summaryrefslogtreecommitdiff
path: root/help
diff options
context:
space:
mode:
authorHarpreet2015-10-20 14:23:25 +0530
committerHarpreet2015-10-20 14:23:25 +0530
commite4b59ea62dd9903445375c2aa1f52a52c5eab99f (patch)
treed761e8819990b031344e58c9016562bea157c05b /help
parente34332a406e4f3fba9b99c6f9ec5138edfcc6aa2 (diff)
downloadFOSSEE-Optimization-toolbox-e4b59ea62dd9903445375c2aa1f52a52c5eab99f.tar.gz
FOSSEE-Optimization-toolbox-e4b59ea62dd9903445375c2aa1f52a52c5eab99f.tar.bz2
FOSSEE-Optimization-toolbox-e4b59ea62dd9903445375c2aa1f52a52c5eab99f.zip
qpipopt_mat added
Diffstat (limited to 'help')
-rw-r--r--help/en_US/master_help.xml2
-rw-r--r--help/en_US/qpipopt.xml45
-rw-r--r--help/en_US/qpipopt_mat.xml142
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/DOCSbin6413 -> 6478 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TABbin787 -> 796 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETSbin248 -> 255 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONSbin30648 -> 31519 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA2
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/TMAPbin16384 -> 16384 bytes
-rw-r--r--help/en_US/scilab_en_US_help/_LaTeX_qpipopt_mat.xml_1.pngbin0 -> 3110 bytes
-rw-r--r--help/en_US/scilab_en_US_help/index.html6
-rw-r--r--help/en_US/scilab_en_US_help/jhelpmap.jhm1
-rw-r--r--help/en_US/scilab_en_US_help/jhelptoc.xml1
-rw-r--r--help/en_US/scilab_en_US_help/qpipopt.html49
-rw-r--r--help/en_US/scilab_en_US_help/qpipopt_mat.html139
-rw-r--r--help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html6
-rw-r--r--help/en_US/scilab_en_US_help/symphony.html4
17 files changed, 344 insertions, 53 deletions
diff --git a/help/en_US/master_help.xml b/help/en_US/master_help.xml
index 85ff9e0..791d3d0 100644
--- a/help/en_US/master_help.xml
+++ b/help/en_US/master_help.xml
@@ -2,6 +2,7 @@
<!DOCTYPE book [
<!--Begin Entities-->
<!ENTITY a6b85f6e0c98751f20b68663a23cb4cd2 SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/qpipopt.xml">
+<!ENTITY a44928acec52adf395379e18fcff06730 SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/qpipopt_mat.xml">
<!ENTITY aca972f273143ecb39f56b42e4723ac67 SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/symphony.xml">
<!ENTITY a9953e61e8dd264a86df73772d3055e7f SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/symphony_mat.xml">
<!ENTITY acc223314e8a8bc290a13618df33a6237 SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/Symphony Native Function/sym_addConstr.xml">
@@ -79,6 +80,7 @@
<part xml:id='section_19f4f1e5726c01d683e8b82be0a7e910'>
<title>Symphony Toolbox</title>
&a6b85f6e0c98751f20b68663a23cb4cd2;
+&a44928acec52adf395379e18fcff06730;
&aca972f273143ecb39f56b42e4723ac67;
&a9953e61e8dd264a86df73772d3055e7f;
<chapter xml:id='section_508f0b211d17ea6769714cc144e6b731'>
diff --git a/help/en_US/qpipopt.xml b/help/en_US/qpipopt.xml
index d93f758..144fe18 100644
--- a/help/en_US/qpipopt.xml
+++ b/help/en_US/qpipopt.xml
@@ -38,7 +38,7 @@
<varlistentry><term>nbCon :</term>
<listitem><para> a 1 x 1 matrix of doubles, number of constraints</para></listitem></varlistentry>
<varlistentry><term>Q :</term>
- <listitem><para> a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
+ <listitem><para> a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
<varlistentry><term>p :</term>
<listitem><para> a 1 x n matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
<varlistentry><term>LB :</term>
@@ -91,19 +91,17 @@ We are calling IPOpt for solving the quadratic problem, IPOpt is a library writt
<title>Examples</title>
<programlisting role="example"><![CDATA[
//Find x in R^6 such that:
-
conMatrix= [1,-1,1,0,3,1;
-1,0,-3,-4,5,6;
2,5,3,0,1,0
0,1,0,1,2,-1;
-1,0,2,1,1,0];
-conLB=[1 2 3 -%inf -%inf]';
-conUB = [1 2 3 -1 2.5]';
-//with x between ci and cs:
-lb=[-1000 -10000 0 -1000 -1000 -1000];
-ub=[10000 100 1.5 100 100 1000];
+conLB=[1;2;3;-%inf;-%inf];
+conUB = [1;2;3;-1;2.5];
+lb=[-1000;-10000; 0; -1000; -1000; -1000];
+ub=[10000; 100; 1.5; 100; 100; 1000];
//and minimize 0.5*x'*Q*x + p'*x with
-p=[1;2;3;4;5;6]; Q=eye(6,6);
+p=[1; 2; 3; 4; 5; 6]; Q=eye(6,6);
nbVar = 6;
nbCon = 5;
[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
@@ -114,23 +112,22 @@ nbCon = 5;
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
-//min. -8*x1 -16*x2 + x1^2 + 4* x2^2
-// such that
-// x1 + x2 <= 5,
-// x1 <= 3,
-// x1 >= 0,
-// x2 >= 0
-conMatrix= [1 1];
-conLB=[-%inf];
-conUB = [5];
-//with x between ci and cs:
-lb=[0,0];
-ub=[3,%inf];
-//and minimize 0.5*x'*Q*x + p'*x with
-p=[-8,-16];
-Q=[1,0;0,4];
+//Find the value of x that minimize following function
+// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
+// Subject to:
+// x1 + x2 ≤ 2
+// –x1 + 2x2 ≤ 2
+// 2x1 + x2 ≤ 3
+// 0 ≤ x1, 0 ≤ x2.
+Q = [1 -1; -1 2];
+p = [-2; -6];
+conMatrix = [1 1; -1 2; 2 1];
+conUB = [2; 2; 3];
+conLB = [-%inf; -%inf; -%inf];
+lb = [0; 0];
+ub = [%inf; %inf];
nbVar = 2;
-nbCon = 1;
+nbCon = 3;
[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
]]></programlisting>
diff --git a/help/en_US/qpipopt_mat.xml b/help/en_US/qpipopt_mat.xml
new file mode 100644
index 0000000..7dec2b1
--- /dev/null
+++ b/help/en_US/qpipopt_mat.xml
@@ -0,0 +1,142 @@
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!--
+ *
+ * This help file was generated from qpipopt_mat.sci using help_from_sci().
+ *
+ -->
+
+<refentry version="5.0-subset Scilab" xml:id="qpipopt_mat" xml:lang="en"
+ xmlns="http://docbook.org/ns/docbook"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns:ns3="http://www.w3.org/1999/xhtml"
+ xmlns:mml="http://www.w3.org/1998/Math/MathML"
+ xmlns:scilab="http://www.scilab.org"
+ xmlns:db="http://docbook.org/ns/docbook">
+
+ <refnamediv>
+ <refname>qpipopt_mat</refname>
+ <refpurpose>Solves a linear quadratic problem.</refpurpose>
+ </refnamediv>
+
+
+<refsynopsisdiv>
+ <title>Calling Sequence</title>
+ <synopsis>
+ xopt = qpipopt_mat(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
+ x = qpipopt_mat(H,f)
+ x = qpipopt_mat(H,f,A,b)
+ x = qpipopt_mat(H,f,A,b,Aeq,beq)
+ x = qpipopt_mat(H,f,A,b,Aeq,beq,lb,ub)
+ [xopt,fopt,exitflag,output,lamda] = qpipopt_mat( ... )
+
+ </synopsis>
+</refsynopsisdiv>
+
+<refsection>
+ <title>Parameters</title>
+ <variablelist>
+ <varlistentry><term>H :</term>
+ <listitem><para> a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
+ <varlistentry><term>f :</term>
+ <listitem><para> a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
+ <varlistentry><term>A :</term>
+ <listitem><para> a m x n matrix of doubles, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
+ <varlistentry><term>b :</term>
+ <listitem><para> a column vector of doubles, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
+ <varlistentry><term>Aeq :</term>
+ <listitem><para> a meq x n matrix of doubles, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
+ <varlistentry><term>beq :</term>
+ <listitem><para> a vector of doubles, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
+ <varlistentry><term>LB :</term>
+ <listitem><para> a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.</para></listitem></varlistentry>
+ <varlistentry><term>UB :</term>
+ <listitem><para> a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.</para></listitem></varlistentry>
+ <varlistentry><term>xopt :</term>
+ <listitem><para> a nx1 matrix of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <varlistentry><term>fopt :</term>
+ <listitem><para> a 1x1 matrix of doubles, the function value at x.</para></listitem></varlistentry>
+ <varlistentry><term>exitflag :</term>
+ <listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
+ <varlistentry><term>output :</term>
+ <listitem><para> Structure containing information about the optimization.</para></listitem></varlistentry>
+ <varlistentry><term>lambda :</term>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+
+<refsection>
+ <title>Description</title>
+ <para>
+Search the minimum of a constrained linear quadratic optimization problem specified by :
+find the minimum of f(x) such that
+ </para>
+ <para>
+<latex>
+\begin{eqnarray}
+&amp;\mbox{min}_{x}
+&amp; 1/2*x'*H*x + f'*x \\
+&amp; \text{subject to} &amp; A.x \leq b \\
+&amp; &amp; Aeq.x \leq beq \\
+&amp; &amp; lb \leq x \leq ub \\
+\end{eqnarray}
+</latex>
+ </para>
+ <para>
+We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+ </para>
+ <para>
+</para>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//Find x in R^6 such that:
+
+Aeq= [1,-1,1,0,3,1;
+-1,0,-3,-4,5,6;
+2,5,3,0,1,0];
+beq=[1; 2; 3];
+A= [0,1,0,1,2,-1;
+-1,0,2,1,1,0];
+b = [-1; 2.5];
+lb=[-1000; -10000; 0; -1000; -1000; -1000];
+ub=[10000; 100; 1.5; 100; 100; 1000];
+//and minimize 0.5*x'*Q*x + p'*x with
+f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
+[xopt,fopt,exitflag,output,lambda]=qpipopt_mat(H,f,A,b,Aeq,beq,lb,ub)
+clear H f A b Aeq beq lb ub;
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//Find the value of x that minimize following function
+// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
+// Subject to:
+// x1 + x2 ≤ 2
+// –x1 + 2x2 ≤ 2
+// 2x1 + x2 ≤ 3
+// 0 ≤ x1, 0 ≤ x2.
+H = [1 -1; -1 2];
+f = [-2; -6];
+A = [1 1; -1 2; 2 1];
+b = [2; 2; 3];
+lb = [0; 0];
+ub = [%inf; %inf];
+[xopt,fopt,exitflag,output,lambda] = qpipopt_mat(H,f,A,b,[],[],lb,ub)
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Authors</title>
+ <simplelist type="vert">
+ <member>Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</member>
+ </simplelist>
+</refsection>
+</refentry>
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
index 388e399..1b55b83 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
index 7682874..3b7b18b 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
index d55c7ec..e290f81 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
index b598af6..7fd9ab2 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
index 60e895c..59337ab 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
@@ -1,2 +1,2 @@
JavaSearch 1.0
-TMAP bs=2048 rt=1 fl=-1 id1=1344 id2=1
+TMAP bs=2048 rt=1 fl=-1 id1=1347 id2=1
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
index 31347cf..0f25c4d 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/_LaTeX_qpipopt_mat.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_qpipopt_mat.xml_1.png
new file mode 100644
index 0000000..b6e2743
--- /dev/null
+++ b/help/en_US/scilab_en_US_help/_LaTeX_qpipopt_mat.xml_1.png
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/index.html b/help/en_US/scilab_en_US_help/index.html
index 49a4619..2b1442a 100644
--- a/help/en_US/scilab_en_US_help/index.html
+++ b/help/en_US/scilab_en_US_help/index.html
@@ -38,6 +38,12 @@
+<li><a href="qpipopt_mat.html" class="refentry">qpipopt_mat</a> &#8212; <span class="refentry-description">Solves a linear quadratic problem.</span></li>
+
+
+
+
+
<li><a href="symphony.html" class="refentry">symphony</a> &#8212; <span class="refentry-description">Solves a mixed integer linear programming constrained optimization problem.</span></li>
diff --git a/help/en_US/scilab_en_US_help/jhelpmap.jhm b/help/en_US/scilab_en_US_help/jhelpmap.jhm
index 54670c0..1601f23 100644
--- a/help/en_US/scilab_en_US_help/jhelpmap.jhm
+++ b/help/en_US/scilab_en_US_help/jhelpmap.jhm
@@ -4,6 +4,7 @@
<mapID target="index" url="index.html"/>
<mapID target="section_19f4f1e5726c01d683e8b82be0a7e910" url="section_19f4f1e5726c01d683e8b82be0a7e910.html"/>
<mapID target="qpipopt" url="qpipopt.html"/>
+<mapID target="qpipopt_mat" url="qpipopt_mat.html"/>
<mapID target="symphony" url="symphony.html"/>
<mapID target="symphony_mat" url="symphony_mat.html"/>
<mapID target="section_508f0b211d17ea6769714cc144e6b731" url="section_508f0b211d17ea6769714cc144e6b731.html"/>
diff --git a/help/en_US/scilab_en_US_help/jhelptoc.xml b/help/en_US/scilab_en_US_help/jhelptoc.xml
index b2d66e1..463b86d 100644
--- a/help/en_US/scilab_en_US_help/jhelptoc.xml
+++ b/help/en_US/scilab_en_US_help/jhelptoc.xml
@@ -4,6 +4,7 @@
<tocitem target="index" text="Symphony Toolbox">
<tocitem target="section_19f4f1e5726c01d683e8b82be0a7e910" text="Symphony Toolbox">
<tocitem target="qpipopt" text="qpipopt"/>
+<tocitem target="qpipopt_mat" text="qpipopt_mat"/>
<tocitem target="symphony" text="symphony"/>
<tocitem target="symphony_mat" text="symphony_mat"/>
<tocitem target="section_508f0b211d17ea6769714cc144e6b731" text="Symphony Native Functions">
diff --git a/help/en_US/scilab_en_US_help/qpipopt.html b/help/en_US/scilab_en_US_help/qpipopt.html
index 46b56c7..fba4521 100644
--- a/help/en_US/scilab_en_US_help/qpipopt.html
+++ b/help/en_US/scilab_en_US_help/qpipopt.html
@@ -20,7 +20,7 @@
</td>
<td width="30%" class="next">
- <span class="next"><a href="symphony.html">symphony &gt;&gt;</a></span>
+ <span class="next"><a href="qpipopt_mat.html">qpipopt_mat &gt;&gt;</a></span>
</td>
</tr></table>
@@ -46,7 +46,7 @@
<dt><span class="term">nbCon :</span>
<dd><p class="para">a 1 x 1 matrix of doubles, number of constraints</p></dd></dt>
<dt><span class="term">Q :</span>
- <dd><p class="para">a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</p></dd></dt>
+ <dd><p class="para">a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</p></dd></dt>
<dt><span class="term">p :</span>
<dd><p class="para">a 1 x n matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</p></dd></dt>
<dt><span class="term">LB :</span>
@@ -79,41 +79,38 @@ find the minimum of f(x) such that</p>
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find x in R^6 such that:</span>
-
<span class="scilabid">conMatrix</span><span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabdefault">;</span>
<span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span>
<span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">conLB</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">3</span> <span class="scilaboperator">-</span><span class="scilabconstants">%inf</span> <span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
-<span class="scilabid">conUB</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">3</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2.5</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
-<span class="scilabcomment">//with x between ci and cs:</span>
-<span class="scilabid">lb</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">1000</span> <span class="scilaboperator">-</span><span class="scilabnumber">10000</span> <span class="scilabnumber">0</span> <span class="scilaboperator">-</span><span class="scilabnumber">1000</span> <span class="scilaboperator">-</span><span class="scilabnumber">1000</span> <span class="scilaboperator">-</span><span class="scilabnumber">1000</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">ub</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">10000</span> <span class="scilabnumber">100</span> <span class="scilabnumber">1.5</span> <span class="scilabnumber">100</span> <span class="scilabnumber">100</span> <span class="scilabnumber">1000</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">conLB</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span><span class="scilabnumber">3</span><span class="scilabdefault">;</span><span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span><span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">conUB</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span><span class="scilabnumber">3</span><span class="scilabdefault">;</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">2.5</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">lb</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">1000</span><span class="scilabdefault">;</span><span class="scilaboperator">-</span><span class="scilabnumber">10000</span><span class="scilabdefault">;</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1000</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1000</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1000</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">ub</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">10000</span><span class="scilabdefault">;</span> <span class="scilabnumber">100</span><span class="scilabdefault">;</span> <span class="scilabnumber">1.5</span><span class="scilabdefault">;</span> <span class="scilabnumber">100</span><span class="scilabdefault">;</span> <span class="scilabnumber">100</span><span class="scilabdefault">;</span> <span class="scilabnumber">1000</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//and minimize 0.5*x</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*Q*x + p</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*x with</span>
-<span class="scilabid">p</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span><span class="scilabnumber">3</span><span class="scilabdefault">;</span><span class="scilabnumber">4</span><span class="scilabdefault">;</span><span class="scilabnumber">5</span><span class="scilabdefault">;</span><span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span> <span class="scilabid">Q</span><span class="scilaboperator">=</span><a class="scilabcommand" href="scilab://eye">eye</a><span class="scilabopenclose">(</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
+<span class="scilabid">p</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabdefault">;</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span> <span class="scilabnumber">5</span><span class="scilabdefault">;</span> <span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span> <span class="scilabid">Q</span><span class="scilaboperator">=</span><a class="scilabcommand" href="scilab://eye">eye</a><span class="scilabopenclose">(</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabid">nbVar</span> <span class="scilaboperator">=</span> <span class="scilabnumber">6</span><span class="scilabdefault">;</span>
<span class="scilabid">nbCon</span> <span class="scilaboperator">=</span> <span class="scilabnumber">5</span><span class="scilabdefault">;</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipopt</span><span class="scilabopenclose">(</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabid">nbCon</span><span class="scilabdefault">,</span><span class="scilabid">Q</span><span class="scilabdefault">,</span><span class="scilabid">p</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabid">conLB</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Examples</h3>
- <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//min. -8*x1 -16*x2 + x1^2 + 4* x2^2</span>
-<span class="scilabcomment">// such that</span>
-<span class="scilabcomment">// x1 + x2 </span><span class="scilabcomment">&#0060;</span><span class="scilabcomment">= 5,</span>
-<span class="scilabcomment">// x1 </span><span class="scilabcomment">&#0060;</span><span class="scilabcomment">= 3,</span>
-<span class="scilabcomment">// x1 </span><span class="scilabcomment">&#0062;</span><span class="scilabcomment">= 0,</span>
-<span class="scilabcomment">// x2 </span><span class="scilabcomment">&#0062;</span><span class="scilabcomment">= 0</span>
-<span class="scilabid">conMatrix</span><span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">conLB</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">conUB</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">5</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabcomment">//with x between ci and cs:</span>
-<span class="scilabid">lb</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">ub</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabcomment">//and minimize 0.5*x</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*Q*x + p</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*x with</span>
-<span class="scilabid">p</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">8</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">16</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">Q</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">4</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+ <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find the value of x that minimize following function</span>
+<span class="scilabcomment">// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2</span>
+<span class="scilabcomment">// Subject to:</span>
+<span class="scilabcomment">// x1 + x2 ≤ 2</span>
+<span class="scilabcomment">// –x1 + 2x2 ≤ 2</span>
+<span class="scilabcomment">// 2x1 + x2 ≤ 3</span>
+<span class="scilabcomment">// 0 ≤ x1, 0 ≤ x2.</span>
+<span class="scilabid">Q</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">p</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">conMatrix</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">conUB</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">conLB</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">nbVar</span> <span class="scilaboperator">=</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span>
-<span class="scilabid">nbCon</span> <span class="scilaboperator">=</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
+<span class="scilabid">nbCon</span> <span class="scilaboperator">=</span> <span class="scilabnumber">3</span><span class="scilabdefault">;</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">qpipopt</span><span class="scilabopenclose">(</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabid">nbCon</span><span class="scilabdefault">,</span><span class="scilabid">Q</span><span class="scilabdefault">,</span><span class="scilabid">p</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabid">conLB</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Authors</h3>
@@ -133,7 +130,7 @@ find the minimum of f(x) such that</p>
</td>
<td width="30%" class="next">
- <span class="next"><a href="symphony.html">symphony &gt;&gt;</a></span>
+ <span class="next"><a href="qpipopt_mat.html">qpipopt_mat &gt;&gt;</a></span>
</td>
</tr></table>
diff --git a/help/en_US/scilab_en_US_help/qpipopt_mat.html b/help/en_US/scilab_en_US_help/qpipopt_mat.html
new file mode 100644
index 0000000..5e30769
--- /dev/null
+++ b/help/en_US/scilab_en_US_help/qpipopt_mat.html
@@ -0,0 +1,139 @@
+<html><head>
+ <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+ <title>qpipopt_mat</title>
+ <style type="text/css" media="all">
+ @import url("scilab_code.css");
+ @import url("xml_code.css");
+ @import url("c_code.css");
+ @import url("style.css");
+ </style>
+ </head>
+ <body>
+ <div class="manualnavbar">
+ <table width="100%"><tr>
+ <td width="30%">
+ <span class="previous"><a href="qpipopt.html">&lt;&lt; qpipopt</a></span>
+
+ </td>
+ <td width="40%" class="center">
+ <span class="top"><a href="section_19f4f1e5726c01d683e8b82be0a7e910.html">Symphony Toolbox</a></span>
+
+ </td>
+ <td width="30%" class="next">
+ <span class="next"><a href="symphony.html">symphony &gt;&gt;</a></span>
+
+ </td>
+ </tr></table>
+ <hr />
+ </div>
+
+
+
+ <span class="path"><a href="index.html">Symphony Toolbox</a> &gt;&gt; <a href="section_19f4f1e5726c01d683e8b82be0a7e910.html">Symphony Toolbox</a> &gt; qpipopt_mat</span>
+
+ <br /><br />
+ <div class="refnamediv"><h1 class="refname">qpipopt_mat</h1>
+ <p class="refpurpose">Solves a linear quadratic problem.</p></div>
+
+
+<div class="refsynopsisdiv"><h3 class="title">Calling Sequence</h3>
+ <div class="synopsis"><pre><span class="default">xopt</span><span class="default"> = </span><span class="functionid">qpipopt_mat</span><span class="default">(</span><span class="default">nbVar</span><span class="default">,</span><span class="default">nbCon</span><span class="default">,</span><span class="default">Q</span><span class="default">,</span><span class="default">p</span><span class="default">,</span><span class="default">LB</span><span class="default">,</span><span class="default">UB</span><span class="default">,</span><span class="default">conMatrix</span><span class="default">,</span><span class="default">conLB</span><span class="default">,</span><span class="default">conUB</span><span class="default">)</span>
+<span class="default">x</span><span class="default"> = </span><span class="functionid">qpipopt_mat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">)</span>
+<span class="default">x</span><span class="default"> = </span><span class="functionid">qpipopt_mat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">)</span>
+<span class="default">x</span><span class="default"> = </span><span class="functionid">qpipopt_mat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">)</span>
+<span class="default">x</span><span class="default"> = </span><span class="functionid">qpipopt_mat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">)</span>
+<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">fopt</span><span class="default">,</span><span class="default">exitflag</span><span class="default">,</span><span class="default">output</span><span class="default">,</span><span class="default">lamda</span><span class="default">] = </span><span class="functionid">qpipopt_mat</span><span class="default">( ... )</span></pre></div></div>
+
+<div class="refsection"><h3 class="title">Parameters</h3>
+ <dl><dt><span class="term">H :</span>
+ <dd><p class="para">a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</p></dd></dt>
+ <dt><span class="term">f :</span>
+ <dd><p class="para">a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</p></dd></dt>
+ <dt><span class="term">A :</span>
+ <dd><p class="para">a m x n matrix of doubles, represents the linear coefficients in the inequality constraints</p></dd></dt>
+ <dt><span class="term">b :</span>
+ <dd><p class="para">a column vector of doubles, represents the linear coefficients in the inequality constraints</p></dd></dt>
+ <dt><span class="term">Aeq :</span>
+ <dd><p class="para">a meq x n matrix of doubles, represents the linear coefficients in the equality constraints</p></dd></dt>
+ <dt><span class="term">beq :</span>
+ <dd><p class="para">a vector of doubles, represents the linear coefficients in the equality constraints</p></dd></dt>
+ <dt><span class="term">LB :</span>
+ <dd><p class="para">a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.</p></dd></dt>
+ <dt><span class="term">UB :</span>
+ <dd><p class="para">a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.</p></dd></dt>
+ <dt><span class="term">xopt :</span>
+ <dd><p class="para">a nx1 matrix of doubles, the computed solution of the optimization problem.</p></dd></dt>
+ <dt><span class="term">fopt :</span>
+ <dd><p class="para">a 1x1 matrix of doubles, the function value at x.</p></dd></dt>
+ <dt><span class="term">exitflag :</span>
+ <dd><p class="para">Integer identifying the reason the algorithm terminated.</p></dd></dt>
+ <dt><span class="term">output :</span>
+ <dd><p class="para">Structure containing information about the optimization.</p></dd></dt>
+ <dt><span class="term">lambda :</span>
+ <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</p></dd></dt></dl></div>
+
+<div class="refsection"><h3 class="title">Description</h3>
+ <p class="para">Search the minimum of a constrained linear quadratic optimization problem specified by :
+find the minimum of f(x) such that</p>
+ <p class="para"><span><img src='./_LaTeX_qpipopt_mat.xml_1.png' style='position:relative;top:40px;width:284px;height:88px'/></span></p>
+ <p class="para">We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.</p>
+ <p class="para"></p></div>
+
+<div class="refsection"><h3 class="title">Examples</h3>
+ <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find x in R^6 such that:</span>
+
+<span class="scilabid">Aeq</span><span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span>
+<span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">beq</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">A</span><span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span>
+<span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilabnumber">2.5</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">lb</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">1000</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">10000</span><span class="scilabdefault">;</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1000</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1000</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1000</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">ub</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">10000</span><span class="scilabdefault">;</span> <span class="scilabnumber">100</span><span class="scilabdefault">;</span> <span class="scilabnumber">1.5</span><span class="scilabdefault">;</span> <span class="scilabnumber">100</span><span class="scilabdefault">;</span> <span class="scilabnumber">100</span><span class="scilabdefault">;</span> <span class="scilabnumber">1000</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabcomment">//and minimize 0.5*x</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*Q*x + p</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*x with</span>
+<span class="scilabid">f</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabdefault">;</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span> <span class="scilabnumber">5</span><span class="scilabdefault">;</span> <span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span> <span class="scilabid">H</span><span class="scilaboperator">=</span><a class="scilabcommand" href="scilab://eye">eye</a><span class="scilabopenclose">(</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
+<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipopt_mat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span>
+<span class="scilabid">clear</span> <span class="scilabid">H</span> <span class="scilabid">f</span> <span class="scilabid">A</span> <span class="scilabid">b</span> <span class="scilabid">Aeq</span> <span class="scilabid">beq</span> <span class="scilabid">lb</span> <span class="scilabid">ub</span><span class="scilabdefault">;</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+
+<div class="refsection"><h3 class="title">Examples</h3>
+ <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find the value of x that minimize following function</span>
+<span class="scilabcomment">// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2</span>
+<span class="scilabcomment">// Subject to:</span>
+<span class="scilabcomment">// x1 + x2 ≤ 2</span>
+<span class="scilabcomment">// –x1 + 2x2 ≤ 2</span>
+<span class="scilabcomment">// 2x1 + x2 ≤ 3</span>
+<span class="scilabcomment">// 0 ≤ x1, 0 ≤ x2.</span>
+<span class="scilabid">H</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">f</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">qpipopt_mat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+
+<div class="refsection"><h3 class="title">Authors</h3>
+ <ul class="itemizedlist"><li class="member">Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</li></ul></div>
+ <br />
+
+ <div class="manualnavbar">
+ <table width="100%">
+ <tr><td colspan="3" class="next"><a href="http://bugzilla.scilab.org/enter_bug.cgi?product=Scilab%20software&component=Documentation%20pages" class="ulink">Report an issue</a></td></tr>
+<tr>
+ <td width="30%">
+ <span class="previous"><a href="qpipopt.html">&lt;&lt; qpipopt</a></span>
+
+ </td>
+ <td width="40%" class="center">
+ <span class="top"><a href="section_19f4f1e5726c01d683e8b82be0a7e910.html">Symphony Toolbox</a></span>
+
+ </td>
+ <td width="30%" class="next">
+ <span class="next"><a href="symphony.html">symphony &gt;&gt;</a></span>
+
+ </td>
+ </tr></table>
+ <hr />
+ </div>
+ </body>
+</html>
diff --git a/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html b/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html
index 0f8d441..ed07ab6 100644
--- a/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html
+++ b/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html
@@ -37,6 +37,12 @@
+<li><a href="qpipopt_mat.html" class="refentry">qpipopt_mat</a> &#8212; <span class="refentry-description">Solves a linear quadratic problem.</span></li>
+
+
+
+
+
<li><a href="symphony.html" class="refentry">symphony</a> &#8212; <span class="refentry-description">Solves a mixed integer linear programming constrained optimization problem.</span></li>
diff --git a/help/en_US/scilab_en_US_help/symphony.html b/help/en_US/scilab_en_US_help/symphony.html
index 7e155bc..0af9d1b 100644
--- a/help/en_US/scilab_en_US_help/symphony.html
+++ b/help/en_US/scilab_en_US_help/symphony.html
@@ -12,7 +12,7 @@
<div class="manualnavbar">
<table width="100%"><tr>
<td width="30%">
- <span class="previous"><a href="qpipopt.html">&lt;&lt; qpipopt</a></span>
+ <span class="previous"><a href="qpipopt_mat.html">&lt;&lt; qpipopt_mat</a></span>
</td>
<td width="40%" class="center">
@@ -197,7 +197,7 @@ find the minimum or maximum of f(x) such that</p>
<tr><td colspan="3" class="next"><a href="http://bugzilla.scilab.org/enter_bug.cgi?product=Scilab%20software&component=Documentation%20pages" class="ulink">Report an issue</a></td></tr>
<tr>
<td width="30%">
- <span class="previous"><a href="qpipopt.html">&lt;&lt; qpipopt</a></span>
+ <span class="previous"><a href="qpipopt_mat.html">&lt;&lt; qpipopt_mat</a></span>
</td>
<td width="40%" class="center">