summaryrefslogtreecommitdiff
path: root/help
diff options
context:
space:
mode:
authorHarpreet2015-11-17 22:28:26 +0530
committerHarpreet2015-11-17 22:28:26 +0530
commit95d920496cc4b3263c3ea1bc698e6fd5745917bd (patch)
treedcfd7b1e0b894b854e74d4077030fb8848f831b9 /help
parent5fe89390b61acf1394f853e7ffee0be34eba2c43 (diff)
downloadFOSSEE-Optimization-toolbox-95d920496cc4b3263c3ea1bc698e6fd5745917bd.tar.gz
FOSSEE-Optimization-toolbox-95d920496cc4b3263c3ea1bc698e6fd5745917bd.tar.bz2
FOSSEE-Optimization-toolbox-95d920496cc4b3263c3ea1bc698e6fd5745917bd.zip
error management updated
Diffstat (limited to 'help')
-rw-r--r--help/en_US/qpipopt.xml24
-rw-r--r--help/en_US/qpipoptmat.xml22
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/DOCSbin7157 -> 7152 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB4
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETSbin258 -> 260 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONSbin35046 -> 34771 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/TMAPbin16384 -> 16384 bytes
-rw-r--r--help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.pngbin2934 -> 2547 bytes
-rw-r--r--help/en_US/scilab_en_US_help/qpipopt.html24
-rw-r--r--help/en_US/scilab_en_US_help/qpipoptmat.html22
-rw-r--r--help/en_US/scilab_en_US_help/symphony.html40
-rw-r--r--help/en_US/scilab_en_US_help/symphonymat.html8
-rw-r--r--help/en_US/symphony.xml40
-rw-r--r--help/en_US/symphonymat.xml9
14 files changed, 97 insertions, 96 deletions
diff --git a/help/en_US/qpipopt.xml b/help/en_US/qpipopt.xml
index aecbe40..2edd0ec 100644
--- a/help/en_US/qpipopt.xml
+++ b/help/en_US/qpipopt.xml
@@ -36,31 +36,31 @@
<title>Parameters</title>
<variablelist>
<varlistentry><term>nbVar :</term>
- <listitem><para> a 1 x 1 matrix of doubles, number of variables</para></listitem></varlistentry>
+ <listitem><para> a double, number of variables</para></listitem></varlistentry>
<varlistentry><term>nbCon :</term>
- <listitem><para> a 1 x 1 matrix of doubles, number of constraints</para></listitem></varlistentry>
+ <listitem><para> a double, number of constraints</para></listitem></varlistentry>
<varlistentry><term>Q :</term>
- <listitem><para> a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
+ <listitem><para> a symmetric matrix of doubles, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
<varlistentry><term>p :</term>
- <listitem><para> a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
<varlistentry><term>LB :</term>
- <listitem><para> a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, contains lower bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>UB :</term>
- <listitem><para> a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, where n is number of variables, contains upper bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>conMatrix :</term>
- <listitem><para> a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix</para></listitem></varlistentry>
+ <listitem><para> a matrix of doubles, contains matrix representing the constraint matrix</para></listitem></varlistentry>
<varlistentry><term>conLB :</term>
- <listitem><para> a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, contains lower bounds of the constraints.</para></listitem></varlistentry>
<varlistentry><term>conUB :</term>
- <listitem><para> a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, contains upper bounds of the constraints.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
- <listitem><para> a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, contains initial guess of variables.</para></listitem></varlistentry>
<varlistentry><term>param :</term>
<listitem><para> a list containing the the parameters to be set.</para></listitem></varlistentry>
<varlistentry><term>xopt :</term>
- <listitem><para> a 1xn matrix of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
- <listitem><para> a 1x1 matrix of doubles, the function value at x.</para></listitem></varlistentry>
+ <listitem><para> a double, the function value at x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
diff --git a/help/en_US/qpipoptmat.xml b/help/en_US/qpipoptmat.xml
index eb8e737..3c9e6a4 100644
--- a/help/en_US/qpipoptmat.xml
+++ b/help/en_US/qpipoptmat.xml
@@ -39,29 +39,29 @@
<title>Parameters</title>
<variablelist>
<varlistentry><term>H :</term>
- <listitem><para> a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
<varlistentry><term>f :</term>
- <listitem><para> a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
<varlistentry><term>A :</term>
- <listitem><para> a m x n matrix of doubles, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
<varlistentry><term>b :</term>
- <listitem><para> a column vector of doubles, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
<varlistentry><term>Aeq :</term>
- <listitem><para> a meq x n matrix of doubles, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
+ <listitem><para> a matrix of doubles, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
<varlistentry><term>beq :</term>
<listitem><para> a vector of doubles, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
<varlistentry><term>LB :</term>
- <listitem><para> a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, where n is number of variables, contains lower bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>UB :</term>
- <listitem><para> a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, where n is number of variables, contains upper bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
- <listitem><para> a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, contains initial guess of variables.</para></listitem></varlistentry>
<varlistentry><term>param :</term>
<listitem><para> a list containing the the parameters to be set.</para></listitem></varlistentry>
<varlistentry><term>xopt :</term>
- <listitem><para> a nx1 matrix of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
- <listitem><para> a 1x1 matrix of doubles, the function value at x.</para></listitem></varlistentry>
+ <listitem><para> a double, the function value at x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
@@ -113,7 +113,7 @@ x0 = repmat(0,6,1);
param = list("MaxIter", 300, "CpuTime", 100);
//and minimize 0.5*x'*Q*x + p'*x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
-[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param);
+[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
clear H f A b Aeq beq lb ub;
]]></programlisting>
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
index bf90ce2..02038f6 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
index 1b174ab..23181b6 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
@@ -1,2 +1,2 @@
-eџџџџџџџџџџџџџї_џџџџџџџџџџџџџџџџџџџџџї_џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџy§езџ§зџї_џ§зџuџџџџџџ§Я'\вџџџџџџџџџџџџџџџџѓ ї_§ЕџџџѓЩџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџЧџ4Ÿџџ§зџї_ќhT‘‘_e4Нs ќвџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџє _
-C`Є7FF$рЈє  œ6Ј(qˆ\tX6‘ТБPа$ t и ”`6 Š |*Vƒ@ЊXRЎ†Хф ‚AёX{0lHтЃJ (3\/ тХЦPАГ…$2 …YGеЫ†G…r†Ž Ч$Vƒ(&QoЁŸцZ№Р(0–OўКЉзuџ8Љ?Ћї_Ь)[Й’j_иТzяџЬ&eџкЉY;7|T0Т !аФ,ЁBŒ(ђ*2 Uё‘rŒ‡&(OЏЫѓ 0П0ГаМйБFŠ6/ЭtŸаГебђЯвлЦ]~жm*œ`QгІBѓjЇђЬ/џѓ џџЭ/Ь/9Y.,пdъЊПџeџџЫџ7џџџ§ЕeџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџйrЬДЋЊЊdВЬЋtЂџ0Г 0МЫЈПќТЬ,Тџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџи \ No newline at end of file
+eџџџџџџџџџџџџџї_џџџџџџџџџџџџџџџџџџџџџї_џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџy§езџ§зџї_џ§зџuџџџџџџ§Я'\вџџџџџџџџџџџџџџџќТ}зџmџџќђџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџќpGџќвџџџ§зџї_ќhT‘‘_e4Нs ќвџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџє _
+C`Є7FF$рЌє  œ6Ј(qˆ\tX6‘ТБPа$ t и ”`6 Š |*Vƒ@ЊXRЎ†Хф ‚AёX{0lHтЃJ (3\/ тХЦPАГ…O$2 …YGеЫ†G…r† Ч$Vƒ(&QoЁŸцZ№Р(0–OўКЉзuџ<Љ?Ћї_Ь)[Й’j_иТzяџЬ&eџкЉY;7|T0Т !аФ,ЁBŒ(ђ*2 Uё‘rŒ‡&(OЏЫѓ 0П0ГаМйБFŠ6/ЭtŸаГеаГєЗGWG_ŸЦѕ›JЇtщМкЉќГ џќТџџѓKѓ ЮV,пdъЊПџeџџЫџ7џџџ§ЙYџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџі\Геб’юЊЉ’ЊЫ2­в‹ќТЬ,Тѓ.Ђџѓ 0Г џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџ` \ No newline at end of file
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
index ac2dfed..d20c98d 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
index 8be86f0..e2773de 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
index 28f8966..7e8baef 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png
index 07dafd6..2e81ca1 100644
--- a/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png
+++ b/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/qpipopt.html b/help/en_US/scilab_en_US_help/qpipopt.html
index 6659f44..b1c18ac 100644
--- a/help/en_US/scilab_en_US_help/qpipopt.html
+++ b/help/en_US/scilab_en_US_help/qpipopt.html
@@ -44,31 +44,31 @@
<div class="refsection"><h3 class="title">Parameters</h3>
<dl><dt><span class="term">nbVar :</span>
- <dd><p class="para">a 1 x 1 matrix of doubles, number of variables</p></dd></dt>
+ <dd><p class="para">a double, number of variables</p></dd></dt>
<dt><span class="term">nbCon :</span>
- <dd><p class="para">a 1 x 1 matrix of doubles, number of constraints</p></dd></dt>
+ <dd><p class="para">a double, number of constraints</p></dd></dt>
<dt><span class="term">Q :</span>
- <dd><p class="para">a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</p></dd></dt>
+ <dd><p class="para">a symmetric matrix of doubles, represents coefficients of quadratic in the quadratic problem.</p></dd></dt>
<dt><span class="term">p :</span>
- <dd><p class="para">a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</p></dd></dt>
+ <dd><p class="para">a vector of doubles, represents coefficients of linear in the quadratic problem</p></dd></dt>
<dt><span class="term">LB :</span>
- <dd><p class="para">a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, contains lower bounds of the variables.</p></dd></dt>
<dt><span class="term">UB :</span>
- <dd><p class="para">a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, where n is number of variables, contains upper bounds of the variables.</p></dd></dt>
<dt><span class="term">conMatrix :</span>
- <dd><p class="para">a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix</p></dd></dt>
+ <dd><p class="para">a matrix of doubles, contains matrix representing the constraint matrix</p></dd></dt>
<dt><span class="term">conLB :</span>
- <dd><p class="para">a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, contains lower bounds of the constraints.</p></dd></dt>
<dt><span class="term">conUB :</span>
- <dd><p class="para">a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, contains upper bounds of the constraints.</p></dd></dt>
<dt><span class="term">x0 :</span>
- <dd><p class="para">a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, contains initial guess of variables.</p></dd></dt>
<dt><span class="term">param :</span>
<dd><p class="para">a list containing the the parameters to be set.</p></dd></dt>
<dt><span class="term">xopt :</span>
- <dd><p class="para">a 1xn matrix of doubles, the computed solution of the optimization problem.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, the computed solution of the optimization problem.</p></dd></dt>
<dt><span class="term">fopt :</span>
- <dd><p class="para">a 1x1 matrix of doubles, the function value at x.</p></dd></dt>
+ <dd><p class="para">a double, the function value at x.</p></dd></dt>
<dt><span class="term">exitflag :</span>
<dd><p class="para">Integer identifying the reason the algorithm terminated.</p></dd></dt>
<dt><span class="term">output :</span>
diff --git a/help/en_US/scilab_en_US_help/qpipoptmat.html b/help/en_US/scilab_en_US_help/qpipoptmat.html
index 5e7518e..a9f97aa 100644
--- a/help/en_US/scilab_en_US_help/qpipoptmat.html
+++ b/help/en_US/scilab_en_US_help/qpipoptmat.html
@@ -47,29 +47,29 @@
<div class="refsection"><h3 class="title">Parameters</h3>
<dl><dt><span class="term">H :</span>
- <dd><p class="para">a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</p></dd></dt>
<dt><span class="term">f :</span>
- <dd><p class="para">a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</p></dd></dt>
+ <dd><p class="para">a vector of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</p></dd></dt>
<dt><span class="term">A :</span>
- <dd><p class="para">a m x n matrix of doubles, represents the linear coefficients in the inequality constraints</p></dd></dt>
+ <dd><p class="para">a vector of doubles, represents the linear coefficients in the inequality constraints</p></dd></dt>
<dt><span class="term">b :</span>
- <dd><p class="para">a column vector of doubles, represents the linear coefficients in the inequality constraints</p></dd></dt>
+ <dd><p class="para">a vector of doubles, represents the linear coefficients in the inequality constraints</p></dd></dt>
<dt><span class="term">Aeq :</span>
- <dd><p class="para">a meq x n matrix of doubles, represents the linear coefficients in the equality constraints</p></dd></dt>
+ <dd><p class="para">a matrix of doubles, represents the linear coefficients in the equality constraints</p></dd></dt>
<dt><span class="term">beq :</span>
<dd><p class="para">a vector of doubles, represents the linear coefficients in the equality constraints</p></dd></dt>
<dt><span class="term">LB :</span>
- <dd><p class="para">a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, where n is number of variables, contains lower bounds of the variables.</p></dd></dt>
<dt><span class="term">UB :</span>
- <dd><p class="para">a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, where n is number of variables, contains upper bounds of the variables.</p></dd></dt>
<dt><span class="term">x0 :</span>
- <dd><p class="para">a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, contains initial guess of variables.</p></dd></dt>
<dt><span class="term">param :</span>
<dd><p class="para">a list containing the the parameters to be set.</p></dd></dt>
<dt><span class="term">xopt :</span>
- <dd><p class="para">a nx1 matrix of doubles, the computed solution of the optimization problem.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, the computed solution of the optimization problem.</p></dd></dt>
<dt><span class="term">fopt :</span>
- <dd><p class="para">a 1x1 matrix of doubles, the function value at x.</p></dd></dt>
+ <dd><p class="para">a double, the function value at x.</p></dd></dt>
<dt><span class="term">exitflag :</span>
<dd><p class="para">Integer identifying the reason the algorithm terminated.</p></dd></dt>
<dt><span class="term">output :</span>
@@ -100,7 +100,7 @@ find the minimum of f(x) such that</p>
<span class="scilabid">param</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://list">list</a><span class="scilabopenclose">(</span><span class="scilabstring">&#0034;</span><span class="scilabstring">MaxIter</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabnumber">300</span><span class="scilabdefault">,</span> <span class="scilabstring">&#0034;</span><span class="scilabstring">CpuTime</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabnumber">100</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//and minimize 0.5*x</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*Q*x + p</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*x with</span>
<span class="scilabid">f</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabdefault">;</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span> <span class="scilabnumber">5</span><span class="scilabdefault">;</span> <span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span> <span class="scilabid">H</span><span class="scilaboperator">=</span><a class="scilabcommand" href="scilab://eye">eye</a><span class="scilabopenclose">(</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
-<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipoptmat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">param</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
+<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipoptmat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">param</span><span class="scilabopenclose">)</span>
<span class="scilabid">clear</span> <span class="scilabid">H</span> <span class="scilabid">f</span> <span class="scilabid">A</span> <span class="scilabid">b</span> <span class="scilabid">Aeq</span> <span class="scilabid">beq</span> <span class="scilabid">lb</span> <span class="scilabid">ub</span><span class="scilabdefault">;</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Examples</h3>
diff --git a/help/en_US/scilab_en_US_help/symphony.html b/help/en_US/scilab_en_US_help/symphony.html
index a1e3eea..c5b8336 100644
--- a/help/en_US/scilab_en_US_help/symphony.html
+++ b/help/en_US/scilab_en_US_help/symphony.html
@@ -44,33 +44,33 @@
<div class="refsection"><h3 class="title">Parameters</h3>
<dl><dt><span class="term">nbVar :</span>
- <dd><p class="para">a 1 x 1 matrix of doubles, number of variables</p></dd></dt>
+ <dd><p class="para">a double, number of variables.</p></dd></dt>
<dt><span class="term">nbCon :</span>
- <dd><p class="para">a 1 x 1 matrix of doubles, number of constraints</p></dd></dt>
+ <dd><p class="para">a double, number of constraints.</p></dd></dt>
<dt><span class="term">objCoeff :</span>
- <dd><p class="para">a 1 x n matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective</p></dd></dt>
+ <dd><p class="para">a 1 x n matrix of doubles, where n is number of variables, represents coefficients of the variables in the objective.</p></dd></dt>
<dt><span class="term">isInt :</span>
- <dd><p class="para">a 1 x n matrix of boolean, where n is number of variables, representing wether a variable is constrained to be an integer</p></dd></dt>
+ <dd><p class="para">a vector of boolean, represents wether a variable is constrained to be an integer.</p></dd></dt>
<dt><span class="term">LB :</span>
- <dd><p class="para">a 1 x n matrix of doubles, where n is number of variables, contains lower bounds of the variables. Bound can be negative infinity</p></dd></dt>
+ <dd><p class="para">a vector of doubles, represents lower bounds of the variables.</p></dd></dt>
<dt><span class="term">UB :</span>
- <dd><p class="para">a 1 x n matrix of doubles, where n is number of variables, contains upper bounds of the variables. Bound can be infinity</p></dd></dt>
+ <dd><p class="para">a vector of doubles, represents upper bounds of the variables.</p></dd></dt>
<dt><span class="term">conMatrix :</span>
- <dd><p class="para">a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix</p></dd></dt>
+ <dd><p class="para">a matrix of doubles, represents matrix representing the constraint matrix.</p></dd></dt>
<dt><span class="term">conLB :</span>
- <dd><p class="para">a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.</p></dd></dt>
+ <dd><p class="para">a vector of doubles, represents lower bounds of the constraints.</p></dd></dt>
<dt><span class="term">conUB :</span>
- <dd><p class="para">a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints</p></dd></dt>
+ <dd><p class="para">a vector of doubles, represents upper bounds of the constraints</p></dd></dt>
<dt><span class="term">objSense :</span>
- <dd><p class="para">The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here</p></dd></dt>
+ <dd><p class="para">The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here.</p></dd></dt>
<dt><span class="term">options :</span>
- <dd><p class="para">a 1xq marix of string, provided to set the paramters in symphony</p></dd></dt>
+ <dd><p class="para">a a list containing the the parameters to be set.</p></dd></dt>
<dt><span class="term">xopt :</span>
- <dd><p class="para">a 1xn matrix of doubles, the computed solution of the optimization problem</p></dd></dt>
+ <dd><p class="para">a vector of doubles, the computed solution of the optimization problem.</p></dd></dt>
<dt><span class="term">fopt :</span>
- <dd><p class="para">a 1x1 matrix of doubles, the function value at x</p></dd></dt>
+ <dd><p class="para">a double, the function value at x.</p></dd></dt>
<dt><span class="term">status :</span>
- <dd><p class="para">status flag from symphony</p></dd></dt>
+ <dd><p class="para">status flag from symphony.</p></dd></dt>
<dt><span class="term">output :</span>
<dd><p class="para">The output data structure contains detailed informations about the optimization process.</p></dd></dt></dl></div>
@@ -84,11 +84,11 @@ find the minimum or maximum of f(x) such that</p>
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//A basic case :</span>
<span class="scilabcomment">// Objective function</span>
-<span class="scilabid">c</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">350</span><span class="scilaboperator">*</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">330</span><span class="scilaboperator">*</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">310</span><span class="scilaboperator">*</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">280</span><span class="scilaboperator">*</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">500</span><span class="scilabdefault">,</span><span class="scilabnumber">450</span><span class="scilabdefault">,</span><span class="scilabnumber">400</span><span class="scilabdefault">,</span><span class="scilabnumber">100</span><span class="scilabopenclose">]</span>
+<span class="scilabid">c</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">350</span><span class="scilaboperator">*</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">330</span><span class="scilaboperator">*</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">310</span><span class="scilaboperator">*</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">280</span><span class="scilaboperator">*</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">500</span><span class="scilabdefault">,</span><span class="scilabnumber">450</span><span class="scilabdefault">,</span><span class="scilabnumber">400</span><span class="scilabdefault">,</span><span class="scilabnumber">100</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// Lower Bound of variable</span>
-<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">8</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
+<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">8</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// Upper Bound of variables</span>
-<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">4</span><span class="scilabopenclose">)</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabconstants">%inf</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">4</span><span class="scilabopenclose">)</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span><a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabconstants">%inf</span><span class="scilabdefault">,</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// Constraint Matrix</span>
<span class="scilabid">conMatrix</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">5</span><span class="scilaboperator">*</span><span class="scilabnumber">0.05</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilaboperator">*</span><span class="scilabnumber">0.04</span><span class="scilabdefault">,</span><span class="scilabnumber">4</span><span class="scilaboperator">*</span><span class="scilabnumber">0.05</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilaboperator">*</span><span class="scilabnumber">0.03</span><span class="scilabdefault">,</span><span class="scilabnumber">0.08</span><span class="scilabdefault">,</span><span class="scilabnumber">0.07</span><span class="scilabdefault">,</span><span class="scilabnumber">0.06</span><span class="scilabdefault">,</span><span class="scilabnumber">0.03</span><span class="scilabdefault">;</span>
@@ -121,7 +121,7 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabnumber">957</span> <span class="scilabnumber">798</span> <span class="scilabnumber">669</span> <span class="scilabnumber">625</span> <span class="scilabnumber">467</span> <span class="scilabnumber">1051</span> <span class="scilabnumber">552</span> <span class="scilabnumber">717</span> <span class="scilabnumber">654</span> <span class="scilabnumber">388</span> <span class="scilabnumber">559</span> <span class="scilabnumber">555</span> <span class="scilabnumber">1104</span> <span class="scilabnumber">783</span> <span class="scilabspecial">..</span>
<span class="scilabnumber">959</span> <span class="scilabnumber">668</span> <span class="scilabnumber">507</span> <span class="scilabnumber">855</span> <span class="scilabnumber">986</span> <span class="scilabnumber">831</span> <span class="scilabnumber">821</span> <span class="scilabnumber">825</span> <span class="scilabnumber">868</span> <span class="scilabnumber">852</span> <span class="scilabnumber">832</span> <span class="scilabnumber">828</span> <span class="scilabnumber">799</span> <span class="scilabnumber">686</span> <span class="scilabspecial">..</span>
<span class="scilabnumber">510</span> <span class="scilabnumber">671</span> <span class="scilabnumber">575</span> <span class="scilabnumber">740</span> <span class="scilabnumber">510</span> <span class="scilabnumber">675</span> <span class="scilabnumber">996</span> <span class="scilabnumber">636</span> <span class="scilabnumber">826</span> <span class="scilabnumber">1022</span> <span class="scilabnumber">1140</span> <span class="scilabnumber">654</span> <span class="scilabnumber">909</span> <span class="scilabnumber">799</span> <span class="scilabspecial">..</span>
-<span class="scilabnumber">1162</span> <span class="scilabnumber">653</span> <span class="scilabnumber">814</span> <span class="scilabnumber">625</span> <span class="scilabnumber">599</span> <span class="scilabnumber">476</span> <span class="scilabnumber">767</span> <span class="scilabnumber">954</span> <span class="scilabnumber">906</span> <span class="scilabnumber">904</span> <span class="scilabnumber">649</span> <span class="scilabnumber">873</span> <span class="scilabnumber">565</span> <span class="scilabnumber">853</span> <span class="scilabnumber">1008</span> <span class="scilabnumber">632</span><span class="scilabopenclose">]</span>
+<span class="scilabnumber">1162</span> <span class="scilabnumber">653</span> <span class="scilabnumber">814</span> <span class="scilabnumber">625</span> <span class="scilabnumber">599</span> <span class="scilabnumber">476</span> <span class="scilabnumber">767</span> <span class="scilabnumber">954</span> <span class="scilabnumber">906</span> <span class="scilabnumber">904</span> <span class="scilabnumber">649</span> <span class="scilabnumber">873</span> <span class="scilabnumber">565</span> <span class="scilabnumber">853</span> <span class="scilabnumber">1008</span> <span class="scilabnumber">632</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Constraint Matrix</span>
<span class="scilabid">conMatrix</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span>
<span class="scilabcomment">//Constraint 1</span>
@@ -168,9 +168,9 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabid">nbCon</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://size">size</a><span class="scilabopenclose">(</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span>
<span class="scilabid">nbVar</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://size">size</a><span class="scilabopenclose">(</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span>
<span class="scilabcomment">// Lower Bound of variables</span>
-<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabid">nbVar</span><span class="scilabopenclose">)</span>
+<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span>
<span class="scilabcomment">// Upper Bound of variables</span>
-<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabid">nbVar</span><span class="scilabopenclose">)</span>
+<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span>
<span class="scilabcomment">// Row Matrix for telling symphony that the is integer or not</span>
<span class="scilabid">isInt</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabconstants">%t</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabid">nbVar</span><span class="scilabopenclose">)</span>
<span class="scilabcomment">// Lower Bound of constrains</span>
diff --git a/help/en_US/scilab_en_US_help/symphonymat.html b/help/en_US/scilab_en_US_help/symphonymat.html
index 23ff2c6..8001136 100644
--- a/help/en_US/scilab_en_US_help/symphonymat.html
+++ b/help/en_US/scilab_en_US_help/symphonymat.html
@@ -45,9 +45,9 @@
<div class="refsection"><h3 class="title">Parameters</h3>
<dl><dt><span class="term">f :</span>
- <dd><p class="para">a 1xn matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective</p></dd></dt>
+ <dd><p class="para">a vector of doubles, where n is number of variables, contains coefficients of the variables in the objective</p></dd></dt>
<dt><span class="term">intcon :</span>
- <dd><p class="para">Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable</p></dd></dt>
+ <dd><p class="para">Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable.</p></dd></dt>
<dt><span class="term">A :</span>
<dd><p class="para">Linear inequality constraint matrix, specified as a matrix of doubles. A represents the linear coefficients in the constraints A*x т‰Є b. A has size M-by-N, where M is the number of constraints and N is number of variables</p></dd></dt>
<dt><span class="term">b :</span>
@@ -72,7 +72,7 @@
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
find the minimum or maximum of f(x) such that</p>
- <p class="para"><span><img src='./_LaTeX_symphonymat.xml_1.png' style='position:relative;top:31px;width:293px;height:70px'/></span></p>
+ <p class="para"><span><img src='./_LaTeX_symphonymat.xml_1.png' style='position:relative;top:40px;width:205px;height:88px'/></span></p>
<p class="para">We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by т€‹Ted Ralphs, т€‹Menal Guzelsoy and т€‹Ashutosh Mahajan.</p>
<p class="para"></p></div>
@@ -159,7 +159,7 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabcomment">// Upper Bound of variables</span>
<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabid">nbVar</span><span class="scilabopenclose">)</span>
<span class="scilabcomment">// Lower Bound of constrains</span>
-<span class="scilabid">intcon</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabopenclose">]</span>
+<span class="scilabid">intcon</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabskeyword">for</span> <span class="scilabid">i</span> <span class="scilaboperator">=</span> <span class="scilabnumber">1</span><span class="scilabspecial">:</span><span class="scilabid">nbVar</span>
<span class="scilabid">intcon</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabid">intcon</span> <span class="scilabid">i</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabskeyword">end</span>
diff --git a/help/en_US/symphony.xml b/help/en_US/symphony.xml
index c33b95c..972bfc1 100644
--- a/help/en_US/symphony.xml
+++ b/help/en_US/symphony.xml
@@ -36,33 +36,33 @@
<title>Parameters</title>
<variablelist>
<varlistentry><term>nbVar :</term>
- <listitem><para> a 1 x 1 matrix of doubles, number of variables</para></listitem></varlistentry>
+ <listitem><para> a double, number of variables.</para></listitem></varlistentry>
<varlistentry><term>nbCon :</term>
- <listitem><para> a 1 x 1 matrix of doubles, number of constraints</para></listitem></varlistentry>
+ <listitem><para> a double, number of constraints.</para></listitem></varlistentry>
<varlistentry><term>objCoeff :</term>
- <listitem><para> a 1 x n matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective</para></listitem></varlistentry>
+ <listitem><para> a 1 x n matrix of doubles, where n is number of variables, represents coefficients of the variables in the objective.</para></listitem></varlistentry>
<varlistentry><term>isInt :</term>
- <listitem><para> a 1 x n matrix of boolean, where n is number of variables, representing wether a variable is constrained to be an integer</para></listitem></varlistentry>
+ <listitem><para> a vector of boolean, represents wether a variable is constrained to be an integer.</para></listitem></varlistentry>
<varlistentry><term>LB :</term>
- <listitem><para> a 1 x n matrix of doubles, where n is number of variables, contains lower bounds of the variables. Bound can be negative infinity</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, represents lower bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>UB :</term>
- <listitem><para> a 1 x n matrix of doubles, where n is number of variables, contains upper bounds of the variables. Bound can be infinity</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, represents upper bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>conMatrix :</term>
- <listitem><para> a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix</para></listitem></varlistentry>
+ <listitem><para> a matrix of doubles, represents matrix representing the constraint matrix.</para></listitem></varlistentry>
<varlistentry><term>conLB :</term>
- <listitem><para> a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, represents lower bounds of the constraints.</para></listitem></varlistentry>
<varlistentry><term>conUB :</term>
- <listitem><para> a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, represents upper bounds of the constraints</para></listitem></varlistentry>
<varlistentry><term>objSense :</term>
- <listitem><para> The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here</para></listitem></varlistentry>
+ <listitem><para> The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here.</para></listitem></varlistentry>
<varlistentry><term>options :</term>
- <listitem><para> a 1xq marix of string, provided to set the paramters in symphony</para></listitem></varlistentry>
+ <listitem><para> a a list containing the the parameters to be set.</para></listitem></varlistentry>
<varlistentry><term>xopt :</term>
- <listitem><para> a 1xn matrix of doubles, the computed solution of the optimization problem</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
- <listitem><para> a 1x1 matrix of doubles, the function value at x</para></listitem></varlistentry>
+ <listitem><para> a double, the function value at x.</para></listitem></varlistentry>
<varlistentry><term>status :</term>
- <listitem><para> status flag from symphony</para></listitem></varlistentry>
+ <listitem><para> status flag from symphony.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> The output data structure contains detailed informations about the optimization process.</para></listitem></varlistentry>
</variablelist>
@@ -96,11 +96,11 @@ We are calling SYMPHONY written in C by gateway files for the actual computation
<programlisting role="example"><![CDATA[
//A basic case :
// Objective function
-c = [350*5,330*3,310*4,280*6,500,450,400,100]
+c = [350*5,330*3,310*4,280*6,500,450,400,100]';
// Lower Bound of variable
-lb = repmat(0,1,8);
+lb = repmat(0,8,1);
// Upper Bound of variables
-ub = [repmat(1,1,4) repmat(%inf,1,4)];
+ub = [repmat(1,4,1);repmat(%inf,4,1)];
// Constraint Matrix
conMatrix = [5,3,4,6,1,1,1,1;
5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
@@ -138,7 +138,7 @@ p = [ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
-1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]
+1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
//Constraint Matrix
conMatrix = [
//Constraint 1
@@ -185,9 +185,9 @@ conMatrix = [
nbCon = size(conMatrix,1)
nbVar = size(conMatrix,2)
// Lower Bound of variables
-lb = repmat(0,1,nbVar)
+lb = repmat(0,nbVar,1)
// Upper Bound of variables
-ub = repmat(1,1,nbVar)
+ub = repmat(1,nbVar,1)
// Row Matrix for telling symphony that the is integer or not
isInt = repmat(%t,1,nbVar)
// Lower Bound of constrains
diff --git a/help/en_US/symphonymat.xml b/help/en_US/symphonymat.xml
index ca56363..1328167 100644
--- a/help/en_US/symphonymat.xml
+++ b/help/en_US/symphonymat.xml
@@ -37,9 +37,9 @@
<title>Parameters</title>
<variablelist>
<varlistentry><term>f :</term>
- <listitem><para> a 1xn matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective</para></listitem></varlistentry>
+ <listitem><para> a vector of doubles, where n is number of variables, contains coefficients of the variables in the objective</para></listitem></varlistentry>
<varlistentry><term>intcon :</term>
- <listitem><para> Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable</para></listitem></varlistentry>
+ <listitem><para> Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable.</para></listitem></varlistentry>
<varlistentry><term>A :</term>
<listitem><para> Linear inequality constraint matrix, specified as a matrix of doubles. A represents the linear coefficients in the constraints A*x т‰Є b. A has size M-by-N, where M is the number of constraints and N is number of variables</para></listitem></varlistentry>
<varlistentry><term>b :</term>
@@ -74,7 +74,8 @@ find the minimum or maximum of f(x) such that
\begin{eqnarray}
&amp;\mbox{min}_{x}
&amp; f(x) \\
-&amp; \text{subject to} &amp; conLB \leq C(x) \leq conUB \\
+&amp; \text{subject to} &amp; A.x \leq b \\
+&amp; &amp; Aeq.x \leq beq \\
&amp; &amp; lb \leq x \leq ub \\
\end{eqnarray}
</latex>
@@ -176,7 +177,7 @@ lb = repmat(0,1,nbVar)
// Upper Bound of variables
ub = repmat(1,1,nbVar)
// Lower Bound of constrains
-intcon = []
+intcon = [];
for i = 1:nbVar
intcon = [intcon i];
end