diff options
author | Harpreet | 2016-03-03 08:59:34 +0530 |
---|---|---|
committer | Harpreet | 2016-03-03 08:59:34 +0530 |
commit | 7cf9300c2eb4773afa9823cf4a179d43f70001aa (patch) | |
tree | 62f03c9c2df9ffe1c061d346a2059cc0fe862ba0 /tests/unit_tests | |
parent | d0cad398d8df199a4974112bfb7945c18636b5f8 (diff) | |
download | FOSSEE-Optimization-toolbox-7cf9300c2eb4773afa9823cf4a179d43f70001aa.tar.gz FOSSEE-Optimization-toolbox-7cf9300c2eb4773afa9823cf4a179d43f70001aa.tar.bz2 FOSSEE-Optimization-toolbox-7cf9300c2eb4773afa9823cf4a179d43f70001aa.zip |
lsqnonlin added
Diffstat (limited to 'tests/unit_tests')
-rw-r--r-- | tests/unit_tests/lsqnonlin.dia.ref | 83 | ||||
-rw-r--r-- | tests/unit_tests/lsqnonlin.tst | 83 |
2 files changed, 166 insertions, 0 deletions
diff --git a/tests/unit_tests/lsqnonlin.dia.ref b/tests/unit_tests/lsqnonlin.dia.ref new file mode 100644 index 0000000..916d9dc --- /dev/null +++ b/tests/unit_tests/lsqnonlin.dia.ref @@ -0,0 +1,83 @@ +// Copyright (C) 2015 - IIT Bombay - FOSSEE +// +// Author: Harpreet Singh +// Organization: FOSSEE, IIT Bombay +// Email: harpreet.mertia@gmail.com +// +// This file must be used under the terms of the CeCILL. +// This source file is licensed as described in the file COPYING, which +// you should have received as part of this distribution. The terms +// are also available at +// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + +// <-- JVM NOT MANDATORY --> +// <-- ENGLISH IMPOSED --> + + +// +// assert_close -- +// Returns 1 if the two real matrices computed and expected are close, +// i.e. if the relative distance between computed and expected is lesser than epsilon. +// Arguments +// computed, expected : the two matrices to compare +// epsilon : a small number +// +function flag = assert_close ( computed, expected, epsilon ) + if expected==0.0 then + shift = norm(computed-expected); + else + shift = norm(computed-expected)/norm(expected); + end +// if shift < epsilon then +// flag = 1; +// else +// flag = 0; +// end +// if flag <> 1 then pause,end + flag = assert_checktrue ( shift < epsilon ); +endfunction +// +// assert_equal -- +// Returns 1 if the two real matrices computed and expected are equal. +// Arguments +// computed, expected : the two matrices to compare +// epsilon : a small number +// +//function flag = assert_equal ( computed , expected ) +// if computed==expected then +// flag = 1; +// else +// flag = 0; +// end +// if flag <> 1 then pause,end +//endfunction + +//A simple non-linear least square example taken from leastsq default present in scilab +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5 ; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction +// the simplest call +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0) + +assert_close ( xopt , [ 0.9940629 0.9904811 ]' , 0.0005 ); +assert_close ( residual , [-0.0139785 0.0158061 0.0029263 0.0091929 -0.0017872 -0.0050049 0.0056439 -0.0128825 -0.0129584 0.0035627]' , 0.0005 ); +assert_close ( resnorm , [ 0.0009450] , 0.0005 ); +assert_checkequal( exitflag , int32(0) ); +printf("Test Successful"); diff --git a/tests/unit_tests/lsqnonlin.tst b/tests/unit_tests/lsqnonlin.tst new file mode 100644 index 0000000..916d9dc --- /dev/null +++ b/tests/unit_tests/lsqnonlin.tst @@ -0,0 +1,83 @@ +// Copyright (C) 2015 - IIT Bombay - FOSSEE +// +// Author: Harpreet Singh +// Organization: FOSSEE, IIT Bombay +// Email: harpreet.mertia@gmail.com +// +// This file must be used under the terms of the CeCILL. +// This source file is licensed as described in the file COPYING, which +// you should have received as part of this distribution. The terms +// are also available at +// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + +// <-- JVM NOT MANDATORY --> +// <-- ENGLISH IMPOSED --> + + +// +// assert_close -- +// Returns 1 if the two real matrices computed and expected are close, +// i.e. if the relative distance between computed and expected is lesser than epsilon. +// Arguments +// computed, expected : the two matrices to compare +// epsilon : a small number +// +function flag = assert_close ( computed, expected, epsilon ) + if expected==0.0 then + shift = norm(computed-expected); + else + shift = norm(computed-expected)/norm(expected); + end +// if shift < epsilon then +// flag = 1; +// else +// flag = 0; +// end +// if flag <> 1 then pause,end + flag = assert_checktrue ( shift < epsilon ); +endfunction +// +// assert_equal -- +// Returns 1 if the two real matrices computed and expected are equal. +// Arguments +// computed, expected : the two matrices to compare +// epsilon : a small number +// +//function flag = assert_equal ( computed , expected ) +// if computed==expected then +// flag = 1; +// else +// flag = 0; +// end +// if flag <> 1 then pause,end +//endfunction + +//A simple non-linear least square example taken from leastsq default present in scilab +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5 ; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction +// the simplest call +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0) + +assert_close ( xopt , [ 0.9940629 0.9904811 ]' , 0.0005 ); +assert_close ( residual , [-0.0139785 0.0158061 0.0029263 0.0091929 -0.0017872 -0.0050049 0.0056439 -0.0128825 -0.0129584 0.0035627]' , 0.0005 ); +assert_close ( resnorm , [ 0.0009450] , 0.0005 ); +assert_checkequal( exitflag , int32(0) ); +printf("Test Successful"); |