simple non-linear function.
+</para>
+ <para>
+Find x in R^2 such that it minimizes:
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+\mbox{min}_{x}\ f(x) = x_{1}^{2} + x_{2}^{2}
+\end{eqnarray}\\
+\text{With integer constraints as: } \\
+\begin{eqnarray}
+\begin{array}{c}
+[1] \\
+\end{array}
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+ </para>
+ <programlisting role="example"><![CDATA[
+//Example 1:
+//Objective function to be minimised
+function y= f(x)
+y= x(1)^2 + x(2)^2;
+endfunction
+//Starting point
+x0=[2,1];
+intcon = [1];
+[xopt,fopt]=intfminunc(f,x0,intcon)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Example</title>
+ <para>
+We now look at the Rosenbrock function, a non-convex performance test problem for optimization routines. We use this example to illustrate how we can enhance the functionality of intfminunc by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 2. We also set solver parameters using the options.
+</para>
+ <para>
+<latex>
+\begin{eqnarray}
+\mbox{min}_{x}\ f(x) = 100\boldsymbol{\cdot} (x_{2} - x_{1}^{2})^{2} + (1-x_{1})^{2}
+\end{eqnarray}\\
+\text{With integer constraints as: } \\
+\begin{eqnarray}
+\begin{array}{c}
+[2] \\
+\end{array}
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+ </para>
+ <programlisting role="example"><![CDATA[
+///Example 2:
+//Objective function to be minimised
+function y= f(x)
+y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
+endfunction
+//Starting point
+x0=[-1,2];
+intcon = [2]
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500]);
+//Calling
+[xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+
+
+<refsection>
+ <title>Example</title>
+ <para>
+Unbounded Problems: Find x in R^2 such that it minimizes:
+</para>
+ <para>
+<latex>
+\begin{eqnarray}
+f(x) = -x_{1}^{2} - x_{2}^{2}
+\end{eqnarray}\\
+\text{With integer constraints as: } \\
+\begin{eqnarray}
+\begin{array}{c}
+[1] \\
+\end{array}
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+ </para>
+ <programlisting role="example"><![CDATA[
+//The below problem is an unbounded problem:
+//Find x in R^2 such that the below function is minimum
+//f = - x1^2 - x2^2
+//Objective function to be minimised
+function [y,g,h] = f(x)
+y = -x(1)^2 - x(2)^2;
+g = [-2*x(1),-2*x(2)];
+h = [-2,0;0,-2];
+endfunction
+//Starting point
+x0=[2,1];
+intcon = [1]
+options = list("gradobj","ON","hessian","on");
+[xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
+ ]]></programlisting>
+</refsection>
+</refentry>