summaryrefslogtreecommitdiff
path: root/help/en_US/scilab_en_US_help/symphonymat.html
diff options
context:
space:
mode:
authorHarpreet2015-12-22 15:54:28 +0530
committerHarpreet2015-12-22 15:54:28 +0530
commit6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24 (patch)
tree9501c5e1123426ab0b91d2e668902bd2b8d2a356 /help/en_US/scilab_en_US_help/symphonymat.html
parent79583a44468943fad22ba1de2dd25dd86f7be167 (diff)
downloadFOSSEE-Optimization-toolbox-6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24.tar.gz
FOSSEE-Optimization-toolbox-6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24.tar.bz2
FOSSEE-Optimization-toolbox-6e9ee19cd67b0b85b7708efa4847c7ebb6d79f24.zip
Bugs fixed 3
Diffstat (limited to 'help/en_US/scilab_en_US_help/symphonymat.html')
-rw-r--r--help/en_US/scilab_en_US_help/symphonymat.html34
1 files changed, 17 insertions, 17 deletions
diff --git a/help/en_US/scilab_en_US_help/symphonymat.html b/help/en_US/scilab_en_US_help/symphonymat.html
index 611010b..c580508 100644
--- a/help/en_US/scilab_en_US_help/symphonymat.html
+++ b/help/en_US/scilab_en_US_help/symphonymat.html
@@ -37,35 +37,35 @@
<div class="refsynopsisdiv"><h3 class="title">Calling Sequence</h3>
- <div class="synopsis"><pre><span class="default">xopt</span><span class="default"> = </span><span class="functionid">symphonymat</span><span class="default">(</span><span class="default">f</span><span class="default">,</span><span class="default">intcon</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">)</span>
-<span class="default">xopt</span><span class="default"> = </span><span class="functionid">symphonymat</span><span class="default">(</span><span class="default">f</span><span class="default">,</span><span class="default">intcon</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">)</span>
-<span class="default">xopt</span><span class="default"> = </span><span class="functionid">symphonymat</span><span class="default">(</span><span class="default">f</span><span class="default">,</span><span class="default">intcon</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">)</span>
-<span class="default">xopt</span><span class="default"> = </span><span class="functionid">symphonymat</span><span class="default">(</span><span class="default">f</span><span class="default">,</span><span class="default">intcon</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">options</span><span class="default">)</span>
+ <div class="synopsis"><pre><span class="default">xopt</span><span class="default"> = </span><span class="functionid">symphonymat</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">intcon</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">symphonymat</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">intcon</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">symphonymat</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">intcon</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">symphonymat</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">intcon</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">options</span><span class="default">)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">fopt</span><span class="default">,</span><span class="default">status</span><span class="default">,</span><span class="default">output</span><span class="default">] = </span><span class="functionid">symphonymat</span><span class="default">( ... )</span></pre></div></div>
<div class="refsection"><h3 class="title">Parameters</h3>
<dl><dt><span class="term">f :</span>
- <dd><p class="para">a vector of doubles, contains coefficients of the variables in the objective</p></dd></dt>
+ <dd><p class="para">a vector of double, contains coefficients of the variables in the objective</p></dd></dt>
<dt><span class="term">intcon :</span>
<dd><p class="para">Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable.</p></dd></dt>
<dt><span class="term">A :</span>
- <dd><p class="para">Linear inequality constraint matrix, specified as a matrix of doubles. A represents the linear coefficients in the constraints A*x ≤ b. A has size M-by-N, where M is the number of constraints and N is number of variables</p></dd></dt>
+ <dd><p class="para">Linear inequality constraint matrix, specified as a matrix of double. A represents the linear coefficients in the constraints A*x ≤ b. A has size M-by-N, where M is the number of constraints and N is number of variables</p></dd></dt>
<dt><span class="term">b :</span>
- <dd><p class="para">Linear inequality constraint vector, specified as a vector of doubles. b represents the constant vector in the constraints A*x ≤ b. b has length M, where A is M-by-N</p></dd></dt>
+ <dd><p class="para">Linear inequality constraint vector, specified as a vector of double. b represents the constant vector in the constraints A*x ≤ b. b has length M, where A is M-by-N</p></dd></dt>
<dt><span class="term">Aeq :</span>
- <dd><p class="para">Linear equality constraint matrix, specified as a matrix of doubles. Aeq represents the linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is the number of constraints and N is number of variables</p></dd></dt>
+ <dd><p class="para">Linear equality constraint matrix, specified as a matrix of double. Aeq represents the linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is the number of constraints and N is number of variables</p></dd></dt>
<dt><span class="term">beq :</span>
- <dd><p class="para">Linear equality constraint vector, specified as a vector of doubles. beq represents the constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-by-N.</p></dd></dt>
+ <dd><p class="para">Linear equality constraint vector, specified as a vector of double. beq represents the constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-by-N.</p></dd></dt>
<dt><span class="term">lb :</span>
- <dd><p class="para">Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.</p></dd></dt>
+ <dd><p class="para">Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.</p></dd></dt>
<dt><span class="term">ub :</span>
- <dd><p class="para">Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.</p></dd></dt>
+ <dd><p class="para">Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.</p></dd></dt>
<dt><span class="term">options :</span>
<dd><p class="para">a list containing the the parameters to be set.</p></dd></dt>
<dt><span class="term">xopt :</span>
<dd><p class="para">a vector of double, the computed solution of the optimization problem</p></dd></dt>
<dt><span class="term">fopt :</span>
- <dd><p class="para">a doubles, the function value at x</p></dd></dt>
+ <dd><p class="para">a double, the function value at x</p></dd></dt>
<dt><span class="term">status :</span>
<dd><p class="para">status flag from symphony.</p></dd></dt>
<dt><span class="term">output :</span>
@@ -80,7 +80,7 @@ find the minimum or maximum of f(x) such that</p>
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">// Objective function</span>
-<span class="scilabid">c</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">350</span><span class="scilaboperator">*</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">330</span><span class="scilaboperator">*</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">310</span><span class="scilaboperator">*</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">280</span><span class="scilaboperator">*</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">500</span><span class="scilabdefault">,</span><span class="scilabnumber">450</span><span class="scilabdefault">,</span><span class="scilabnumber">400</span><span class="scilabdefault">,</span><span class="scilabnumber">100</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
+<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">350</span><span class="scilaboperator">*</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">330</span><span class="scilaboperator">*</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">310</span><span class="scilaboperator">*</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">280</span><span class="scilaboperator">*</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">500</span><span class="scilabdefault">,</span><span class="scilabnumber">450</span><span class="scilabdefault">,</span><span class="scilabnumber">400</span><span class="scilabdefault">,</span><span class="scilabnumber">100</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// Lower Bound of variable</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">8</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// Upper Bound of variables</span>
@@ -106,7 +106,7 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabcomment">// st sum{j=1,...,n} r(i,j)x(j) </span><span class="scilabcomment">&#0060;</span><span class="scilabcomment">= b(i) i=1,...,m</span>
<span class="scilabcomment">// x(j)=0 or 1</span>
<span class="scilabcomment">// The function to be maximize i.e. P(j)</span>
-<span class="scilabid">objCoef</span> <span class="scilaboperator">=</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilaboperator">*</span><span class="scilabopenclose">[</span> <span class="scilabnumber">504</span> <span class="scilabnumber">803</span> <span class="scilabnumber">667</span> <span class="scilabnumber">1103</span> <span class="scilabnumber">834</span> <span class="scilabnumber">585</span> <span class="scilabnumber">811</span> <span class="scilabnumber">856</span> <span class="scilabnumber">690</span> <span class="scilabnumber">832</span> <span class="scilabnumber">846</span> <span class="scilabnumber">813</span> <span class="scilabnumber">868</span> <span class="scilabnumber">793</span> <span class="scilabspecial">..</span>
+<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilaboperator">*</span><span class="scilabopenclose">[</span> <span class="scilabnumber">504</span> <span class="scilabnumber">803</span> <span class="scilabnumber">667</span> <span class="scilabnumber">1103</span> <span class="scilabnumber">834</span> <span class="scilabnumber">585</span> <span class="scilabnumber">811</span> <span class="scilabnumber">856</span> <span class="scilabnumber">690</span> <span class="scilabnumber">832</span> <span class="scilabnumber">846</span> <span class="scilabnumber">813</span> <span class="scilabnumber">868</span> <span class="scilabnumber">793</span> <span class="scilabspecial">..</span>
<span class="scilabnumber">825</span> <span class="scilabnumber">1002</span> <span class="scilabnumber">860</span> <span class="scilabnumber">615</span> <span class="scilabnumber">540</span> <span class="scilabnumber">797</span> <span class="scilabnumber">616</span> <span class="scilabnumber">660</span> <span class="scilabnumber">707</span> <span class="scilabnumber">866</span> <span class="scilabnumber">647</span> <span class="scilabnumber">746</span> <span class="scilabnumber">1006</span> <span class="scilabnumber">608</span> <span class="scilabspecial">..</span>
<span class="scilabnumber">877</span> <span class="scilabnumber">900</span> <span class="scilabnumber">573</span> <span class="scilabnumber">788</span> <span class="scilabnumber">484</span> <span class="scilabnumber">853</span> <span class="scilabnumber">942</span> <span class="scilabnumber">630</span> <span class="scilabnumber">591</span> <span class="scilabnumber">630</span> <span class="scilabnumber">640</span> <span class="scilabnumber">1169</span> <span class="scilabnumber">932</span> <span class="scilabnumber">1034</span> <span class="scilabspecial">..</span>
<span class="scilabnumber">957</span> <span class="scilabnumber">798</span> <span class="scilabnumber">669</span> <span class="scilabnumber">625</span> <span class="scilabnumber">467</span> <span class="scilabnumber">1051</span> <span class="scilabnumber">552</span> <span class="scilabnumber">717</span> <span class="scilabnumber">654</span> <span class="scilabnumber">388</span> <span class="scilabnumber">559</span> <span class="scilabnumber">555</span> <span class="scilabnumber">1104</span> <span class="scilabnumber">783</span> <span class="scilabspecial">..</span>
@@ -114,7 +114,7 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabnumber">510</span> <span class="scilabnumber">671</span> <span class="scilabnumber">575</span> <span class="scilabnumber">740</span> <span class="scilabnumber">510</span> <span class="scilabnumber">675</span> <span class="scilabnumber">996</span> <span class="scilabnumber">636</span> <span class="scilabnumber">826</span> <span class="scilabnumber">1022</span> <span class="scilabnumber">1140</span> <span class="scilabnumber">654</span> <span class="scilabnumber">909</span> <span class="scilabnumber">799</span> <span class="scilabspecial">..</span>
<span class="scilabnumber">1162</span> <span class="scilabnumber">653</span> <span class="scilabnumber">814</span> <span class="scilabnumber">625</span> <span class="scilabnumber">599</span> <span class="scilabnumber">476</span> <span class="scilabnumber">767</span> <span class="scilabnumber">954</span> <span class="scilabnumber">906</span> <span class="scilabnumber">904</span> <span class="scilabnumber">649</span> <span class="scilabnumber">873</span> <span class="scilabnumber">565</span> <span class="scilabnumber">853</span> <span class="scilabnumber">1008</span> <span class="scilabnumber">632</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Constraint Matrix</span>
-<span class="scilabid">conMatrix</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span> <span class="scilabcomment">//Constraint 1</span>
+<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span> <span class="scilabcomment">//Constraint 1</span>
<span class="scilabnumber">42</span> <span class="scilabnumber">41</span> <span class="scilabnumber">523</span> <span class="scilabnumber">215</span> <span class="scilabnumber">819</span> <span class="scilabnumber">551</span> <span class="scilabnumber">69</span> <span class="scilabnumber">193</span> <span class="scilabnumber">582</span> <span class="scilabnumber">375</span> <span class="scilabnumber">367</span> <span class="scilabnumber">478</span> <span class="scilabnumber">162</span> <span class="scilabnumber">898</span> <span class="scilabspecial">..</span>
<span class="scilabnumber">550</span> <span class="scilabnumber">553</span> <span class="scilabnumber">298</span> <span class="scilabnumber">577</span> <span class="scilabnumber">493</span> <span class="scilabnumber">183</span> <span class="scilabnumber">260</span> <span class="scilabnumber">224</span> <span class="scilabnumber">852</span> <span class="scilabnumber">394</span> <span class="scilabnumber">958</span> <span class="scilabnumber">282</span> <span class="scilabnumber">402</span> <span class="scilabnumber">604</span> <span class="scilabspecial">..</span>
<span class="scilabnumber">164</span> <span class="scilabnumber">308</span> <span class="scilabnumber">218</span> <span class="scilabnumber">61</span> <span class="scilabnumber">273</span> <span class="scilabnumber">772</span> <span class="scilabnumber">191</span> <span class="scilabnumber">117</span> <span class="scilabnumber">276</span> <span class="scilabnumber">877</span> <span class="scilabnumber">415</span> <span class="scilabnumber">873</span> <span class="scilabnumber">902</span> <span class="scilabnumber">465</span> <span class="scilabspecial">..</span>
@@ -156,7 +156,7 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabnumber">893</span> <span class="scilabnumber">160</span> <span class="scilabnumber">785</span> <span class="scilabnumber">311</span> <span class="scilabnumber">417</span> <span class="scilabnumber">748</span> <span class="scilabnumber">375</span> <span class="scilabnumber">362</span> <span class="scilabnumber">617</span> <span class="scilabnumber">553</span> <span class="scilabnumber">474</span> <span class="scilabnumber">915</span> <span class="scilabnumber">457</span> <span class="scilabnumber">261</span> <span class="scilabnumber">350</span> <span class="scilabnumber">635</span> <span class="scilabdefault">;</span>
<span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">nbVar</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://size">size</a><span class="scilabopenclose">(</span><span class="scilabid">objCoef</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span>
-<span class="scilabid">conUB</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">11927</span> <span class="scilabnumber">13727</span> <span class="scilabnumber">11551</span> <span class="scilabnumber">13056</span> <span class="scilabnumber">13460</span> <span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">b</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">11927</span> <span class="scilabnumber">13727</span> <span class="scilabnumber">11551</span> <span class="scilabnumber">13056</span> <span class="scilabnumber">13460</span> <span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// Lower Bound of variables</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabid">nbVar</span><span class="scilabopenclose">)</span>
<span class="scilabcomment">// Upper Bound of variables</span>
@@ -175,7 +175,7 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabcomment">// Optimal value</span>
<span class="scilabid">fopt</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span> <span class="scilabnumber">24381</span> <span class="scilabopenclose">]</span>
<span class="scilabcomment">// Calling Symphony</span>
-<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">status</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">symphonymat</span><span class="scilabopenclose">(</span><span class="scilabid">objCoef</span><span class="scilabdefault">,</span><span class="scilabid">intcon</span><span class="scilabdefault">,</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">options</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">status</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">symphonymat</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">intcon</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">options</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Authors</h3>
<ul class="itemizedlist"><li class="member">Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</li></ul></div>