summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHarpreet2015-10-20 14:25:17 +0530
committerHarpreet2015-10-20 14:25:17 +0530
commite045ecbdc1151fc0dc50032c7f7874894bc32f51 (patch)
tree114673aceb85f5168c9bccd69422c570a9108101
parente4b59ea62dd9903445375c2aa1f52a52c5eab99f (diff)
downloadFOSSEE-Optimization-toolbox-e045ecbdc1151fc0dc50032c7f7874894bc32f51.tar.gz
FOSSEE-Optimization-toolbox-e045ecbdc1151fc0dc50032c7f7874894bc32f51.tar.bz2
FOSSEE-Optimization-toolbox-e045ecbdc1151fc0dc50032c7f7874894bc32f51.zip
qpipopt_mat added
-rw-r--r--etc/Symphony.start~91
-rw-r--r--macros/qpipopt.sci~172
-rw-r--r--macros/qpipopt_mat.sci~214
-rw-r--r--sci_gateway/cpp/QuadNLP.hpp~131
-rw-r--r--sci_gateway/cpp/builder_gateway_cpp.sce~150
-rw-r--r--sci_gateway/cpp/sci_QuadNLP.cpp~255
-rw-r--r--sci_gateway/cpp/sci_ipopt.cpp~400
7 files changed, 0 insertions, 1413 deletions
diff --git a/etc/Symphony.start~ b/etc/Symphony.start~
deleted file mode 100644
index e019451..0000000
--- a/etc/Symphony.start~
+++ /dev/null
@@ -1,91 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-mprintf("Start FAMOS\n");
-
-if ( isdef("sym_open") ) then
- warning("Library is already loaded");
- return;
-end
-
-etc_tlbx = get_absolute_file_path("Symphony.start");
-etc_tlbx = getshortpathname(etc_tlbx);
-root_tlbx = strncpy( etc_tlbx, length(etc_tlbx)-length("\etc\") );
-
-//Load functions library
-// =============================================================================
-mprintf("\tLoad macros\n");
-pathmacros = pathconvert( root_tlbx ) + "macros" + filesep();
-symphony_lib = lib(pathmacros);
-clear pathmacros;
-
-// load gateways
-// =============================================================================
-
-mprintf("\tLoad gateways\n");
-[a, opt] = getversion();
-Version = opt(2);
-ilib_verbose(0);
-if getos()=="Windows" then
- error(msprintf(gettext("Module is not for Windows.")));
-else
- lib_path = root_tlbx + "/thirdparty/linux/lib/" + Version;
- link(lib_path + "/libCoinUtils.so");
- link(lib_path + "/libClp.so");
- link(lib_path + "/libClpSolver.so");
- link(lib_path + "/libOsi.so");
- link(lib_path + "/libOsiCommonTests.so");
- link(lib_path + "/libOsiClp.so");
- link(lib_path + "/libCgl.so");
- link(lib_path + "/libSym.so");
- link(lib_path + "/libOsiSym.so");
- link(lib_path + "/libcoinblas.so");
- link(lib_path + "/libcoinmumps.so");
- link(lib_path + "/libipopt.so");
-
-
-end
-exec(pathconvert(root_tlbx + filesep() + "sci_gateway" + filesep() + "loader_gateway.sce",%f));
-
-
-
-
-// Load and add help chapter
-// =============================================================================
-if ( %t ) then
-if or(getscilabmode() == ["NW";"STD"]) then
- mprintf("\tLoad help\n");
- path_addchapter = pathconvert(root_tlbx+"/jar");
- if ( isdir(path_addchapter) <> [] ) then
- add_help_chapter("Symphony", path_addchapter, %F);
- clear add_help_chapter;
- end
- clear path_addchapter;
-end
-end
-
-// add demos
-// =============================================================================
-
-if ( %t ) then
-if or(getscilabmode() == ["NW";"STD"]) then
- mprintf("\tLoad demos\n");
- pathdemos = pathconvert(root_tlbx+"/demos/sci_symphony.dem.gateway.sce",%f,%t);
- add_demo("Symphony",pathdemos);
- clear pathdemos ;
-end
-end
-
-// =============================================================================
-
-clear root_tlbx;
-clear etc_tlbx;
-
diff --git a/macros/qpipopt.sci~ b/macros/qpipopt.sci~
deleted file mode 100644
index 407a6b7..0000000
--- a/macros/qpipopt.sci~
+++ /dev/null
@@ -1,172 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-
-function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
- // Solves a linear quadratic problem.
- //
- // Calling Sequence
- // xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
- // [xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
- //
- // Parameters
- // nbVar : a 1 x 1 matrix of doubles, number of variables
- // nbCon : a 1 x 1 matrix of doubles, number of constraints
- // Q : a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
- // p : a 1 x n matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
- // LB : a 1 x n matrix of doubles, where n is number of variables, contains lower bounds of the variables.
- // UB : a 1 x n matrix of doubles, where n is number of variables, contains upper bounds of the variables.
- // conMatrix : a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix
- // conLB : a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.
- // conUB : a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.
- // xopt : a 1xn matrix of doubles, the computed solution of the optimization problem.
- // fopt : a 1x1 matrix of doubles, the function value at x.
- // exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
- //
- // Description
- // Search the minimum of a constrained linear quadratic optimization problem specified by :
- // find the minimum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & 1/2*x'*Q*x + p'*x \\
- // & \text{subject to} & conLB \leq C(x) \leq conUB \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
- //
- // Examples
- // //Find x in R^6 such that:
- //
- // conMatrix= [1,-1,1,0,3,1;
- // -1,0,-3,-4,5,6;
- // 2,5,3,0,1,0
- // 0,1,0,1,2,-1;
- // -1,0,2,1,1,0];
- // conLB=[1;2;3;-%inf;-%inf];
- // conUB = [1;2;3;-1;2.5];
- // lb=[-1000 -10000 0 -1000 -1000 -1000];
- // ub=[10000 100 1.5 100 100 1000];
- // //and minimize 0.5*x'*Q*x + p'*x with
- // p=[1 2 3 4 5 6]; Q=eye(6,6);
- // nbVar = 6;
- // nbCon = 5;
- // [xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
- //
- // Examples
- // Q = [1 -1; -1 2];
- // p = [-2 -6];
- // conMatrix = [1 1; -1 2; 2 1];
- // conUB = [2; 2; 3];
- // conLB = [-%inf; -%inf; -%inf];
- // lb = [0 0];
- // ub = [%inf %inf];
- // nbVar = 2;
- // nbCon = 3;
- // [xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
-
-
-//To check the number of input and output argument
- [lhs , rhs] = argn();
-
-//To check the number of argument given by user
- if ( rhs ~= 9 ) then
- errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 9"), "qpipopt", rhs);
- error(errmsg)
- end
-
-
- nbVar = varargin(1);
- nbCon = varargin(2);
- Q = varargin(3);
- p = varargin(4);
- LB = varargin(5);
- UB = varargin(6);
- conMatrix = varargin(7);
- conLB = varargin(8);
- conLB = conLB'; //IPOpt wants it in row matrix form
- conUB = varargin(9);
- conUB = conUB'; //IPOpt wants it in row matrix form
-
-
- //Checking the Q matrix which needs to be a symmetric matrix
- if ( Q~=Q') then
- errmsg = msprintf(gettext("%s: Q is not a symmetric matrix"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of Q which should equal to the number of variable
- if ( size(Q) ~= [nbVar nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of Q is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of p which should equal to the number of variable
- if ( size(p,2) ~= [nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of p is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
-
- //Check the size of constraint which should equal to the number of variables
- if ( size(conMatrix,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The size of constraints is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of Lower Bound which should equal to the number of variables
- if ( size(LB,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of Upper Bound which should equal to the number of variables
- if ( size(UB,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of constraints of Lower Bound which should equal to the number of constraints
- if ( size(conLB,2) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Lower Bound of constraints is not equal to the number of constraints"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of constraints of Upper Bound which should equal to the number of constraints
- if ( size(conUB,2) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Upper Bound of constraints is not equal to the number of constraints"), "qp_ipopt");
- error(errmsg);
- end
-
- [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB);
-
- xopt = xopt';
- exitflag = status;
- output = struct("Iterations" , []);
- output.Iterations = iter;
- lambda = struct("lower" , [], ..
- "upper" , [], ..
- "constraint" , []);
-
- lambda.lower = Zl;
- lambda.upper = Zu;
- lambda.constraint = lmbda;
-
-
-endfunction
diff --git a/macros/qpipopt_mat.sci~ b/macros/qpipopt_mat.sci~
deleted file mode 100644
index 4c72216..0000000
--- a/macros/qpipopt_mat.sci~
+++ /dev/null
@@ -1,214 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-
-function [xopt,fopt,exitflag,output,lambda] = qpipopt_mat (varargin)
- // Solves a linear quadratic problem.
- //
- // Calling Sequence
- // xopt = qpipopt_mat(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
- // x = qpipopt_mat(H,f)
- // x = qpipopt_mat(H,f,A,b)
- // x = qpipopt_mat(H,f,A,b,Aeq,beq)
- // x = qpipopt_mat(H,f,A,b,Aeq,beq,lb,ub)
- // [xopt,fopt,exitflag,output,lamda] = qpipopt_mat( ... )
- //
- // Parameters
- // H : a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
- // f : a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
- // A : a m x n matrix of doubles, represents the linear coefficients in the inequality constraints
- // b : a column vector of doubles, represents the linear coefficients in the inequality constraints
- // Aeq : a meq x n matrix of doubles, represents the linear coefficients in the equality constraints
- // beq : a vector of doubles, represents the linear coefficients in the equality constraints
- // LB : a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.
- // UB : a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.
- // xopt : a nx1 matrix of doubles, the computed solution of the optimization problem.
- // fopt : a 1x1 matrix of doubles, the function value at x.
- // exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
- //
- // Description
- // Search the minimum of a constrained linear quadratic optimization problem specified by :
- // find the minimum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & 1/2*x'*H*x + f'*x \\
- // & \text{subject to} & A.x \leq b \\
- // & & Aeq.x \leq beq \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
- //
- // Examples
- // //Find x in R^6 such that:
- //
- // Aeq= [1,-1,1,0,3,1;
- // -1,0,-3,-4,5,6;
- // 2,5,3,0,1,0];
- // beq=[1; 2; 3];
- // A= [0,1,0,1,2,-1;
- // -1,0,2,1,1,0];
- // b = [-1; 2.5];
- // lb=[-1000; -10000; 0; -1000; -1000; -1000];
- // ub=[10000; 100; 1.5; 100; 100; 1000];
- // //and minimize 0.5*x'*Q*x + p'*x with
- // f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
- // [xopt,fopt,exitflag,output,lambda]=qpipopt_mat(H,f,A,b,Aeq,beq,lb,ub)
- // clear H f A b Aeq beq lb ub;
- //
- // Examples
- // //Find the value of x that minimize following function
- // // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
- // // Subject to:
- // // x1 + x2 ≤ 2
- // // –x1 + 2x2 ≤ 2
- // // 2x1 + x2 ≤ 3
- // // 0 ≤ x1, 0 ≤ x2.
- // H = [1 -1; -1 2];
- // f = [-2; -6];
- // A = [1 1; -1 2; 2 1];
- // b = [2; 2; 3];
- // lb = [0; 0];
- // ub = [%inf; %inf];
- // [xopt,fopt,exitflag,output,lambda] = qpipopt_mat(H,f,A,b,[],[],lb,ub)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
-
-
-//To check the number of input and output argument
- [lhs , rhs] = argn();
-
-//To check the number of argument given by user
- if ( rhs < 2 | rhs == 3 | rhs == 5 | rhs == 7 | rhs > 8 ) then
- errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 4 6 8]"), "qpipopt", rhs);
- error(errmsg)
- end
-
- H = varargin(1);
- f = varargin(2);
- nbVar = size(H,1);
-
-
- if ( rhs<2 ) then
- A = []
- b = []
- else
- A = varargin(3);
- b = varargin(4);
- end
-
- if ( rhs<4 ) then
- Aeq = []
- beq = []
- else
- Aeq = varargin(5);
- beq = varargin(6);
- end
-
- if ( rhs<6 ) then
- LB = repmat(-%inf,nbVar,1);
- UB = repmat(%inf,nbVar,1);
- else
- LB = varargin(7);
- UB = varargin(8);
- end
-
- nbConInEq = size(A,1);
- nbConEq = size(Aeq,1);
-
- //Checking the H matrix which needs to be a symmetric matrix
- if ( H~=H') then
- errmsg = msprintf(gettext("%s: H is not a symmetric matrix"), "qpipopt_mat");
- error(errmsg);
- end
-
- //Check the size of H which should equal to the number of variable
- if ( size(H) ~= [nbVar nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of H is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of f which should equal to the number of variable
- if ( size(f,1) ~= [nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of f is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
-
- //Check the size of inequality constraint which should be equal to the number of variables
- if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
- errmsg = msprintf(gettext("%s: The size of inequality constraints is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of equality constraint which should be equal to the number of variables
- if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
- errmsg = msprintf(gettext("%s: The size of equality constraints is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
-
- //Check the size of Lower Bound which should be equal to the number of variables
- if ( size(LB,1) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
-//Check the size of Upper Bound which should equal to the number of variables
- if ( size(UB,1) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
-//Check the size of constraints of Lower Bound which should equal to the number of constraints
- if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then
- errmsg = msprintf(gettext("%s: The Lower Bound of inequality constraints is not equal to the number of constraints"), "qpipopt");
- error(errmsg);
- end
-
-//Check the size of constraints of Upper Bound which should equal to the number of constraints
- if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then
- errmsg = msprintf(gettext("%s: The Upper Bound of equality constraints is not equal to the number of constraints"), "qp_ipopt");
- error(errmsg);
- end
-
- //Converting it into ipopt format
- f = f';
- LB = LB';
- UB = UB';
- conMatrix = [Aeq;A];
- nbCon = size(conMatrix,1);
- conLB = [beq; repmat(-%inf,nbConInEq,1)]';
- conUB = [beq;b]' ;
- [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,conMatrix,conLB,conUB,LB,UB);
-
- xopt = xopt';
- exitflag = status;
- output = struct("Iterations" , []);
- output.Iterations = iter;
- lambda = struct("lower" , [], ..
- "upper" , [], ..
- "ineqlin" , [], ..
- "eqlin" , []);
-
- lambda.lower = Zl;
- lambda.upper = Zu;
- lambda.eqlin = lmbda(1:nbConEq);
- lambda.ineqlin = lmbda(nbConEq+1:nbCon);
-
-
-endfunction
diff --git a/sci_gateway/cpp/QuadNLP.hpp~ b/sci_gateway/cpp/QuadNLP.hpp~
deleted file mode 100644
index f47ab4d..0000000
--- a/sci_gateway/cpp/QuadNLP.hpp~
+++ /dev/null
@@ -1,131 +0,0 @@
-/*
- * Quadratic Programming Toolbox for Scilab using IPOPT library
- * Authors :
- Sai Kiran
- Keyur Joshi
- Iswarya
-
-
- * Optimizing (minimizing) the quadratic objective function having any number of variables and linear constraints.
- *
-*/
-
-#ifndef __QuadNLP_HPP__
-#define __QuadNLP_HPP__
-
-#include "IpTNLP.hpp"
-extern "C"{
-#include <sciprint.h>
-
-}
-using namespace Ipopt;
-
-class QuadNLP : public TNLP
-{
- private:
- Index numVars_; // Number of variables.
-
- Index numConstr_; // Number of constraints.
-
- const Number *qMatrix_ = NULL; //qMatrix_ is a pointer to matrix of size numVars X numVars_
- // with coefficents of quadratic terms in objective function.
-
- const Number *lMatrix_ = NULL;//lMatrix_ is a pointer to matrix of size 1*numVars_
- // with coefficents of linear terms in objective function.
-
- const Number *conMatrix_ = NULL;//conMatrix_ is a pointer to matrix of size numConstr X numVars
- // with coefficients of terms in a each objective in each row.
-
- const Number *conUB_= NULL; //conUB_ is a pointer to a matrix of size of 1*numConstr_
- // with upper bounds of all constraints.
-
- const Number *conLB_; //conLB_ is a pointer to a matrix of size of 1*numConstr_
- // with lower bounds of all constraints.
-
- const Number *varUB_; //varUB_ is a pointer to a matrix of size of 1*numVar_
- // with upper bounds of all variables.
-
- const Number *varLB_; //varLB_ is a pointer to a matrix of size of 1*numVar_
- // with lower bounds of all variables.
-
- Number *finalX_; //finalX_ is a pointer to a matrix of size of 1*numVar_
- // with final value for the primal variables.
-
- Number *finalZl_; //finalZl_ is a pointer to a matrix of size of 1*numVar_
- // with final values for the lower bound multipliers
-
- Number *finalZu_; //finalZu_ is a pointer to a matrix of size of 1*numVar_
- // with final values for the upper bound multipliers
-
- Number *finalLambda_; //finalLambda_ is a pointer to a matrix of size of 1*numConstr_
- // with final values for the upper bound multipliers
-
- Number finalObjVal_; //finalObjVal_ is a scalar with the final value of the objective.
-
- int iter_; //Number of iteration.
-
- int status_; //Solver return status
-
- QuadNLP(const QuadNLP&);
- QuadNLP& operator=(const QuadNLP&);
- public:
- /*
- * Constructor
- */
- QuadNLP(Index nV, Index nC, Number *qM, Number *lM, Number *cM, Number *cUB, Number *cLB, Number *vUB, Number *vLB):
- numVars_(nV),numConstr_(nC),qMatrix_(qM),lMatrix_(lM),conMatrix_(cM),conUB_(cUB),conLB_(cLB),varUB_(vUB),varLB_(vLB),finalX_(0), finalZl_(0), finalZu_(0), finalObjVal_(1e20){ }
-
-
- /* Go to :
-
- http://www.coin-or.org/Ipopt/documentation/node23.html#SECTION00053130000000000000
- For details about these below methods.
- */
- virtual ~QuadNLP();
- virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
- Index& nnz_h_lag, IndexStyleEnum& index_style);
- virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
- Index m, Number* g_l, Number* g_u);
- virtual bool get_starting_point(Index n, bool init_x, Number* x,
- bool init_z, Number* z_L, Number* z_U,
- Index m, bool init_lambda,
- Number* lambda);
- virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value);
- virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f);
- virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g);
- virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
- Index m, Index nele_jac, Index* iRow, Index *jCol,
- Number* values);
- virtual bool eval_h(Index n, const Number* x, bool new_x,
- Number obj_factor, Index m, const Number* lambda,
- bool new_lambda, Index nele_hess, Index* iRow,
- Index* jCol, Number* values);
- virtual void finalize_solution(SolverReturn status,
- Index n, const Number* x, const Number* z_L, const Number* z_U,
- Index m, const Number* g, const Number* lambda, Number obj_value,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq);
-
- const double * getX(); //Returns a pointer to a matrix of size of 1*numVar
- // with final value for the primal variables.
-
- const double * getZu(); //Returns a pointer to a matrix of size of 1*numVars
- // with final values for the upper bound multipliers
-
- const double * getZl(); //Returns a pointer to a matrix of size of 1*numVars
- // with final values for the upper bound multipliers
-
- const double * getLambda(); //Returns a pointer to a matrix of size of 1*numConstr
- // with final values for the constraint multipliers
-
-
- double getObjVal(); //Returns the output of the final value of the objective.
-
- double iterCount(); //Returns the iteration count
-
- int returnStatus(); //Returns the status count
-
-
-};
-
-#endif __QuadNLP_HPP__
diff --git a/sci_gateway/cpp/builder_gateway_cpp.sce~ b/sci_gateway/cpp/builder_gateway_cpp.sce~
deleted file mode 100644
index 2abfacc..0000000
--- a/sci_gateway/cpp/builder_gateway_cpp.sce~
+++ /dev/null
@@ -1,150 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Keyur Joshi, Sai Kiran, Iswarya and Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-mode(-1)
-lines(0)
-
-WITHOUT_AUTO_PUTLHSVAR = %t;
-toolbox_title = "FAMOS"
-
-[a, opt] = getversion();
-Version = opt(2);
-
-path_builder = get_absolute_file_path('builder_gateway_cpp.sce');
-
-tools_path = path_builder + "../../thirdparty/linux/";
-
-C_Flags=["-w -fpermissive -I"+tools_path+"include/coin -Wl,-rpath="+tools_path+"lib/"+Version+filesep()+" "]
-
-Linker_Flag = ["-L"+tools_path+"lib/"+Version+filesep()+"libSym"+" "+"-L"+tools_path+"lib/"+Version+filesep()+"libipopt" ]
-
-
-//Name of All the Functions
-Function_Names = [
- //for opening/closing environment and checking if it is open/close
- "sym_open","sci_sym_open";
- "sym_close","sci_sym_close";
- "sym_isEnvActive","sci_sym_isEnvActive";
-
- //run time parameters
- "sym_resetParams","sci_sym_set_defaults";
- "sym_setIntParam","sci_sym_set_int_param";
- "sym_getIntParam","sci_sym_get_int_param";
- "sym_setDblParam","sci_sym_set_dbl_param";
- "sym_getDblParam","sci_sym_get_dbl_param";
- "sym_setStrParam","sci_sym_set_str_param";
- "sym_getStrParam","sci_sym_get_str_param";
- "sym_getInfinity","sci_sym_getInfinity";
-
- //problem loaders
- "sym_loadProblemBasic","sci_sym_loadProblemBasic";
- "sym_loadProblem","sci_sym_loadProblem";
- "sym_loadMPS","sci_sym_load_mps";
-
- //basic data
- "sym_getNumConstr","sci_sym_get_num_int";
- "sym_getNumVar","sci_sym_get_num_int";
- "sym_getNumElements","sci_sym_get_num_int";
-
- //variable and objective data
- "sym_isContinuous","sci_sym_isContinuous";
- "sym_isBinary","sci_sym_isBinary";
- "sym_isInteger","sci_sym_isInteger";
- "sym_setContinuous","sci_sym_set_continuous";
- "sym_setInteger","sci_sym_set_integer";
- "sym_getVarLower","sci_sym_get_dbl_arr";
- "sym_getVarUpper","sci_sym_get_dbl_arr";
- "sym_setVarLower","sci_sym_setVarBound";
- "sym_setVarUpper","sci_sym_setVarBound";
- "sym_getObjCoeff","sci_sym_get_dbl_arr";
- "sym_setObjCoeff","sci_sym_setObjCoeff";
- "sym_getObjSense","sci_sym_getObjSense";
- "sym_setObjSense","sci_sym_setObjSense";
-
- //constraint data
- "sym_getRhs","sci_sym_get_dbl_arr";
- "sym_getConstrRange","sci_sym_get_dbl_arr";
- "sym_getConstrLower","sci_sym_get_dbl_arr";
- "sym_getConstrUpper","sci_sym_get_dbl_arr";
- "sym_setConstrLower","sci_sym_setConstrBound";
- "sym_setConstrUpper","sci_sym_setConstrBound";
- "sym_setConstrType","sci_sym_setConstrType";
- "sym_getMatrix","sci_sym_get_matrix";
- "sym_getConstrSense","sci_sym_get_row_sense";
-
- //add/remove variables and constraints
- "sym_addConstr","sci_sym_addConstr";
- "sym_addVar","sci_sym_addVar";
- "sym_deleteVars","sci_sym_delete_cols";
- "sym_deleteConstrs","sci_sym_delete_rows";
-
- //primal bound
- "sym_getPrimalBound","sci_sym_getPrimalBound";
- "sym_setPrimalBound","sci_sym_setPrimalBound";
-
- //set preliminary solution
- "sym_setVarSoln","sci_sym_setColSoln";
-
- //solve
- "sym_solve","sci_sym_solve";
-
- //post solve functions
- "sym_getStatus","sci_sym_get_status";
- "sym_isOptimal","sci_sym_get_solver_status";
- "sym_isInfeasible","sci_sym_get_solver_status";
- "sym_isAbandoned","sci_sym_get_solver_status";
- "sym_isIterLimitReached","sci_sym_get_solver_status";
- "sym_isTimeLimitReached","sci_sym_get_solver_status";
- "sym_isTargetGapAchieved","sci_sym_get_solver_status";
- "sym_getVarSoln","sci_sym_getVarSoln";
- "sym_getObjVal","sci_sym_getObjVal";
- "sym_getIterCount","sci_sym_get_iteration_count";
- "sym_getConstrActivity","sci_sym_getRowActivity";
-
- //QP function
- "solveqp","sci_solveqp"
- ];
-
-//Name of all the files to be compiled
-Files = [
- "globals.cpp",
- "sci_iofunc.hpp",
- "sci_iofunc.cpp",
- "sci_sym_openclose.cpp",
- "sci_solver_status_query_functions.cpp",
- "sci_sym_solve.cpp",
- "sci_sym_loadproblem.cpp",
- "sci_sym_isenvactive.cpp",
- "sci_sym_load_mps.cpp",
- "sci_vartype.cpp",
- "sci_sym_getinfinity.cpp",
- "sci_sym_solution.cpp",
- "sym_data_query_functions.cpp"
- "sci_sym_set_variables.cpp",
- "sci_sym_setobj.cpp",
- "sci_sym_varbounds.cpp",
- "sci_sym_rowmod.cpp",
- "sci_sym_set_indices.cpp",
- "sci_sym_addrowcol.cpp",
- "sci_sym_primalbound.cpp",
- "sci_sym_setcolsoln.cpp",
- "sci_sym_getrowact.cpp",
- "sci_sym_getobjsense.cpp",
- "sci_sym_remove.cpp",
- "sci_QuadNLP.cpp"
- "QuadNLP.hpp"
- "sci_ipopt.cpp"
-
- ]
-
-tbx_build_gateway(toolbox_title,Function_Names,Files,get_absolute_file_path("builder_gateway_cpp.sce"), [], Linker_Flag, C_Flags, [], "g++");
-
-clear WITHOUT_AUTO_PUTLHSVAR toolbox_title Function_Names Files Linker_Flag C_Flags;
diff --git a/sci_gateway/cpp/sci_QuadNLP.cpp~ b/sci_gateway/cpp/sci_QuadNLP.cpp~
deleted file mode 100644
index 4ff99ce..0000000
--- a/sci_gateway/cpp/sci_QuadNLP.cpp~
+++ /dev/null
@@ -1,255 +0,0 @@
-/*
- * Quadratic Programming Toolbox for Scilab using IPOPT library
- * Authors :
- Sai Kiran
- Keyur Joshi
- Iswarya
- */
-
-#include "QuadNLP.hpp"
-#include "IpIpoptData.hpp"
-
-extern "C"{
-#include <api_scilab.h>
-#include <Scierror.h>
-#include <BOOL.h>
-#include <localization.h>
-#include <sciprint.h>
-
-
-double x_static,i, *op_obj_x = NULL,*op_obj_value = NULL;
-
-using namespace Ipopt;
-
-QuadNLP::~QuadNLP()
- {
- free(finalX_);
- free(finalZl_);
- free(finalZu_);}
-
-//get NLP info such as number of variables,constraints,no.of elements in jacobian and hessian to allocate memory
-bool QuadNLP::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g, Index& nnz_h_lag, IndexStyleEnum& index_style){
- n=numVars_; // Number of variables
- m=numConstr_; // Number of constraints
- nnz_jac_g = n*m; // No. of elements in Jacobian of constraints
- nnz_h_lag = n*(n+1)/2; // No. of elements in lower traingle of Hessian of the Lagrangian.
- index_style=C_STYLE; // Index style of matrices
- return true;
- }
-
-//get variable and constraint bound info
-bool QuadNLP::get_bounds_info(Index n, Number* x_l, Number* x_u, Index m, Number* g_l, Number* g_u){
-
- unsigned int i;
- for(i=0;i<n;i++){
- x_l[i]=varLB_[i];
- x_u[i]=varUB_[i];
- sciprint("VarLU %lf %lf \n",x_l[i],x_u[i]);
- }
-
- for(i=0;i<m;i++){
- g_l[i]=conLB_[i];
- g_u[i]=conUB_[i];
- sciprint("conLU %lf %lf \n",g_l[i],g_u[i]);
- }
- return true;
- }
-
-//get value of objective function at vector x
-bool QuadNLP::eval_f(Index n, const Number* x, bool new_x, Number& obj_value){
- unsigned int i,j;
- obj_value=0;
-
- for (i=0;i<=n;i++){
- for (j=0;j<=n;j++){
- obj_value+=0.5*x[i]*x[j]*qMatrix_[n*i+j];
- }
- obj_value+=x[i]*lMatrix_[i];
- }
- return true;
- }
-
-//get value of gradient of objective function at vector x.
-bool QuadNLP::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f){
- unsigned int i,j;
- for(i=0;i<n;i++)
- {
- grad_f[i]=lMatrix_[i];
- for(j=0;j<n;j++)
- {
- grad_f[i]+=(qMatrix_[n*i+j])*x[j];
- }
- }
- return true;
-}
-
-//Get the values of constraints at vector x.
-bool QuadNLP::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g){
- unsigned int i,j;
- for(i=0;i<m;i++)
- {
- g[i]=0;
- for(j=0;j<n;j++)
- {
- g[i]+=x[j]*conMatrix_[i+j*m];
- }
- }
- return true;
-}
-
-// This method sets initial values for required vectors . For now we are assuming 0 to all values.
-bool QuadNLP::get_starting_point(Index n, bool init_x, Number* x,
- bool init_z, Number* z_L, Number* z_U,
- Index m, bool init_lambda,
- Number* lambda){
- if (init_x == true){ //we need to set initial values for vector x
- for (Index var=0;var<n;++var)
- x[var]=0.0;//initialize with 0 or we can change.
- }
-
- if (init_z == true){ //we need to provide initial values for vector bound multipliers
- for (Index var=0;var<n;++var){
- z_L[var]=0.0; //initialize with 0 or we can change.
- z_U[var]=0.0;//initialize with 0 or we can change.
- }
- }
-
- if (init_lambda == true){ //we need to provide initial values for lambda values.
- for (Index var=0;var<m;++var){
- lambda[var]=0.0; //initialize with 0 or we can change.
- }
- }
-
- return true;
- }
-/* Return either the sparsity structure of the Jacobian of the constraints, or the values for the Jacobian of the constraints at the point x.
-
-*/
-bool QuadNLP::eval_jac_g(Index n, const Number* x, bool new_x,
- Index m, Index nele_jac, Index* iRow, Index *jCol,
- Number* values){
-
- //It asked for structure of jacobian.
- if (values==NULL){ //Structure of jacobian (full structure)
- int index=0;
- for (int var=0;var<m;++var)//no. of constraints
- for (int flag=0;flag<n;++flag){//no. of variables
- iRow[index]=var;
- jCol[index]=flag;
- index++;
- }
- }
- //It asked for values
- else {
- int index=0;
- for (int var=0;var<m;++var)
- for (int flag=0;flag<n;++flag)
- values[index++]=conMatrix_[var+flag*m];
- }
- return true;
- }
-
-/*
- * Return either the sparsity structure of the Hessian of the Lagrangian,
- * or the values of the Hessian of the Lagrangian for the given values for
- * x,lambda,obj_factor.
-*/
-bool QuadNLP::eval_h(Index n, const Number* x, bool new_x,
- Number obj_factor, Index m, const Number* lambda,
- bool new_lambda, Index nele_hess, Index* iRow,
- Index* jCol, Number* values){
-
- if (values==NULL){
- Index idx=0;
- for (Index row = 0; row < n; row++) {
- for (Index col = 0; col <= row; col++) {
- iRow[idx] = row;
- jCol[idx] = col;
- idx++;
- }
- }
- }
- else {
- Index index=0;
- for (Index row=0;row < n;++row){
- for (Index col=0; col <= row; ++col){
- values[index++]=obj_factor*(qMatrix_[n*row+col]);
- }
- }
- }
- return true;
- }
-
-
-void QuadNLP::finalize_solution(SolverReturn status,
- Index n, const Number* x, const Number* z_L, const Number* z_U,
- Index m, const Number* g, const Number* lambda, Number obj_value,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq){
-
- finalX_ = (double*)malloc(sizeof(double) * numVars_ * 1);
- for (Index i=0; i<n; i++)
- {
- finalX_[i] = x[i];
- }
-
- finalZl_ = (double*)malloc(sizeof(double) * numVars_ * 1);
- for (Index i=0; i<n; i++)
- {
- finalZl_[i] = z_L[i];
- }
-
- finalZu_ = (double*)malloc(sizeof(double) * numVars_ * 1);
- for (Index i=0; i<n; i++)
- {
- finalZu_[i] = z_U[i];
- }
-
- finalLambda_ = (double*)malloc(sizeof(double) * numConstr_ * 1);
- for (Index i=0; i<m; i++)
- {
- finalLambda_[i] = lambda[i];
- }
-
- iter_ = ip_data->iter_count();
- finalObjVal_ = obj_value;
- status_ = status;
-
- }
-
- const double * QuadNLP::getX()
- {
- return finalX_;
- }
-
- const double * QuadNLP::getZl()
- {
- return finalZl_;
- }
-
- const double * QuadNLP::getZu()
- {
- return finalZu_;
- }
-
- const double * QuadNLP::getLambda()
- {
- return finalLambda_;
- }
-
- double QuadNLP::getObjVal()
- {
- return finalObjVal_;
- }
-
- double QuadNLP::iterCount()
- {
- return (double)iter_;
- }
-
- int QuadNLP::returnStatus()
- {
- return status_;
- }
-
-}
diff --git a/sci_gateway/cpp/sci_ipopt.cpp~ b/sci_gateway/cpp/sci_ipopt.cpp~
deleted file mode 100644
index 12cbf81..0000000
--- a/sci_gateway/cpp/sci_ipopt.cpp~
+++ /dev/null
@@ -1,400 +0,0 @@
-/*
- * Quadratic Programming Toolbox for Scilab using IPOPT library
- * Authors :
- Sai Kiran
- Keyur Joshi
- Iswarya
- */
-
-
-#include "sci_iofunc.hpp"
-#include "IpIpoptApplication.hpp"
-#include "QuadNLP.hpp"
-
-extern "C"{
-#include <api_scilab.h>
-#include <Scierror.h>
-#include <BOOL.h>
-#include <localization.h>
-#include <sciprint.h>
-
-int j;
-double *op_x, *op_obj,*p;
-
-bool readSparse(int arg,int *iRows,int *iCols,int *iNbItem,int** piNbItemRow, int** piColPos, double** pdblReal){
- SciErr sciErr;
- int* piAddr = NULL;
- int iType = 0;
- int iRet = 0;
- sciErr = getVarAddressFromPosition(pvApiCtx, arg, &piAddr);
- if(sciErr.iErr) {
- printError(&sciErr, 0);
- return false;
- }
- sciprint("\ndone\n");
- if(isSparseType(pvApiCtx, piAddr)){
- sciprint("done\n");
- sciErr =getSparseMatrix(pvApiCtx, piAddr, iRows, iCols, iNbItem, piNbItemRow, piColPos, pdblReal);
- if(sciErr.iErr) {
- printError(&sciErr, 0);
- return false;
- }
- }
-
- else {
- sciprint("\nSparse matrix required\n");
- return false;
- }
- return true;
- }
-
-int sci_solveqp(char *fname)
-{
-
- CheckInputArgument(pvApiCtx, 9, 9); // We need total 9 input arguments.
- CheckOutputArgument(pvApiCtx, 7, 7);
-
- // Error management variable
- SciErr sciErr;
- int retVal=0, *piAddressVarQ = NULL,*piAddressVarP = NULL,*piAddressVarCM = NULL,*piAddressVarCUB = NULL,*piAddressVarCLB = NULL, *piAddressVarLB = NULL,*piAddressVarUB = NULL;
- double *QItems=NULL,*PItems=NULL,*ConItems=NULL,*conUB=NULL,*conLB=NULL,*varUB=NULL,*varLB=NULL,x,f,iter;
- static unsigned int nVars = 0,nCons = 0;
- unsigned int temp1 = 0,temp2 = 0;
-
-
- ////////// Manage the input argument //////////
-
-
- //Number of Variables
- getIntFromScilab(1,&nVars);
-
- //Number of Constraints
- getIntFromScilab(2,&nCons);
-
- temp1 = nVars;
- temp2 = nCons;
-
- //Q matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddressVarQ);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarQ) || isVarComplex(pvApiCtx, piAddressVarQ) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 3);
- return 0;
- }
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarQ, &temp1, &temp1, &QItems);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
-
- for(int i=0;i<temp1;i++)
- {
- for(int j=0;j<temp1;j++)
- {
- sciprint("conMatrix %lf \t",QItems[temp1*i+j]);
- }
- sciprint("\n");
- }
-
- //P matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 4, &piAddressVarP);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarP) || isVarComplex(pvApiCtx, piAddressVarP) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 4);
- return 0;
- }
-
- temp1 = 1;
- temp2 = nVars;
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarP, &temp1,&temp2, &PItems);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- if (nCons!=0)
- {
- //conMatrix matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 5, &piAddressVarCM);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarCM) || isVarComplex(pvApiCtx, piAddressVarCM) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 5);
- return 0;
- }
- temp1 = nCons;
- temp2 = nVars;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarCM,&temp1, &temp2, &ConItems);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- for(int i=0;i<temp1;i++)
- {
- for(int j=0;j<temp2;j++)
- {
- sciprint("conMatrix %lf \t",ConItems[i+j*temp1]);
- }
- sciprint("\n");
- }
-
-
- //conLB matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 6, &piAddressVarCLB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarCLB) || isVarComplex(pvApiCtx, piAddressVarCLB) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 6);
- return 0;
- }
- temp1 = nCons;
- temp2 = 1;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarCLB,&temp1, &temp2, &conLB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- //conUB matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 7, &piAddressVarCUB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarCUB) || isVarComplex(pvApiCtx, piAddressVarCUB) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 7);
- return 0;
- }
-
- temp1 = nCons;
- temp2 = 1;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarCUB,&temp1, &temp2, &conUB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
- for(int i=0;i<nCons;i++){
- sciprint("ConLU %lf %lf \n",conLB[i],conUB[i]);
- }
- }
-
- //varLB matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 8, &piAddressVarLB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarLB) || isVarComplex(pvApiCtx, piAddressVarLB) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 8);
- return 0;
- }
- temp1 = 1;
- temp2 = nVars;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarLB, &temp1,&temp2, &varLB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- //varUB matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 9, &piAddressVarUB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarUB) || isVarComplex(pvApiCtx, piAddressVarUB) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 9);
- return 0;
- }
-
- temp1 = 1;
- temp2 = nVars;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarUB, &temp1,&temp2, &varUB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- for(int i=0;i<nVars;i++){
- sciprint("VarLU %lf %lf \n",varLB[i],varUB[i]);
- }
-
- using namespace Ipopt;
-
- SmartPtr<QuadNLP> Prob = new QuadNLP(nVars,nCons,QItems,PItems,ConItems,conUB,conLB,varUB,varLB);
- SmartPtr<IpoptApplication> app = IpoptApplicationFactory();
- app->RethrowNonIpoptException(true);
-
- // Change some options
- // Note: The following choices are only examples, they might not be
- // suitable for your optimization problem.
- app->Options()->SetNumericValue("tol", 1e-7);
- app->Options()->SetStringValue("mu_strategy", "adaptive");
-
- // Indicates whether all equality constraints are linear
- app->Options()->SetStringValue("jac_c_constant", "yes");
- // Indicates whether all inequality constraints are linear
- app->Options()->SetStringValue("jac_d_constant", "yes");
- // Indicates whether the problem is a quadratic problem
- app->Options()->SetStringValue("hessian_constant", "yes");
-
- // Initialize the IpoptApplication and process the options
- ApplicationReturnStatus status;
- status = app->Initialize();
- if (status != Solve_Succeeded) {
- sciprint("\n*** Error during initialization!\n");
- return0toScilab();
- return (int) status;
- }
- // Ask Ipopt to solve the problem
-
- status = app->OptimizeTNLP(Prob);
-
- double *fX = Prob->getX();
- double ObjVal = Prob->getObjVal();
- double *Zl = Prob->getZl();
- double *Zu = Prob->getZu();
- double *Lambda = Prob->getLambda();
- double iteration = Prob->iterCount();
- int stats = Prob->returnStatus();
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 1, 1, nVars, fX);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 2,1,1,&ObjVal);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfInteger32(pvApiCtx, nbInputArgument(pvApiCtx) + 3,1,1,&stats);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 4,1,1,&iteration);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 5, 1, nVars, Zl);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 6, 1, nVars, Zu);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 7, 1, nCons, Lambda);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
-
- AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
- AssignOutputVariable(pvApiCtx, 2) = nbInputArgument(pvApiCtx) + 2;
- AssignOutputVariable(pvApiCtx, 3) = nbInputArgument(pvApiCtx) + 3;
- AssignOutputVariable(pvApiCtx, 4) = nbInputArgument(pvApiCtx) + 4;
- AssignOutputVariable(pvApiCtx, 5) = nbInputArgument(pvApiCtx) + 5;
- AssignOutputVariable(pvApiCtx, 6) = nbInputArgument(pvApiCtx) + 6;
- AssignOutputVariable(pvApiCtx, 7) = nbInputArgument(pvApiCtx) + 7;
-
- // As the SmartPtrs go out of scope, the reference count
- // will be decremented and the objects will automatically
- // be deleted.
-
-
- return 0;
- }
-
-}
-
-/*
-hessian_constan
-jacobian _constant
-
-j_s_d constant : yes
-*/
-