diff options
author | Harpreet | 2015-12-11 12:51:00 +0530 |
---|---|---|
committer | Harpreet | 2015-12-11 12:51:00 +0530 |
commit | 436f0daf6e4f241b8fa582a943bad09ddc091f59 (patch) | |
tree | a3f0899e5fb0542c69c4aae469c0c5bf0a04b542 /help/en_US/scilab_en_US_help/symphonymat.html | |
parent | 6cc967755bb135d656fba0523b4eb206581492ca (diff) | |
download | FOSSEE-Optimization-toolbox-436f0daf6e4f241b8fa582a943bad09ddc091f59.tar.gz FOSSEE-Optimization-toolbox-436f0daf6e4f241b8fa582a943bad09ddc091f59.tar.bz2 FOSSEE-Optimization-toolbox-436f0daf6e4f241b8fa582a943bad09ddc091f59.zip |
lsqnonneg added
Diffstat (limited to 'help/en_US/scilab_en_US_help/symphonymat.html')
-rw-r--r-- | help/en_US/scilab_en_US_help/symphonymat.html | 12 |
1 files changed, 7 insertions, 5 deletions
diff --git a/help/en_US/scilab_en_US_help/symphonymat.html b/help/en_US/scilab_en_US_help/symphonymat.html index b559c8a..2e89728 100644 --- a/help/en_US/scilab_en_US_help/symphonymat.html +++ b/help/en_US/scilab_en_US_help/symphonymat.html @@ -45,7 +45,7 @@ <div class="refsection"><h3 class="title">Parameters</h3> <dl><dt><span class="term">f :</span> - <dd><p class="para">a vector of doubles, where n is number of variables, contains coefficients of the variables in the objective</p></dd></dt> + <dd><p class="para">a vector of doubles, contains coefficients of the variables in the objective</p></dd></dt> <dt><span class="term">intcon :</span> <dd><p class="para">Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable.</p></dd></dt> <dt><span class="term">A :</span> @@ -63,9 +63,11 @@ <dt><span class="term">options :</span> <dd><p class="para">a list containing the the parameters to be set.</p></dd></dt> <dt><span class="term">xopt :</span> - <dd><p class="para">a 1xn matrix of doubles, the computed solution of the optimization problem</p></dd></dt> + <dd><p class="para">a vector of double, the computed solution of the optimization problem</p></dd></dt> <dt><span class="term">fopt :</span> - <dd><p class="para">a 1x1 matrix of doubles, the function value at x</p></dd></dt> + <dd><p class="para">a doubles, the function value at x</p></dd></dt> + <dt><span class="term">status :</span> + <dd><p class="para">status flag from symphony.</p></dd></dt> <dt><span class="term">output :</span> <dd><p class="para">The output data structure contains detailed informations about the optimization process.</p></dd></dt></dl></div> @@ -78,7 +80,7 @@ find the minimum or maximum of f(x) such that</p> <div class="refsection"><h3 class="title">Examples</h3> <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">// Objective function</span> -<span class="scilabid">c</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">350</span><span class="scilaboperator">*</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">330</span><span class="scilaboperator">*</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">310</span><span class="scilaboperator">*</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">280</span><span class="scilaboperator">*</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">500</span><span class="scilabdefault">,</span><span class="scilabnumber">450</span><span class="scilabdefault">,</span><span class="scilabnumber">400</span><span class="scilabdefault">,</span><span class="scilabnumber">100</span><span class="scilabopenclose">]</span> +<span class="scilabid">c</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">350</span><span class="scilaboperator">*</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">330</span><span class="scilaboperator">*</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">310</span><span class="scilaboperator">*</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">280</span><span class="scilaboperator">*</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">500</span><span class="scilabdefault">,</span><span class="scilabnumber">450</span><span class="scilabdefault">,</span><span class="scilabnumber">400</span><span class="scilabdefault">,</span><span class="scilabnumber">100</span><span class="scilabopenclose">]</span><span class="scilaboperator">'</span><span class="scilabdefault">;</span> <span class="scilabcomment">// Lower Bound of variable</span> <span class="scilabid">lb</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">8</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span> <span class="scilabcomment">// Upper Bound of variables</span> @@ -109,7 +111,7 @@ find the minimum or maximum of f(x) such that</p> <span class="scilabnumber">957</span> <span class="scilabnumber">798</span> <span class="scilabnumber">669</span> <span class="scilabnumber">625</span> <span class="scilabnumber">467</span> <span class="scilabnumber">1051</span> <span class="scilabnumber">552</span> <span class="scilabnumber">717</span> <span class="scilabnumber">654</span> <span class="scilabnumber">388</span> <span class="scilabnumber">559</span> <span class="scilabnumber">555</span> <span class="scilabnumber">1104</span> <span class="scilabnumber">783</span> <span class="scilabspecial">..</span> <span class="scilabnumber">959</span> <span class="scilabnumber">668</span> <span class="scilabnumber">507</span> <span class="scilabnumber">855</span> <span class="scilabnumber">986</span> <span class="scilabnumber">831</span> <span class="scilabnumber">821</span> <span class="scilabnumber">825</span> <span class="scilabnumber">868</span> <span class="scilabnumber">852</span> <span class="scilabnumber">832</span> <span class="scilabnumber">828</span> <span class="scilabnumber">799</span> <span class="scilabnumber">686</span> <span class="scilabspecial">..</span> <span class="scilabnumber">510</span> <span class="scilabnumber">671</span> <span class="scilabnumber">575</span> <span class="scilabnumber">740</span> <span class="scilabnumber">510</span> <span class="scilabnumber">675</span> <span class="scilabnumber">996</span> <span class="scilabnumber">636</span> <span class="scilabnumber">826</span> <span class="scilabnumber">1022</span> <span class="scilabnumber">1140</span> <span class="scilabnumber">654</span> <span class="scilabnumber">909</span> <span class="scilabnumber">799</span> <span class="scilabspecial">..</span> -<span class="scilabnumber">1162</span> <span class="scilabnumber">653</span> <span class="scilabnumber">814</span> <span class="scilabnumber">625</span> <span class="scilabnumber">599</span> <span class="scilabnumber">476</span> <span class="scilabnumber">767</span> <span class="scilabnumber">954</span> <span class="scilabnumber">906</span> <span class="scilabnumber">904</span> <span class="scilabnumber">649</span> <span class="scilabnumber">873</span> <span class="scilabnumber">565</span> <span class="scilabnumber">853</span> <span class="scilabnumber">1008</span> <span class="scilabnumber">632</span><span class="scilabopenclose">]</span> +<span class="scilabnumber">1162</span> <span class="scilabnumber">653</span> <span class="scilabnumber">814</span> <span class="scilabnumber">625</span> <span class="scilabnumber">599</span> <span class="scilabnumber">476</span> <span class="scilabnumber">767</span> <span class="scilabnumber">954</span> <span class="scilabnumber">906</span> <span class="scilabnumber">904</span> <span class="scilabnumber">649</span> <span class="scilabnumber">873</span> <span class="scilabnumber">565</span> <span class="scilabnumber">853</span> <span class="scilabnumber">1008</span> <span class="scilabnumber">632</span><span class="scilabopenclose">]</span><span class="scilaboperator">'</span><span class="scilabdefault">;</span> <span class="scilabcomment">//Constraint Matrix</span> <span class="scilabid">conMatrix</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span> <span class="scilabcomment">//Constraint 1</span> <span class="scilabnumber">42</span> <span class="scilabnumber">41</span> <span class="scilabnumber">523</span> <span class="scilabnumber">215</span> <span class="scilabnumber">819</span> <span class="scilabnumber">551</span> <span class="scilabnumber">69</span> <span class="scilabnumber">193</span> <span class="scilabnumber">582</span> <span class="scilabnumber">375</span> <span class="scilabnumber">367</span> <span class="scilabnumber">478</span> <span class="scilabnumber">162</span> <span class="scilabnumber">898</span> <span class="scilabspecial">..</span> |