summaryrefslogtreecommitdiff
path: root/help/en_US/fminbnd.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/fminbnd.xml')
-rw-r--r--help/en_US/fminbnd.xml197
1 files changed, 197 insertions, 0 deletions
diff --git a/help/en_US/fminbnd.xml b/help/en_US/fminbnd.xml
new file mode 100644
index 0000000..baf2f34
--- /dev/null
+++ b/help/en_US/fminbnd.xml
@@ -0,0 +1,197 @@
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!--
+ *
+ * This help file was generated from fminbnd.sci using help_from_sci().
+ *
+ -->
+
+<refentry version="5.0-subset Scilab" xml:id="fminbnd" xml:lang="en"
+ xmlns="http://docbook.org/ns/docbook"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns:ns3="http://www.w3.org/1999/xhtml"
+ xmlns:mml="http://www.w3.org/1998/Math/MathML"
+ xmlns:scilab="http://www.scilab.org"
+ xmlns:db="http://docbook.org/ns/docbook">
+
+ <refnamediv>
+ <refname>fminbnd</refname>
+ <refpurpose>Solves a multi-variable optimization problem on a bounded interval</refpurpose>
+ </refnamediv>
+
+
+<refsynopsisdiv>
+ <title>Calling Sequence</title>
+ <synopsis>
+ xopt = fminbnd(f,x1,x2)
+ xopt = fminbnd(f,x1,x2,options)
+ [xopt,fopt] = fminbnd(.....)
+ [xopt,fopt,exitflag]= fminbnd(.....)
+ [xopt,fopt,exitflag,output]=fminbnd(.....)
+ [xopt,fopt,exitflag,output,lambda]=fminbnd(.....)
+
+ </synopsis>
+</refsynopsisdiv>
+
+<refsection>
+ <title>Parameters</title>
+ <variablelist>
+ <varlistentry><term>f :</term>
+ <listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry>
+ <varlistentry><term>x1 :</term>
+ <listitem><para> a vector, containing the lower bound of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables, where n is number of Variables</para></listitem></varlistentry>
+ <varlistentry><term>x2 :</term>
+ <listitem><para> a vector, containing the upper bound of the variables of size (1 X n) or (n X 1) or (0 X 0) where 'n' is the number of Variables. If x2 is empty it means upper bound is +infinity</para></listitem></varlistentry>
+ <varlistentry><term>options :</term>
+ <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>xopt :</term>
+ <listitem><para> a vector of doubles, containing the the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <varlistentry><term>fopt :</term>
+ <listitem><para> a scalar of double, containing the the function value at x.</para></listitem></varlistentry>
+ <varlistentry><term>exitflag :</term>
+ <listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>output :</term>
+ <listitem><para> a structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
+ <varlistentry><term>lambda :</term>
+ <listitem><para> a structure, containing the Lagrange multipliers of lower bound and upper bound at the optimized point. See below for details.</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+
+<refsection>
+ <title>Description</title>
+ <para>
+Search the minimum of a multi-variable function on bounded interval specified by :
+Find the minimum of f(x) such that
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+&amp;\mbox{min}_{x}
+&amp; f(x)\\
+&amp; \text{subject to} &amp; x1 \ &lt; x \ &lt; x2 \\
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+The routine calls Ipopt for solving the Bounded Optimization problem, Ipopt is a library written in C++.
+ </para>
+ <para>
+The options allows the user to set various parameters of the Optimization problem.
+It should be defined as type "list" and contains the following fields.
+<itemizedlist>
+<listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], TolX, [----]);</listitem>
+<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
+<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
+<listitem>TolX : a Scalar, containing the Tolerance value that the solver should take.</listitem>
+<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600], TolX, [1e-4]);</listitem>
+</itemizedlist>
+ </para>
+ <para>
+The exitflag allows to know the status of the optimization which is given back by Ipopt.
+<itemizedlist>
+<listitem>exitflag=0 : Optimal Solution Found </listitem>
+<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
+<listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
+<listitem>exitflag=3 : Stop at Tiny Step.</listitem>
+<listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
+<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
+</itemizedlist>
+ </para>
+ <para>
+For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
+ </para>
+ <para>
+The output data structure contains detailed informations about the optimization process.
+It has type "struct" and contains the following fields.
+<itemizedlist>
+<listitem>output.Iterations: The number of iterations performed during the search</listitem>
+<listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
+<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
+<listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
+</itemizedlist>
+ </para>
+ <para>
+The lambda data structure contains the Lagrange multipliers at the end
+of optimization. In the current version the values are returned only when the the solution is optimal.
+It has type "struct" and contains the following fields.
+<itemizedlist>
+<listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
+<listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
+</itemizedlist>
+ </para>
+ <para>
+</para>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//Find x in R^6 such that it minimizes:
+//f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6)
+//-2 <= x1,x2,x3,x4,x5,x6 <= 2
+//Objective function to be minimised
+function y=f(x)
+y=0
+for i =1:6
+y=y+sin(x(i));
+end
+endfunction
+//Variable bounds
+x1 = [-2, -2, -2, -2, -2, -2];
+x2 = [2, 2, 2, 2, 2, 2];
+//Options
+options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
+//Calling Ipopt
+[x,fval] =fminbnd(f, x1, x2, options)
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//Find x in R such that it minimizes:
+//f(x)= 1/x^2
+//0 <= x <= 1000
+//Objective function to be minimised
+function y=f(x)
+y=1/x^2
+endfunction
+//Variable bounds
+x1 = [0];
+x2 = [1000];
+//Calling Ipopt
+[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2)
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//The below problem is an unbounded problem:
+//Find x in R^2 such that it minimizes:
+//f(x)= -[(x1-1)^2 + (x2-1)^2]
+//-inf <= x1,x2 <= inf
+//Objective function to be minimised
+function y=f(x)
+y=-((x(1)-1)^2+(x(2)-1)^2);
+endfunction
+//Variable bounds
+x1 = [-%inf , -%inf];
+x2 = [];
+//Options
+options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
+//Calling Ipopt
+[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2, options)
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Authors</title>
+ <simplelist type="vert">
+ <member>R.Vidyadhar , Vignesh Kannan</member>
+ </simplelist>
+</refsection>
+</refentry>