summaryrefslogtreecommitdiff
path: root/macros/qpipoptmat.sci
diff options
context:
space:
mode:
authorHarpreet2015-12-22 15:54:28 +0530
committerHarpreet2015-12-22 15:54:28 +0530
commit6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24 (patch)
tree9501c5e1123426ab0b91d2e668902bd2b8d2a356 /macros/qpipoptmat.sci
parent79583a44468943fad22ba1de2dd25dd86f7be167 (diff)
downloadFOSSEE-Optimization-toolbox-6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24.tar.gz
FOSSEE-Optimization-toolbox-6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24.tar.bz2
FOSSEE-Optimization-toolbox-6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24.zip
Bugs fixed 3
Diffstat (limited to 'macros/qpipoptmat.sci')
-rw-r--r--macros/qpipoptmat.sci50
1 files changed, 25 insertions, 25 deletions
diff --git a/macros/qpipoptmat.sci b/macros/qpipoptmat.sci
index eec93ce..e9ed9a5 100644
--- a/macros/qpipoptmat.sci
+++ b/macros/qpipoptmat.sci
@@ -23,17 +23,17 @@ function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
// [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
//
// Parameters
- // H : a symmetric matrix of doubles, represents coefficients of quadratic in the quadratic problem.
- // f : a vector of doubles, represents coefficients of linear in the quadratic problem
- // A : a vector of doubles, represents the linear coefficients in the inequality constraints
- // b : a vector of doubles, represents the linear coefficients in the inequality constraints
- // Aeq : a matrix of doubles, represents the linear coefficients in the equality constraints
- // beq : a vector of doubles, represents the linear coefficients in the equality constraints
- // LB : a vector of doubles, contains lower bounds of the variables.
- // UB : a vector of doubles, contains upper bounds of the variables.
- // x0 : a vector of doubles, contains initial guess of variables.
+ // H : a symmetric matrix of double, represents coefficients of quadratic in the quadratic problem.
+ // f : a vector of double, represents coefficients of linear in the quadratic problem
+ // A : a vector of double, represents the linear coefficients in the inequality constraints
+ // b : a vector of double, represents the linear coefficients in the inequality constraints
+ // Aeq : a matrix of double, represents the linear coefficients in the equality constraints
+ // beq : a vector of double, represents the linear coefficients in the equality constraints
+ // LB : a vector of double, contains lower bounds of the variables.
+ // UB : a vector of double, contains upper bounds of the variables.
+ // x0 : a vector of double, contains initial guess of variables.
// param : a list containing the the parameters to be set.
- // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // xopt : a vector of double, the computed solution of the optimization problem.
// fopt : a double, the function value at x.
// exitflag : Integer identifying the reason the algorithm terminated.
// output : Structure containing information about the optimization. Right now it contains number of iteration.
@@ -65,7 +65,7 @@ function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
// // 0 ≤ x1, 0 ≤ x2.
// H = [1 -1; -1 2];
// f = [-2; -6];
- // A = [1 1; -1 2; 2 1];
+ // A = [1 1; -1 2; 2 1];
// b = [2; 2; 3];
// lb = [0; 0];
// ub = [%inf; %inf];
@@ -73,21 +73,21 @@ function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
// // Press ENTER to continue
//
// Examples
- // //Find x in R^6 such that:
- // Aeq= [1,-1,1,0,3,1;
- // -1,0,-3,-4,5,6;
- // 2,5,3,0,1,0];
- // beq=[1; 2; 3];
- // A= [0,1,0,1,2,-1;
- // -1,0,2,1,1,0];
- // b = [-1; 2.5];
- // lb=[-1000; -10000; 0; -1000; -1000; -1000];
- // ub=[10000; 100; 1.5; 100; 100; 1000];
- // x0 = repmat(0,6,1);
+ // //Find x in R^6 such that:
+ // Aeq= [1,-1,1,0,3,1;
+ // -1,0,-3,-4,5,6;
+ // 2,5,3,0,1,0];
+ // beq=[1; 2; 3];
+ // A= [0,1,0,1,2,-1;
+ // -1,0,2,1,1,0];
+ // b = [-1; 2.5];
+ // lb=[-1000; -10000; 0; -1000; -1000; -1000];
+ // ub=[10000; 100; 1.5; 100; 100; 1000];
+ // x0 = repmat(0,6,1);
// param = list("MaxIter", 300, "CpuTime", 100);
- // //and minimize 0.5*x'*Q*x + p'*x with
- // f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
- // [xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
+ // //and minimize 0.5*x'*H*x + f'*x with
+ // f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
+ // [xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
// Authors
// Keyur Joshi, Saikiran, Iswarya, Harpreet Singh