summaryrefslogtreecommitdiff
path: root/help/en_US/intfmincon.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/intfmincon.xml')
-rw-r--r--help/en_US/intfmincon.xml509
1 files changed, 509 insertions, 0 deletions
diff --git a/help/en_US/intfmincon.xml b/help/en_US/intfmincon.xml
new file mode 100644
index 0000000..782978e
--- /dev/null
+++ b/help/en_US/intfmincon.xml
@@ -0,0 +1,509 @@
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!--
+ *
+ * This help file was generated from intfmincon.sci using help_from_sci().
+ *
+ -->
+
+<refentry version="5.0-subset Scilab" xml:id="intfmincon" xml:lang="en"
+ xmlns="http://docbook.org/ns/docbook"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns:ns3="http://www.w3.org/1999/xhtml"
+ xmlns:mml="http://www.w3.org/1998/Math/MathML"
+ xmlns:scilab="http://www.scilab.org"
+ xmlns:db="http://docbook.org/ns/docbook">
+
+ <refnamediv>
+ <refname>intfmincon</refname>
+ <refpurpose>Solves a constrainted multi-variable mixed integer non linear programming problem</refpurpose>
+ </refnamediv>
+
+
+<refsynopsisdiv>
+ <title>Calling Sequence</title>
+ <synopsis>
+ xopt = intfmincon(f,x0,intcon,A,b)
+ xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq)
+ xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub)
+ xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc)
+ xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+ [xopt,fopt] = intfmincon(.....)
+ [xopt,fopt,exitflag]= intfmincon(.....)
+ [xopt,fopt,exitflag,gradient]=intfmincon(.....)
+ [xopt,fopt,exitflag,gradient,hessian]=intfmincon(.....)
+
+ </synopsis>
+</refsynopsisdiv>
+
+<refsection>
+ <title>Input Parameters</title>
+ <variablelist>
+ <varlistentry><term>f :</term>
+ <listitem><para> A function, representing the objective function of the problem.</para></listitem></varlistentry>
+ <varlistentry><term>x0 :</term>
+ <listitem><para> A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
+ <varlistentry><term>intcon :</term>
+ <listitem><para> A vector of integers, representing the variables that are constrained to be integers.</para></listitem></varlistentry>
+ <varlistentry><term>A :</term>
+ <listitem><para> A matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints.</para></listitem></varlistentry>
+ <varlistentry><term>b :</term>
+ <listitem><para> A vector of doubles, related to 'A' and represents the linear coefficients in the linear inequality constraints of size (m X 1).</para></listitem></varlistentry>
+ <varlistentry><term>Aeq :</term>
+ <listitem><para> A matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints.</para></listitem></varlistentry>
+ <varlistentry><term>beq :</term>
+ <listitem><para> A vector of double, vector of doubles, related to 'Aeq' and represents the linear coefficients in the equality constraints of size (m1 X 1).</para></listitem></varlistentry>
+ <varlistentry><term>lb :</term>
+ <listitem><para> A vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
+ <varlistentry><term>ub :</term>
+ <listitem><para> A vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
+ <varlistentry><term>nlc :</term>
+ <listitem><para> A function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints (c), and the non-linear equality constraints (ceq) are defined as separate single row vectors.</para></listitem></varlistentry>
+ <varlistentry><term>options :</term>
+ <listitem><para> A list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+<refsection>
+<title> Outputs</title>
+ <variablelist>
+ <varlistentry><term>xopt :</term>
+ <listitem><para> A vector of doubles, containing the the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <varlistentry><term>fopt :</term>
+ <listitem><para> A double, containing the value of the function at xopt.</para></listitem></varlistentry>
+ <varlistentry><term>exitflag :</term>
+ <listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>gradient :</term>
+ <listitem><para> a vector of doubles, containing the Objective's gradient of the solution.</para></listitem></varlistentry>
+ <varlistentry><term>hessian :</term>
+ <listitem><para> a matrix of doubles, containing the Objective's hessian of the solution.</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+
+<refsection>
+ <title>Description</title>
+ <para>
+Search the minimum of a mixed integer constrained optimization problem specified by :
+Find the minimum of f(x) such that
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+&amp;\mbox{min}_{x}
+&amp; f(x) \\
+&amp; \text{Subjected to:} &amp; A \boldsymbol{\cdot} x \leq b \\
+&amp; &amp; Aeq \boldsymbol{\cdot} x \ = beq\\
+&amp; &amp; c(x) \leq 0\\
+&amp; &amp; ceq(x) \ = 0\\
+&amp; &amp; lb \leq x \leq ub \\
+&amp; &amp; x_{i} \in \!\, \mathbb{Z}, i \in \!\, I
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+intfmincon calls Bonmin, an optimization library written in C++, to solve the Constrained Optimization problem.
+ </para>
+ <para>
+<title>Options</title>
+The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by:
+ </para>
+ <para>
+options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );
+<itemizedlist>
+<listitem>IntegerTolerance : A Scalar, a number with that value of an integer is considered integer.</listitem>
+<listitem>MaxNodes : A Scalar, containing the maximum number of nodes that the solver should search.</listitem>
+<listitem>CpuTime : A scalar, specifying the maximum amount of CPU Time in seconds that the solver should take.</listitem>
+<listitem>AllowableGap : A scalar, that specifies the gap between the computed solution and the the objective value of the best known solution stop, at which the tree search can be stopped.</listitem>
+<listitem>MaxIter : A scalar, specifying the maximum number of iterations that the solver should take.</listitem>
+<listitem>gradobj : A string, to turn on or off the user supplied objective gradient.</listitem>
+<listitem>hessian : A scalar, to turn on or off the user supplied objective hessian.</listitem>
+</itemizedlist>
+ The default values for the various items are given as:
+ </para>
+ <para>
+ options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")
+ </para>
+ <para>
+ </para>
+ <para>
+The exitflag allows to know the status of the optimization which is given back by Ipopt.
+<itemizedlist>
+<listitem>0 : Optimal Solution Found </listitem>
+<listitem>1 : InFeasible Solution.</listitem>
+<listitem>2 : Objective Function is Continuous Unbounded.</listitem>
+<listitem>3 : Limit Exceeded.</listitem>
+<listitem>4 : User Interrupt.</listitem>
+<listitem>5 : MINLP Error.</listitem>
+</itemizedlist>
+ </para>
+ <para>
+For more details on exitflag, see the Bonmin documentation which can be found on http://www.coin-or.org/Bonmin
+ </para>
+ <para>
+</para>
+</refsection>
+<para>
+A few examples displaying the various functionalities of intfmincon have been provided below. You will find a series of problems and the appropriate code snippets to solve them.
+ </para>
+<refsection>
+ <title>Example</title>
+ <para>
+ Here we solve a simple objective function, subjected to three linear inequality constraints.
+ </para>
+ <para>
+Find x in R^2 such that it minimizes:
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+\mbox{min}_{x}\ f(x) = x_{1}^{2} - x_{1} \boldsymbol{\cdot} x_{2}/3 + x_{2}^{2}
+\end{eqnarray}
+\\\text{Subjected to:}\\
+\begin{eqnarray}
+\hspace{70pt} &amp;x_{1} + x_{2}&amp;\leq 2\\
+\hspace{70pt} &amp;x_{1} + \dfrac{x_{2}}{4}&amp;\leq 1\\
+\hspace{70pt} &amp;-x_{1} + x_{2}&amp;\geq -2\\
+\end{eqnarray}\\
+\text{With integer constraints as: } \\
+\begin{eqnarray}
+\begin{array}{c}
+[1] \\
+\end{array}
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+
+ </para>
+ <programlisting role="example"><![CDATA[
+//Example 1:
+//Objective function to be minimised
+function [y,dy]=f(x)
+y=-x(1)-x(2)/3;
+dy= [-1,-1/3];
+endfunction
+//Starting point
+x0=[0 , 0];
+//Integer constraints
+intcon = [1];
+//Initializing the linear inequality constraints
+A=[1,1 ; 1,1/4 ; 1,-1 ;];
+b=[2;1;2];
+//Calling Bonmin
+[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Example</title>
+ <para>
+Here we build up on the previous example by adding linear equality constraints.
+We add the following constraints to the problem specified above:
+</para>
+ <para>
+<latex>
+\begin{eqnarray}
+&amp;x_{1} - x_{2}&amp;= 1
+\\&amp;2x_{1} + x_{2}&amp;= 2
+\\\end{eqnarray}
+</latex>
+ </para>
+ <para>
+ </para>
+ <programlisting role="example"><![CDATA[
+//Example 2:
+//Objective function to be minimised
+function [y,dy]=f(x)
+y=-x(1)-x(2)/3;
+dy= [-1,-1/3];
+endfunction
+//Starting point
+x0=[0 , 0];
+//Integer constraints
+intcon = [1];
+//Initializing the linear inequality constraints
+A=[1,1 ; 1,1/4 ; 1,-1 ;];
+b=[2;1;2];
+//Linear equality constraints
+Aeq=[1,-1;2,1];
+beq=[1,2];
+//Calling Bonmin
+[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Example</title>
+ <para>
+In this example, we proceed to add the upper and lower bounds to the objective function.
+ </para>
+ <para>
+Find x in R^2 such that it minimizes:
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+-1 &amp;\leq x_{1} &amp;\leq \infty\\
+-\infty &amp;\leq x_{2} &amp;\leq 1
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+
+ </para>
+ <programlisting role="example"><![CDATA[
+//Example 3:
+//Objective function to be minimised
+function [y,dy]=f(x)
+y=-x(1)-x(2)/3;
+dy= [-1,-1/3];
+endfunction
+//Starting point
+x0=[0 , 0];
+//Integer constraints
+intcon = [1];
+//Initializing the linear inequality constraints
+A=[1,1 ; 1,1/4 ; 1,-1 ;];
+b=[2;1;2];
+//Linear equality constraints
+Aeq=[1,-1;2,1];
+beq=[1,2];
+//Adding the variable bounds
+lb=[-1, -%inf];
+ub=[%inf, 1];
+//Calling Bonmin
+[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Example</title>
+ <para>
+ Finally, we add the non-linear constraints to the problem. Note that there is a notable difference in the way this is done as compared to defining the linear constraints.
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+\mbox{min}_{x}\ f(x) = x_{1} \boldsymbol{\cdot} x_{2} + x_{2} \boldsymbol{\cdot} x_{3}
+\end{eqnarray}
+\\\text{Subjected to:}\\
+\begin{eqnarray}
+\hspace{70pt} &amp;x_{1}^{2} - x_{2}^{2} + x_{3}^{2}&amp;\leq 2\\
+\hspace{70pt} &amp;x_{1}^{2} + x_{2}^{2} + x_{3}^{2}&amp;\leq 10\\
+\end{eqnarray}\\
+\text{With integer constraints as: }\\
+\begin{eqnarray}
+\begin{array}{c}
+[2] \\
+\end{array}
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+ </para>
+ <programlisting role="example"><![CDATA[
+//Example 4:
+//Objective function to be minimised
+function [y,dy]=f(x)
+y=x(1)*x(2)+x(2)*x(3);
+dy= [x(2),x(1)+x(3),x(2)];
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0.1 , 0.1 , 0.1];
+intcon = [2]
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[];
+ub=[];
+//Nonlinear constraints
+function [c,ceq,cg,cgeq]=nlc(x)
+c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
+ceq = [];
+cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
+cgeq=[];
+endfunction
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
+//Calling Ipopt
+[x,fval,exitflag,output] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Example</title>
+ <para>
+We can further enhance the functionality of intfmincon by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 5. We take the following problem and add simple non-linear constraints, specify the gradients and the hessian of the Lagrange Function. We also set solver parameters using the options.
+ </para>
+ <para>
+ </para>
+ <programlisting role="example"><![CDATA[
+//Example 5:
+//Objective function to be minimised
+function [y,dy]=f(x)
+y=x(1)*x(2)+x(2)*x(3);
+dy= [x(2),x(1)+x(3),x(2)];
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0.1 , 0.1 , 0.1];
+intcon = [2]
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[];
+ub=[];
+//Nonlinear constraints
+function [c,ceq,cg,cgeq]=nlc(x)
+c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
+ceq = [];
+cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
+cgeq=[];
+endfunction
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
+//Calling Ipopt
+[x,fval,exitflag,output] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Example</title>
+ <para>
+Infeasible Problems: Find x in R^3 such that it minimizes:
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+f(x) = x_{1} \boldsymbol{\cdot} x_{2} + x_{2} \boldsymbol{\cdot} x_{3}
+\end{eqnarray}
+\\\text{Subjected to:}\\
+\begin{eqnarray}
+\hspace{70pt} &amp;x_{1}^{2} &amp;\leq 1\\
+\hspace{70pt} &amp;x_{1}^{2} + x_{2}^{2}&amp;\leq 1\\
+\hspace{70pt} &amp;x_{3}^{2}&amp;\leq 1\\
+\hspace{70pt} &amp;x_{1}^{3}&amp;\leq 0.5\\
+\hspace{70pt} &amp;x_{2}^{2} + x_{3}^{2}&amp;\leq 0.75\\
+\end{eqnarray}\\
+\text{With variable bounds as: }\\
+\begin{eqnarray}
+\hspace{70pt} 0 &amp;\leq x_{1} &amp;\leq 0.6\\
+\hspace{70pt} 0.2 &amp;\leq x_{2} &amp;\leq \infty\\
+\end{eqnarray}\\
+\text{With integer constraints as: } \\
+\begin{eqnarray}
+\begin{array}{c}
+[2] \\
+\end{array}
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+ </para>
+ <programlisting role="example"><![CDATA[
+//Example 6:
+//Objective function to be minimised
+function [y,dy]=f(x)
+y=x(1)*x(2)+x(2)*x(3);
+dy= [x(2),x(1)+x(3),x(2)];
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[1,1,1];
+intcon = [2]
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[0 0.2,-%inf];
+ub=[0.6 %inf,1];
+//Nonlinear constraints
+function [c,ceq,cg,cgeq]=nlc(x)
+c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
+ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
+cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
+cgeq = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
+endfunction
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
+//Calling Bonmin
+[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
+// Press ENTER to continue
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Example</title>
+<para>
+Unbounded Problems: Find x in R^3 such that it minimizes:
+</para>
+ <para>
+<latex>
+\begin{eqnarray}
+\mbox{min}_{x}\ f(x) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2}\\
+\end{eqnarray}\\
+\text{With variable bounds as: }\\
+\begin{eqnarray}
+-\infty &amp;\leq x_{1} &amp;\leq 0\\
+-\infty &amp;\leq x_{2} &amp;\leq 0\\
+-\infty &amp;\leq x_{3} &amp;\leq 0\\
+\end{eqnarray}\\
+\text{With integer constraints as: } \\
+\begin{eqnarray}
+\begin{array}{c}
+[3] \\
+\end{array}
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+ </para>
+ <programlisting role="example"><![CDATA[
+//Example 7:
+//The below problem is an unbounded problem:
+//Find x in R^3 such that it minimizes:
+//f(x)= -(x1^2 + x2^2 + x3^2)
+//x0=[0.1 , 0.1 , 0.1]
+// x1 <= 0
+// x2 <= 0
+// x3 <= 0
+//Objective function to be minimised
+function y=f(x)
+y=-(x(1)^2+x(2)^2+x(3)^2);
+endfunction
+//Starting point, linear constraints and variable bounds
+x0=[0.1 , 0.1 , 0.1];
+intcon = [3]
+A=[];
+b=[];
+Aeq=[];
+beq=[];
+lb=[];
+ub=[0,0,0];
+//Options
+options=list("MaxIter", [1500], "CpuTime", [500]);
+//Calling Bonmin
+[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,[],options)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+
+<refsection>
+ <title>Authors</title>
+ <simplelist type="vert">
+ <member>Harpreet Singh</member>
+ </simplelist>
+</refsection>
+</refentry>