summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHarpreet2015-11-18 00:04:28 +0530
committerHarpreet2015-11-18 00:04:28 +0530
commitdae3265eed0395c6e0e655a348ec12f3fb9a912f (patch)
tree1dfe4a5e6af1c283089dba10c9dc0ba65d08142e
parenta8277e2be90bf00bd70ab5e7d6b92b91c49b7320 (diff)
downloadFOSSEE-Optimization-toolbox-dae3265eed0395c6e0e655a348ec12f3fb9a912f.tar.gz
FOSSEE-Optimization-toolbox-dae3265eed0395c6e0e655a348ec12f3fb9a912f.tar.bz2
FOSSEE-Optimization-toolbox-dae3265eed0395c6e0e655a348ec12f3fb9a912f.zip
Back Up Files Deleted
-rw-r--r--demos/qpipoptmat.dem.sce~42
-rw-r--r--demos/sci_symphony.dem.gateway.sce~16
-rw-r--r--demos/symphony_knapsack.sce116
-rw-r--r--demos/symphony_mat_knapsack.sce90
-rw-r--r--demos/symphonymat.dem.sce~104
-rw-r--r--etc/README.rst~0
-rw-r--r--macros/README.rst~36
-rw-r--r--macros/qpipopt.sci~233
-rw-r--r--macros/qpipoptmat.sci~265
-rw-r--r--macros/setOptions.sci~40
-rw-r--r--macros/symphony.sci~287
-rw-r--r--macros/symphony_call.sci~52
-rw-r--r--macros/symphonymat.sci~242
-rw-r--r--sci_gateway/cpp/QuadNLP.hpp~134
-rw-r--r--sci_gateway/cpp/README.rst~0
-rw-r--r--sci_gateway/cpp/builder_gateway_cpp.sce~149
-rw-r--r--sci_gateway/cpp/sci_QuadNLP.cpp~253
-rw-r--r--sci_gateway/cpp/sci_ipopt.cpp~409
-rw-r--r--sci_gateway/cpp/sci_sym_solve.cpp~49
-rw-r--r--tests/unit_tests/README.rst~0
-rw-r--r--tests/unit_tests/qpipopt_base.tst~76
-rw-r--r--tests/unit_tests/qpipoptmat_base .tst~76
22 files changed, 0 insertions, 2669 deletions
diff --git a/demos/qpipoptmat.dem.sce~ b/demos/qpipoptmat.dem.sce~
deleted file mode 100644
index 79628a7..0000000
--- a/demos/qpipoptmat.dem.sce~
+++ /dev/null
@@ -1,42 +0,0 @@
-mode(1)
-//
-// Demo of qpipoptmat.sci
-//
-
-//Find x in R^6 such that:
-halt() // Press return to continue
-
-Aeq= [1,-1,1,0,3,1;
--1,0,-3,-4,5,6;
-2,5,3,0,1,0];
-beq=[1; 2; 3];
-A= [0,1,0,1,2,-1;
--1,0,2,1,1,0];
-b = [-1; 2.5];
-lb=[-1000; -10000; 0; -1000; -1000; -1000];
-ub=[10000; 100; 1.5; 100; 100; 1000];
-x0 = repmat(0,6,1);
-param = list("MaxIter", 300, "CpuTime", 100);
-//and minimize 0.5*x'*Q*x + p'*x with
-f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
-[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param);
-clear H f A b Aeq beq lb ub;
-halt() // Press return to continue
-
-//Find the value of x that minimize following function
-// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
-// Subject to:
-// x1 + x2 ≤ 2
-// –x1 + 2x2 ≤ 2
-// 2x1 + x2 ≤ 3
-// 0 ≤ x1, 0 ≤ x2.
-H = [1 -1; -1 2];
-f = [-2; -6];
-A = [1 1; -1 2; 2 1];
-b = [2; 2; 3];
-lb = [0; 0];
-ub = [%inf; %inf];
-[xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
-halt() // Press return to continue
-
-//========= E N D === O F === D E M O =========//
diff --git a/demos/sci_symphony.dem.gateway.sce~ b/demos/sci_symphony.dem.gateway.sce~
deleted file mode 100644
index 9256ca2..0000000
--- a/demos/sci_symphony.dem.gateway.sce~
+++ /dev/null
@@ -1,16 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-demopath = get_absolute_file_path("sci_symphony.dem.gateway.sce");
-
-subdemolist = ["Symphony for knapsack", "symphony_knapsack.sce"];
-
-subdemolist(:,2) = demopath + subdemolist(:,2);
diff --git a/demos/symphony_knapsack.sce b/demos/symphony_knapsack.sce
deleted file mode 100644
index 42c192c..0000000
--- a/demos/symphony_knapsack.sce
+++ /dev/null
@@ -1,116 +0,0 @@
-mode (-1)
-
-// Reference
-//
-// This problem is taken from
-// P.C.Chu and J.E.Beasley
-// "A genetic algorithm for the multidimensional knapsack problem",
-// Journal of Heuristics, vol. 4, 1998, pp63-86.
-
-
-//
-// The problem to be solved is:
-// Max sum{j=1,...,n} p(j)x(j)
-// st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
-// x(j)=0 or 1
-
-
-// The function to be maximize i.e. P(j)
-
-p = [ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
- 825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
- 877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
- 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
- 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
- 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
- 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]
-
-
-//Constraint Matrix
-conMatrix = [
- //Constraint 1
- 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
- 550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
- 164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
- 320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
- 597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
- 797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
- 718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
-
- //Constraint 2
- 509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
- 350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
- 638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
- 892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
- 158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
- 252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
- 708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
-
- //Constraint 3
- 806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
- 883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
- 137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
- 482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
- 280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
- 73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
- 382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
-
- //Constraint 4
- 404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
- 263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
- 817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
- 967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
- 987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
- 68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
- 689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
-
- //Constrain 5
- 475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
- 515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
- 447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
- 768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
- 420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
- 483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
- 893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
- ];
-
-nbCon = size(conMatrix,1)
-
-nbVar = size(conMatrix,2)
-
-// Lower Bound of variables
-lb = repmat(0,1,nbVar)
-
-// Upper Bound of variables
-ub = repmat(1,1,nbVar)
-
-// Row Matrix for telling symphony that the is integer or not
-isInt = repmat(%t,1,nbVar)
-
-// Lower Bound of constrains
-conLB=repmat(0,nbCon,1);
-
-// Upper Bound of constraints
-conUB=[11927 13727 11551 13056 13460 ]';
-
-options = ["tie_limit" "40"];
-
-// The expected solution :
-
-// Output variables
-xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
-
-// Optimal value
-fopt = [ 24381 ]
-
-// Calling Symphony
-[x,f,status,output]= symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options)
-
-
-//========= E N D === O F === D E M O =========//
-//
-// Load this script into the editor
-//
-filename = "symphony_knapsack.sce";
-dname = get_absolute_file_path(filename);
-editor ( dname + filename );
diff --git a/demos/symphony_mat_knapsack.sce b/demos/symphony_mat_knapsack.sce
deleted file mode 100644
index 47c85e2..0000000
--- a/demos/symphony_mat_knapsack.sce
+++ /dev/null
@@ -1,90 +0,0 @@
-mode (-1)
-
-// Reference
-//
-// This problem is taken from
-// P.C.Chu and J.E.Beasley
-// "A genetic algorithm for the multidimensional knapsack problem",
-// Journal of Heuristics, vol. 4, 1998, pp63-86.
-
-
-//
-// The problem to be solved is:
-// Max sum{j=1,...,n} p(j)x(j)
-// st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
-// x(j)=0 or 1
-
-
-// The function to be maximize i.e. P(j)
-objCoef = -1*[ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
- 825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
- 877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
- 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
- 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
- 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
- 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]
-
-//Constraint Matrix
-conMatrix = [ //Constraint 1
- 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
- 550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
- 164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
- 320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
- 597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
- 797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
- 718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
- //Constraint 2
- 509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
- 350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
- 638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
- 892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
- 158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
- 252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
- 708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
- //Constraint 3
- 806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
- 883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
- 137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
- 482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
- 280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
- 73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
- 382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
- //Constraint 4
- 404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
- 263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
- 817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
- 967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
- 987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
- 68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
- 689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
- //Constrain 5
- 475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
- 515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
- 447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
- 768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
- 420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
- 483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
- 893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
- ];
-nbVar = size(objCoef,2)
-conUB=[11927 13727 11551 13056 13460 ];
-// Lower Bound of variables
-lb = repmat(0,1,nbVar)
-// Upper Bound of variables
-ub = repmat(1,1,nbVar)
-// Lower Bound of constrains
-intcon = []
-for i = 1:nbVar
- intcon = [intcon i];
-end
-
-options = ["time_limit" "40"];
-
-// The expected solution :
-// Output variables
-xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
-// Optimal value
-fopt = [ 24381 ]
-// Calling Symphony
-[x,f,iter] = symphony_mat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub,options);
-
diff --git a/demos/symphonymat.dem.sce~ b/demos/symphonymat.dem.sce~
deleted file mode 100644
index ef4d7cc..0000000
--- a/demos/symphonymat.dem.sce~
+++ /dev/null
@@ -1,104 +0,0 @@
-mode(1)
-//
-// Demo of symphonymat.sci
-//
-
-// Objective function
-c = [350*5,330*3,310*4,280*6,500,450,400,100]
-// Lower Bound of variable
-lb = repmat(0,1,8);
-// Upper Bound of variables
-ub = [repmat(1,1,4) repmat(%inf,1,4)];
-// Constraint Matrix
-Aeq = [5,3,4,6,1,1,1,1;
-5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
-5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
-beq = [ 25, 1.25, 1.25]
-intcon = [1 2 3 4];
-// Calling Symphony
-[x,f,status,output] = symphonymat(c,intcon,[],[],Aeq,beq,lb,ub)
-halt() // Press return to continue
-
-// An advanced case where we set some options in symphony
-// This problem is taken from
-// P.C.Chu and J.E.Beasley
-// "A genetic algorithm for the multidimensional knapsack problem",
-// Journal of Heuristics, vol. 4, 1998, pp63-86.
-// The problem to be solved is:
-// Max sum{j=1,...,n} p(j)x(j)
-// st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
-// x(j)=0 or 1
-// The function to be maximize i.e. P(j)
-objCoef = -1*[ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
-825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
-877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
-957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
-959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
-510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
-1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]
-//Constraint Matrix
-conMatrix = [ //Constraint 1
-42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
-550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
-164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
-320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
-597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
-797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
-718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
-//Constraint 2
-509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
-350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
-638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
-892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
-158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
-252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
-708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
-//Constraint 3
-806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
-883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
-137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
-482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
-280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
-73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
-382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
-//Constraint 4
-404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
-263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
-817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
-967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
-987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
-68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
-689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
-//Constrain 5
-475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
-515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
-447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
-768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
-420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
-483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
-893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
-];
-nbVar = size(objCoef,2)
-conUB=[11927 13727 11551 13056 13460 ];
-// Lower Bound of variables
-lb = repmat(0,1,nbVar)
-// Upper Bound of variables
-ub = repmat(1,1,nbVar)
-// Lower Bound of constrains
-intcon = []
-for i = 1:nbVar
-intcon = [intcon i];
-end
-options = list("time_limit", 25);
-// The expected solution :
-// Output variables
-xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
-0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 ..
-0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
-// Optimal value
-fopt = [ 24381 ]
-// Calling Symphony
-[x,f,status,output] = symphonymat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub);
-halt() // Press return to continue
-
-//========= E N D === O F === D E M O =========//
diff --git a/etc/README.rst~ b/etc/README.rst~
deleted file mode 100644
index e69de29..0000000
--- a/etc/README.rst~
+++ /dev/null
diff --git a/macros/README.rst~ b/macros/README.rst~
deleted file mode 100644
index 5a07f63..0000000
--- a/macros/README.rst~
+++ /dev/null
@@ -1,36 +0,0 @@
-MACROS
-======
-
-These files mainly consist of functions for checking the input and calling the gateway functions
-
-symphony
---------
-
-It takes the input in symphony style and checks the input. After all the checks call the symphony_call function.
-
-symphonymat
------------
-
-It takes the input in symphony style and checks the input. After all the checks call the symphony_call function.
-
-symphony_call
--------------
-
-It calls the gateway functions to initialize, set options and to solve it. After that it will call the functions to get the solution for the problem.
-
-setOptions
-----------
-
-It will set the options in the symphony.
-
-qpipopt
--------
-
-It synatize the input and call solveqp in the ipopt style.
-
-qpipopt
--------
-
-It synatize the input and call solveqp in the quadprog style.
-
-
diff --git a/macros/qpipopt.sci~ b/macros/qpipopt.sci~
deleted file mode 100644
index 35e604b..0000000
--- a/macros/qpipopt.sci~
+++ /dev/null
@@ -1,233 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-
-function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
- // Solves a linear quadratic problem.
- //
- // Calling Sequence
- // xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
- // xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0)
- // xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0,param)
- // [xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
- //
- // Parameters
- // nbVar : a 1 x 1 matrix of doubles, number of variables
- // nbCon : a 1 x 1 matrix of doubles, number of constraints
- // Q : a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
- // p : a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
- // LB : a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.
- // UB : a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.
- // conMatrix : a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix
- // conLB : a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.
- // conUB : a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.
- // x0 : a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.
- // param : a list containing the the parameters to be set.
- // xopt : a 1xn matrix of doubles, the computed solution of the optimization problem.
- // fopt : a 1x1 matrix of doubles, the function value at x.
- // exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
- //
- // Description
- // Search the minimum of a constrained linear quadratic optimization problem specified by :
- // find the minimum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & 1/2*x'*Q*x + p'*x \\
- // & \text{subject to} & conLB \leq C(x) \leq conUB \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
- //
- // Examples
- // //Find x in R^6 such that:
- // conMatrix= [1,-1,1,0,3,1;
- // -1,0,-3,-4,5,6;
- // 2,5,3,0,1,0
- // 0,1,0,1,2,-1;
- // -1,0,2,1,1,0];
- // conLB=[1;2;3;-%inf;-%inf];
- // conUB = [1;2;3;-1;2.5];
- // lb=[-1000;-10000; 0; -1000; -1000; -1000];
- // ub=[10000; 100; 1.5; 100; 100; 1000];
- // //and minimize 0.5*x'*Q*x + p'*x with
- // p=[1; 2; 3; 4; 5; 6]; Q=eye(6,6);
- // nbVar = 6;
- // nbCon = 5;
- // x0 = repmat(0,nbVar,1);
- // param = list("MaxIter", 300, "CpuTime", 100);
- // [xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB,x0,param)
- //
- // Examples
- // //Find the value of x that minimize following function
- // // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
- // // Subject to:
- // // x1 + x2 ≤ 2
- // // –x1 + 2x2 ≤ 2
- // // 2x1 + x2 ≤ 3
- // // 0 ≤ x1, 0 ≤ x2.
- // Q = [1 -1; -1 2];
- // p = [-2; -6];
- // conMatrix = [1 1; -1 2; 2 1];
- // conUB = [2; 2; 3];
- // conLB = [-%inf; -%inf; -%inf];
- // lb = [0; 0];
- // ub = [%inf; %inf];
- // nbVar = 2;
- // nbCon = 3;
- // [xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
-
-
-//To check the number of input and output argument
- [lhs , rhs] = argn();
-
-//To check the number of argument given by user
- if ( rhs < 9 | rhs > 11 ) then
- errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 9, 10 or 11"), "qpipopt", rhs);
- error(errmsg)
- end
-
-
- nbVar = varargin(1);
- nbCon = varargin(2);
- Q = varargin(3);
- p = varargin(4);
- LB = varargin(5);
- UB = varargin(6);
- conMatrix = varargin(7);
- conLB = varargin(8);
- conUB = varargin(9);
-
-
- if ( rhs<10 | size(varargin(10)) ==0 ) then
- x0 = repmat(0,nbVar,1);
- else
- x0 = varargin(10);
- end
-
- if ( rhs<11 ) then
- param = [];
- else
- param =varargin(11);
- end
-
- if (modulo(size(param),2)) then
- errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipopt");
- error(errmsg);
- end
-
-
- options = list(..
- "MaxIter" , [3000], ...
- "CpuTime" , [600] ...
- );
-
- for i = 1:(size(param))/2
-
- select param(2*i-1)
- case "MaxIter" then
- options(1) = param(2*i);
- case "CpuTime" then
- options(3) = param(2*i);
- else
- errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "qpipopt", param(2*i-1));
- error(errmsg)
- end
- end
-
- //IPOpt wants it in row matrix form
- p = p';
- LB = LB';
- UB = UB';
- conLB = conLB';
- conUB = conUB';
- x0 = x0';
-
- //Checking the Q matrix which needs to be a symmetric matrix
- if ( ~isequal(Q,Q') ) then
- errmsg = msprintf(gettext("%s: Q is not a symmetric matrix"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of Q which should equal to the number of variable
- if ( size(Q) ~= [nbVar nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of Q is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of p which should equal to the number of variable
- if ( size(p,2) ~= [nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of p is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
-
- //Check the size of constraint which should equal to the number of variables
- if ( size(conMatrix,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The size of constraints is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of Lower Bound which should equal to the number of variables
- if ( size(LB,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of Upper Bound which should equal to the number of variables
- if ( size(UB,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of constraints of Lower Bound which should equal to the number of constraints
- if ( size(conLB,2) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Lower Bound of constraints is not equal to the number of constraints"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of constraints of Upper Bound which should equal to the number of constraints
- if ( size(conUB,2) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Upper Bound of constraints is not equal to the number of constraints"), "qpipopt");
- error(errmsg);
- end
-
- //Check the size of initial of variables which should equal to the number of variables
- if ( size(x0,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The initial guess of variables is not equal to the number of variables"), "qpipopt");
- error(errmsg);
- end
-
-
- [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB,x0,options);
-
- xopt = xopt';
- exitflag = status;
- output = struct("Iterations" , []);
- output.Iterations = iter;
- lambda = struct("lower" , [], ..
- "upper" , [], ..
- "constraint" , []);
-
- lambda.lower = Zl;
- lambda.upper = Zu;
- lambda.constraint = lmbda;
-
-
-endfunction
diff --git a/macros/qpipoptmat.sci~ b/macros/qpipoptmat.sci~
deleted file mode 100644
index e29da8f..0000000
--- a/macros/qpipoptmat.sci~
+++ /dev/null
@@ -1,265 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-
-function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
- // Solves a linear quadratic problem.
- //
- // Calling Sequence
- // x = qpipoptmat(H,f)
- // x = qpipoptmat(H,f,A,b)
- // x = qpipoptmat(H,f,A,b,Aeq,beq)
- // x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
- // x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
- // x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
- // [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
- //
- // Parameters
- // H : a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
- // f : a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
- // A : a m x n matrix of doubles, represents the linear coefficients in the inequality constraints
- // b : a column vector of doubles, represents the linear coefficients in the inequality constraints
- // Aeq : a meq x n matrix of doubles, represents the linear coefficients in the equality constraints
- // beq : a vector of doubles, represents the linear coefficients in the equality constraints
- // LB : a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.
- // UB : a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.
- // x0 : a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.
- // param : a list containing the the parameters to be set.
- // xopt : a nx1 matrix of doubles, the computed solution of the optimization problem.
- // fopt : a 1x1 matrix of doubles, the function value at x.
- // exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
- //
- // Description
- // Search the minimum of a constrained linear quadratic optimization problem specified by :
- // find the minimum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & 1/2*x'*H*x + f'*x \\
- // & \text{subject to} & A.x \leq b \\
- // & & Aeq.x \leq beq \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
- //
- // Examples
- // //Find x in R^6 such that:
- //
- // Aeq= [1,-1,1,0,3,1;
- // -1,0,-3,-4,5,6;
- // 2,5,3,0,1,0];
- // beq=[1; 2; 3];
- // A= [0,1,0,1,2,-1;
- // -1,0,2,1,1,0];
- // b = [-1; 2.5];
- // lb=[-1000; -10000; 0; -1000; -1000; -1000];
- // ub=[10000; 100; 1.5; 100; 100; 1000];
- // x0 = repmat(0,6,1);
- // param = list("MaxIter", 300, "CpuTime", 100);
- // //and minimize 0.5*x'*Q*x + p'*x with
- // f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
- // [xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
- // clear H f A b Aeq beq lb ub;
- //
- // Examples
- // //Find the value of x that minimize following function
- // // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
- // // Subject to:
- // // x1 + x2 ≤ 2
- // // –x1 + 2x2 ≤ 2
- // // 2x1 + x2 ≤ 3
- // // 0 ≤ x1, 0 ≤ x2.
- // H = [1 -1; -1 2];
- // f = [-2; -6];
- // A = [1 1; -1 2; 2 1];
- // b = [2; 2; 3];
- // lb = [0; 0];
- // ub = [%inf; %inf];
- // [xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
-
-
-//To check the number of input and output argument
- [lhs , rhs] = argn();
-
-//To check the number of argument given by user
- if ( rhs < 2 | rhs == 3 | rhs == 5 | rhs == 7 | rhs > 10 ) then
- errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 4 6 8 9 10]"), "qpipoptmat", rhs);
- error(errmsg)
- end
-
- H = varargin(1);
- f = varargin(2);
- nbVar = size(H,1);
-
-
- if ( rhs<2 ) then
- A = []
- b = []
- else
- A = varargin(3);
- b = varargin(4);
- end
-
- if ( rhs<4 ) then
- Aeq = []
- beq = []
- else
- Aeq = varargin(5);
- beq = varargin(6);
- end
-
- if ( rhs<6 ) then
- LB = repmat(-%inf,nbVar,1);
- UB = repmat(%inf,nbVar,1);
- else
- LB = varargin(7);
- UB = varargin(8);
- end
-
-
- if ( rhs<10 | size(varargin(9)) ==0 ) then
- x0 = repmat(0,nbVar,1)
- else
- x0 = varargin(9);
- end
-
- if ( rhs<11 ) then
- param = list();
- else
- param =varargin(10);
- end
-
-
- if (modulo(size(param),2)) then
- errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipoptmat");
- error(errmsg);
- end
-
-
- options = list(..
- "MaxIter" , [3000], ...
- "CpuTime" , [600] ...
- );
-
- for i = 1:(size(param))/2
-
- select param(2*i-1)
- case "MaxIter" then
- options(2*i-1) = param(2*i);
- case "CpuTime" then
- options(2*i-1) = param(2*i);
- else
- errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "qpipoptmat", param(2*i-1));
- error(errmsg)
- end
- end
-
- nbConInEq = size(A,1);
- nbConEq = size(Aeq,1);
-
- //Checking the H matrix which needs to be a symmetric matrix
- if ( H~=H') then
- errmsg = msprintf(gettext("%s: H is not a symmetric matrix"), "qpipoptmat");
- error(errmsg);
- end
-
- //Check the size of H which should equal to the number of variable
- if ( size(H) ~= [nbVar nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of H is not equal to the number of variables"), "qpipoptmat");
- error(errmsg);
- end
-
- //Check the size of f which should equal to the number of variable
- if ( size(f,1) ~= [nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of f is not equal to the number of variables"), "qpipoptmat");
- error(errmsg);
- end
-
-
- //Check the size of inequality constraint which should be equal to the number of variables
- if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
- errmsg = msprintf(gettext("%s: The size of inequality constraints is not equal to the number of variables"), "qpipoptmat");
- error(errmsg);
- end
-
- //Check the size of equality constraint which should be equal to the number of variables
- if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
- errmsg = msprintf(gettext("%s: The size of equality constraints is not equal to the number of variables"), "qpipoptmat");
- error(errmsg);
- end
-
-
- //Check the size of Lower Bound which should be equal to the number of variables
- if ( size(LB,1) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "qpipoptmat");
- error(errmsg);
- end
-
- //Check the size of Upper Bound which should equal to the number of variables
- if ( size(UB,1) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "qpipoptmat");
- error(errmsg);
- end
-
- //Check the size of constraints of Lower Bound which should equal to the number of constraints
- if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then
- errmsg = msprintf(gettext("%s: The Lower Bound of inequality constraints is not equal to the number of constraints"), "qpipoptmat");
- error(errmsg);
- end
-
- //Check the size of constraints of Upper Bound which should equal to the number of constraints
- if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then
- errmsg = msprintf(gettext("%s: The Upper Bound of equality constraints is not equal to the number of constraints"), "qpipoptmat");
- error(errmsg);
- end
-
- //Check the size of initial of variables which should equal to the number of variables
- if ( size(x0,1) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The initial guess of variables is not equal to the number of variables"), "qpipoptmat");
- error(errmsg);
- end
-
-
- //Converting it into ipopt format
- f = f';
- LB = LB';
- UB = UB';
- x0 = x0';
- conMatrix = [Aeq;A];
- nbCon = size(conMatrix,1);
- conLB = [beq; repmat(-%inf,nbConInEq,1)]';
- conUB = [beq;b]' ;
- [xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,conMatrix,conLB,conUB,LB,UB,x0,options);
-
- xopt = xopt';
- exitflag = status;
- output = struct("Iterations" , []);
- output.Iterations = iter;
- lambda = struct("lower" , [], ..
- "upper" , [], ..
- "ineqlin" , [], ..
- "eqlin" , []);
-
- lambda.lower = Zl;
- lambda.upper = Zu;
- lambda.eqlin = lmbda(1:nbConEq);
- lambda.ineqlin = lmbda(nbConEq+1:nbCon);
-
-
-endfunction
diff --git a/macros/setOptions.sci~ b/macros/setOptions.sci~
deleted file mode 100644
index ef5c36c..0000000
--- a/macros/setOptions.sci~
+++ /dev/null
@@ -1,40 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-function setOptions(varargin)
-
- options = varargin(1);
- nbOpt = size(options);
-
-
- if (nbOpt~=0) then
- for i = 1:(nbOpt/2)
-
- //Setting the parameters
-
- //Check if the given parameter is String
- if (type(options(2*i)) == 10 ) then
- sym_setStrParam(options(2*i - 1),options(2*i));
-
- //Check if the given parameter is Double
- elseif(type(options(2*i))==1) then
- sym_setDblParam(options(2*i - 1),options(2*i));
-
- //Check if the given parameter is Integer
- elseif(type(options(2*i))==8)
- sym_setIntParam(options(2*i - 1),options(2*i));
- end
-
- end
- end
-
-endfunction
-
diff --git a/macros/symphony.sci~ b/macros/symphony.sci~
deleted file mode 100644
index 4b11ae8..0000000
--- a/macros/symphony.sci~
+++ /dev/null
@@ -1,287 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-function [xopt,fopt,status,output] = symphony (varargin)
- // Solves a mixed integer linear programming constrained optimization problem.
- //
- // Calling Sequence
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB)
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense)
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense,options)
- // [xopt,fopt,status,output] = symphony( ... )
- //
- // Parameters
- // nbVar : a double, number of variables.
- // nbCon : a double, number of constraints.
- // objCoeff : a 1 x n matrix of doubles, where n is number of variables, represents coefficients of the variables in the objective.
- // isInt : a vector of boolean, represents wether a variable is constrained to be an integer.
- // LB : a vector of doubles, represents lower bounds of the variables.
- // UB : a vector of doubles, represents upper bounds of the variables.
- // conMatrix : a matrix of doubles, represents matrix representing the constraint matrix.
- // conLB : a vector of doubles, represents lower bounds of the constraints.
- // conUB : a vector of doubles, represents upper bounds of the constraints
- // objSense : The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here.
- // options : a a list containing the the parameters to be set.
- // xopt : a vector of doubles, the computed solution of the optimization problem.
- // fopt : a double, the function value at x.
- // status : status flag from symphony.
- // output : The output data structure contains detailed informations about the optimization process.
- //
- // Description
- // Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
- // find the minimum or maximum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & f(x) \\
- // & \text{subject to} & conLB \leq C(x) \leq conUB \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.
- //
- // Examples
- // //A basic case :
- // // Objective function
- // c = [350*5,330*3,310*4,280*6,500,450,400,100]';
- // // Lower Bound of variable
- // lb = repmat(0,8,1);
- // // Upper Bound of variables
- // ub = [repmat(1,4,1);repmat(%inf,4,1)];
- // // Constraint Matrix
- // conMatrix = [5,3,4,6,1,1,1,1;
- // 5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
- // 5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
- // // Lower Bound of constrains
- // conlb = [ 25; 1.25; 1.25]
- // // Upper Bound of constrains
- // conub = [ 25; 1.25; 1.25]
- // // Row Matrix for telling symphony that the is integer or not
- // isInt = [repmat(%t,1,4) repmat(%f,1,4)];
- // xopt = [1 1 0 1 7.25 0 0.25 3.5]
- // fopt = [8495]
- // // Calling Symphony
- // [x,f,status,output] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1)
- //
- // Examples
- // // An advanced case where we set some options in symphony
- // // This problem is taken from
- // // P.C.Chu and J.E.Beasley
- // // "A genetic algorithm for the multidimensional knapsack problem",
- // // Journal of Heuristics, vol. 4, 1998, pp63-86.
- // // The problem to be solved is:
- // // Max sum{j=1,...,n} p(j)x(j)
- // // st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
- // // x(j)=0 or 1
- // // The function to be maximize i.e. P(j)
- // p = [ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
- // 825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
- // 877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
- // 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
- // 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
- // 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
- // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
- // //Constraint Matrix
- // conMatrix = [
- // //Constraint 1
- // 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
- // 550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
- // 164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
- // 320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
- // 597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
- // 797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
- // 718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
- // //Constraint 2
- // 509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
- // 350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
- // 638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
- // 892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
- // 158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
- // 252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
- // 708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
- // //Constraint 3
- // 806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
- // 883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
- // 137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
- // 482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
- // 280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
- // 73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
- // 382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
- // //Constraint 4
- // 404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
- // 263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
- // 817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
- // 967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
- // 987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
- // 68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
- // 689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
- // //Constrain 5
- // 475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
- // 515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
- // 447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
- // 768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
- // 420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
- // 483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
- // 893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
- // ];
- // nbCon = size(conMatrix,1)
- // nbVar = size(conMatrix,2)
- // // Lower Bound of variables
- // lb = repmat(0,nbVar,1)
- // // Upper Bound of variables
- // ub = repmat(1,nbVar,1)
- // // Row Matrix for telling symphony that the is integer or not
- // isInt = repmat(%t,1,nbVar)
- // // Lower Bound of constrains
- // conLB=repmat(0,nbCon,1);
- // // Upper Bound of constraints
- // conUB=[11927 13727 11551 13056 13460 ]';
- // options = list("time_limit", 25);
- // // The expected solution :
- // // Output variables
- // xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
- // 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 ..
- // 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
- // // Optimal value
- // fopt = [ 24381 ]
- // // Calling Symphony
- // [x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
-
-//To check the number of input and output argument
- [lhs , rhs] = argn();
-
-//To check the number of argument given by user
- if ( rhs < 9 | rhs > 11 ) then
- errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set [9 10 11]"), "Symphony", rhs);
- error(errmsg)
- end
-
- nbVar = varargin(1);
- nbCon = varargin(2);
- objCoef = varargin(3);
- isInt = varargin(4);
- LB = varargin(5);
- UB = varargin(6);
- conMatrix = varargin(7);
- conLB = varargin(8);
- conUB = varargin(9);
-
- if ( rhs<10 ) then
- objSense = 1;
- else
- objSense = varargin(10);
- end
-
- if (rhs<11|size(varargin(11))==0) then
- options = list();
- else
- options = varargin(11);
- end
-
-// Check if the user gives row vector
-// and Changing it to a column matrix
-
- if (size(isInt,2)== [nbVar]) then
- isInt = isInt';
- end
-
- if (size(LB,2)== [nbVar]) then
- LB = LB';
- end
-
- if (size(UB,2)== [nbVar]) then
- UB = UB';
- end
-
- if (size(conLB,2)== [nbVar]) then
- conLB = conLB';
- end
-
- if (size(conUB,2)== [nbVar]) then
- conUB = conUB';
- end
-
-
- if (size(objCoef,2)~=1) then
- errmsg = msprintf(gettext("%s: Objective Coefficients should be a column matrix"), "Symphony");
- error(errmsg);
- end
-
- if (size(objCoef,1)~=nbVar) then
- errmsg = msprintf(gettext("%s: Number of variables in Objective Coefficients is not equal to number of variables given"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of isInt which should equal to the number of variables
- if(size(isInt,1)~=nbVar) then
- errmsg = msprintf(gettext("%s: The size of isInt is not equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of lower bound of inequality constraint which should equal to the number of constraints
- if ( size(conLB,1) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Lower Bound of constraint is not equal to the number of constraint"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of lower bound of inequality constraint which should equal to the number of constraints
- if ( size(conUB,1) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Upper Bound of constraint is not equal to the number of constraint"), "Symphony");
- error(errmsg);
- end
-
- //Check the row of constraint which should equal to the number of constraints
- if ( size(conMatrix,1) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The number of rows in constraint should be equal to the number of constraints"), "Symphony");
- error(errmsg);
- end
-
- //Check the column of constraint which should equal to the number of variables
- if ( size(conMatrix,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The number of columns in constraint should equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of Lower Bound which should equal to the number of variables
- if ( size(LB,1) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of Upper Bound which should equal to the number of variables
- if ( size(UB,1) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- if (type(options) ~= 15) then
- errmsg = msprintf(gettext("%s: Options should be a list "), "Symphony");
- error(errmsg);
- end
-
- if (modulo(size(options),2)) then
- errmsg = msprintf(gettext("%s: Size of parameters should be even"), "Symphony");
- error(errmsg);
- end
-
- LB = LB';
- UB = UB';
- isInt = isInt';
- objCoef = objCoef';
-
- [xopt,fopt,status,output] = symphony_call(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense,options);
-
-endfunction
diff --git a/macros/symphony_call.sci~ b/macros/symphony_call.sci~
deleted file mode 100644
index 057ba63..0000000
--- a/macros/symphony_call.sci~
+++ /dev/null
@@ -1,52 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-function [xopt,fopt,status,output] = symphony_call(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense,options)
-
- //Opening Symphony environment
- sym_open();
-
- //Setting Options for the Symphpony
-// setOptions(options);
-
- //Choosing to launch basic or advanced version
- if(~issparse(conMatrix)) then
- sym_loadProblemBasic(nbVar,nbCon,LB,UB,objCoef,isInt,objSense,conMatrix,conLB,conUB);
- else
- // Changing to Constraint Matrix into sparse matrix
- conMatrix_advanced=sparse(conMatrix);
- sym_loadProblem(nbVar,nbCon,LB,UB,objCoef,isInt,objSense,conMatrix_advanced,conLB,conUB);
- end
-
- op = sym_solve();
- disp(op);
-
- xopt = [];
- fopt = [];
- status = [];
- output = [];
-
- if (~op) then
- xopt = sym_getVarSoln();
- // Symphony gives a row matrix converting it to column matrix
- xopt = xopt';
-
- fopt = sym_getObjVal();
- end
-
- status = sym_getStatus();
-
- output = struct("Iterations" , []);
-
- output.Iterations = sym_getIterCount();
-
-
-endfunction
diff --git a/macros/symphonymat.sci~ b/macros/symphonymat.sci~
deleted file mode 100644
index 455dd67..0000000
--- a/macros/symphonymat.sci~
+++ /dev/null
@@ -1,242 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-function [xopt,fopt,status,iter] = symphonymat (varargin)
- // Solves a mixed integer linear programming constrained optimization problem in intlinprog format.
- //
- // Calling Sequence
- // xopt = symphonymat(f,intcon,A,b)
- // xopt = symphonymat(f,intcon,A,b,Aeq,beq)
- // xopt = symphonymat(f,intcon,A,b,Aeq,beq,lb,ub)
- // xopt = symphonymat(f,intcon,A,b,Aeq,beq,lb,ub,options)
- // [xopt,fopt,status,output] = symphonymat( ... )
- //
- // Parameters
- // f : a 1xn matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective
- // intcon : Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable
- // A : Linear inequality constraint matrix, specified as a matrix of doubles. A represents the linear coefficients in the constraints A*x ≤ b. A has size M-by-N, where M is the number of constraints and N is number of variables
- // b : Linear inequality constraint vector, specified as a vector of doubles. b represents the constant vector in the constraints A*x ≤ b. b has length M, where A is M-by-N
- // Aeq : Linear equality constraint matrix, specified as a matrix of doubles. Aeq represents the linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is the number of constraints and N is number of variables
- // beq : Linear equality constraint vector, specified as a vector of doubles. beq represents the constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-by-N.
- // lb : Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.
- // ub : Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.
- // options : a list containing the the parameters to be set.
- // xopt : a 1xn matrix of doubles, the computed solution of the optimization problem
- // fopt : a 1x1 matrix of doubles, the function value at x
- // output : The output data structure contains detailed informations about the optimization process.
- //
- // Description
- // Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
- // find the minimum or maximum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & f(x) \\
- // & \text{subject to} & conLB \leq C(x) \leq conUB \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.
- //
- // Examples
- // // Objective function
- // c = [350*5,330*3,310*4,280*6,500,450,400,100]
- // // Lower Bound of variable
- // lb = repmat(0,1,8);
- // // Upper Bound of variables
- // ub = [repmat(1,1,4) repmat(%inf,1,4)];
- // // Constraint Matrix
- // Aeq = [5,3,4,6,1,1,1,1;
- // 5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
- // 5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
- // beq = [ 25, 1.25, 1.25]
- // intcon = [1 2 3 4];
- // // Calling Symphony
- // [x,f,status,output] = symphonymat(c,intcon,[],[],Aeq,beq,lb,ub)
- //
- // Examples
- // // An advanced case where we set some options in symphony
- // // This problem is taken from
- // // P.C.Chu and J.E.Beasley
- // // "A genetic algorithm for the multidimensional knapsack problem",
- // // Journal of Heuristics, vol. 4, 1998, pp63-86.
- // // The problem to be solved is:
- // // Max sum{j=1,...,n} p(j)x(j)
- // // st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
- // // x(j)=0 or 1
- // // The function to be maximize i.e. P(j)
- // objCoef = -1*[ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
- // 825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
- // 877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
- // 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
- // 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
- // 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
- // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]
- // //Constraint Matrix
- // conMatrix = [ //Constraint 1
- // 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
- // 550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
- // 164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
- // 320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
- // 597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
- // 797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
- // 718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
- // //Constraint 2
- // 509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
- // 350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
- // 638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
- // 892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
- // 158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
- // 252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
- // 708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
- // //Constraint 3
- // 806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
- // 883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
- // 137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
- // 482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
- // 280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
- // 73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
- // 382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
- // //Constraint 4
- // 404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
- // 263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
- // 817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
- // 967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
- // 987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
- // 68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
- // 689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
- // //Constrain 5
- // 475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
- // 515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
- // 447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
- // 768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
- // 420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
- // 483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
- // 893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
- // ];
- // nbVar = size(objCoef,2)
- // conUB=[11927 13727 11551 13056 13460 ];
- // // Lower Bound of variables
- // lb = repmat(0,1,nbVar)
- // // Upper Bound of variables
- // ub = repmat(1,1,nbVar)
- // // Lower Bound of constrains
- // intcon = []
- // for i = 1:nbVar
- // intcon = [intcon i];
- // end
- // options = list("time_limit", 25);
- // // The expected solution :
- // // Output variables
- // xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
- // 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 ..
- // 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
- // // Optimal value
- // fopt = [ 24381 ]
- // // Calling Symphony
- // [x,f,status,output] = symphonymat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub,options);
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
-
-
-//To check the number of input and output argument
- [lhs , rhs] = argn();
-
-//To check the number of argument given by user
- if ( rhs < 4 | rhs == 5 | rhs == 7 | rhs > 9 ) then
- errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set [4 6 8 9]"), "Symphony", rhs);
- error(errmsg)
- end
-
-
- objCoef = varargin(1)
- intcon = varargin(2)
- A = varargin(3)
- b = varargin(4)
-
- nbVar = size(objCoef,2);
- nbCon = size(A,1);
-
- if ( rhs<4 ) then
- Aeq = []
- beq = []
- else
- Aeq = varargin(5);
- beq = varargin(6);
-
- if (size(Aeq,1)~=0) then
- //Check the size of equality constraint which should equal to the number of inequality constraints
- if ( size(Aeq,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The size of equality constraint is not equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of upper bound of inequality constraint which should equal to the number of constraints
- if ( size(beq,2) ~= size(Aeq,1)) then
- errmsg = msprintf(gettext("%s: The equality constraint upper bound is not equal to the number of equality constraint"), "Symphony");
- error(errmsg);
- end
- end
-
- end
-
- if ( rhs<6 ) then
- lb = repmat(-%inf,1,nbVar);
- ub = repmat(%inf,1,nbVar);
- else
- lb = varargin(7);
- ub = varargin(8);
- end
-
- if (rhs<8) then
- options = list();
- else
- options = varargin(9);
- end
-
-
-//Check the size of lower bound of inequality constraint which should equal to the number of constraints
- if ( size(b,2) ~= size(A,1)) then
- errmsg = msprintf(gettext("%s: The Lower Bound of inequality constraint is not equal to the number of constraint"), "Symphony");
- error(errmsg);
- end
-
-//Check the size of Lower Bound which should equal to the number of variables
- if ( size(lb,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
-//Check the size of Upper Bound which should equal to the number of variables
- if ( size(ub,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- //Changing the inputs in symphony's format
- conMatrix = [A;Aeq]
- nbCon = size(conMatrix,1);
- conLB = [repmat(-%inf,1,size(A,1)), beq]';
- conUB = [b,beq]' ;
-
- isInt = repmat(%f,1,nbVar);
- for i=1:size(intcon,2)
- isInt(intcon(i)) = %t
- end
-
- objSense = 1;
-
- [xopt,fopt,status,iter] = symphony_call(nbVar,nbCon,objCoef,isInt,lb,ub,conMatrix,conLB,conUB,objSense,options);
-
-endfunction
diff --git a/sci_gateway/cpp/QuadNLP.hpp~ b/sci_gateway/cpp/QuadNLP.hpp~
deleted file mode 100644
index 5e1047f..0000000
--- a/sci_gateway/cpp/QuadNLP.hpp~
+++ /dev/null
@@ -1,134 +0,0 @@
-/*
- * Quadratic Programming Toolbox for Scilab using IPOPT library
- * Authors :
- Sai Kiran
- Keyur Joshi
- Iswarya
-
-
- * Optimizing (minimizing) the quadratic objective function having any number of variables and linear constraints.
- *
-*/
-
-#ifndef __QuadNLP_HPP__
-#define __QuadNLP_HPP__
-
-#include "IpTNLP.hpp"
-extern "C"{
-#include <sciprint.h>
-
-}
-using namespace Ipopt;
-
-class QuadNLP : public TNLP
-{
- private:
- Index numVars_; // Number of variables.
-
- Index numConstr_; // Number of constraints.
-
- const Number *qMatrix_ = NULL; //qMatrix_ is a pointer to matrix of size numVars X numVars_
- // with coefficents of quadratic terms in objective function.
-
- const Number *lMatrix_ = NULL;//lMatrix_ is a pointer to matrix of size 1*numVars_
- // with coefficents of linear terms in objective function.
-
- const Number *conMatrix_ = NULL;//conMatrix_ is a pointer to matrix of size numConstr X numVars
- // with coefficients of terms in a each objective in each row.
-
- const Number *conUB_= NULL; //conUB_ is a pointer to a matrix of size of 1*numConstr_
- // with upper bounds of all constraints.
-
- const Number *conLB_ = NULL; //conLB_ is a pointer to a matrix of size of 1*numConstr_
- // with lower bounds of all constraints.
-
- const Number *varUB_= NULL; //varUB_ is a pointer to a matrix of size of 1*numVar_
- // with upper bounds of all variables.
-
- const Number *varLB_= NULL; //varLB_ is a pointer to a matrix of size of 1*numVar_
- // with lower bounds of all variables.
-
- const Number *varGuess_= NULL; //varGuess_ is a pointer to a matrix of size of 1*numVar_
- // with initial guess of all variables.
-
- Number *finalX_= NULL; //finalX_ is a pointer to a matrix of size of 1*numVar_
- // with final value for the primal variables.
-
- Number *finalZl_= NULL; //finalZl_ is a pointer to a matrix of size of 1*numVar_
- // with final values for the lower bound multipliers
-
- Number *finalZu_= NULL; //finalZu_ is a pointer to a matrix of size of 1*numVar_
- // with final values for the upper bound multipliers
-
- Number *finalLambda_= NULL; //finalLambda_ is a pointer to a matrix of size of 1*numConstr_
- // with final values for the upper bound multipliers
-
- Number finalObjVal_; //finalObjVal_ is a scalar with the final value of the objective.
-
- int iter_; //Number of iteration.
-
- int status_; //Solver return status
-
- QuadNLP(const QuadNLP&);
- QuadNLP& operator=(const QuadNLP&);
- public:
- /*
- * Constructor
- */
- QuadNLP(Index nV, Index nC, Number *qM, Number *lM, Number *cM, Number *cUB, Number *cLB, Number *vUB, Number *vLB):
- numVars_(nV),numConstr_(nC),qMatrix_(qM),lMatrix_(lM),conMatrix_(cM),conUB_(cUB),conLB_(cLB),varUB_(vUB),varLB_(vLB),finalX_(0), finalZl_(0), finalZu_(0), finalObjVal_(1e20){ }
-
-
- /* Go to :
-
- http://www.coin-or.org/Ipopt/documentation/node23.html#SECTION00053130000000000000
- For details about these below methods.
- */
- virtual ~QuadNLP();
- virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
- Index& nnz_h_lag, IndexStyleEnum& index_style);
- virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
- Index m, Number* g_l, Number* g_u);
- virtual bool get_starting_point(Index n, bool init_x, Number* x,
- bool init_z, Number* z_L, Number* z_U,
- Index m, bool init_lambda,
- Number* lambda);
- virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value);
- virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f);
- virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g);
- virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
- Index m, Index nele_jac, Index* iRow, Index *jCol,
- Number* values);
- virtual bool eval_h(Index n, const Number* x, bool new_x,
- Number obj_factor, Index m, const Number* lambda,
- bool new_lambda, Index nele_hess, Index* iRow,
- Index* jCol, Number* values);
- virtual void finalize_solution(SolverReturn status,
- Index n, const Number* x, const Number* z_L, const Number* z_U,
- Index m, const Number* g, const Number* lambda, Number obj_value,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq);
-
- const double * getX(); //Returns a pointer to a matrix of size of 1*numVar
- // with final value for the primal variables.
-
- const double * getZu(); //Returns a pointer to a matrix of size of 1*numVars
- // with final values for the upper bound multipliers
-
- const double * getZl(); //Returns a pointer to a matrix of size of 1*numVars
- // with final values for the upper bound multipliers
-
- const double * getLambda(); //Returns a pointer to a matrix of size of 1*numConstr
- // with final values for the constraint multipliers
-
-
- double getObjVal(); //Returns the output of the final value of the objective.
-
- double iterCount(); //Returns the iteration count
-
- int returnStatus(); //Returns the status count
-
-
-};
-
-#endif __QuadNLP_HPP__
diff --git a/sci_gateway/cpp/README.rst~ b/sci_gateway/cpp/README.rst~
deleted file mode 100644
index e69de29..0000000
--- a/sci_gateway/cpp/README.rst~
+++ /dev/null
diff --git a/sci_gateway/cpp/builder_gateway_cpp.sce~ b/sci_gateway/cpp/builder_gateway_cpp.sce~
deleted file mode 100644
index 225edd8..0000000
--- a/sci_gateway/cpp/builder_gateway_cpp.sce~
+++ /dev/null
@@ -1,149 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Keyur Joshi, Sai Kiran, Iswarya and Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-mode(-1)
-lines(0)
-
-toolbox_title = "FAMOS";
-
-[a, opt] = getversion();
-Version = opt(2);
-
-path_builder = get_absolute_file_path('builder_gateway_cpp.sce');
-
-tools_path = path_builder + "../../thirdparty/linux/";
-
-C_Flags=["-w -fpermissive -I"+tools_path+"include/coin -Wl,-rpath="+tools_path+"lib/"+Version+filesep()+" "]
-
-Linker_Flag = ["-L"+tools_path+"lib/"+Version+filesep()+"libSym"+" "+"-L"+tools_path+"lib/"+Version+filesep()+"libipopt" ]
-
-
-//Name of All the Functions
-Function_Names = [
- //for opening/closing environment and checking if it is open/close
- "sym_open","sci_sym_open";
- "sym_close","sci_sym_close";
- "sym_isEnvActive","sci_sym_isEnvActive";
-
- //run time parameters
- "sym_resetParams","sci_sym_set_defaults";
- "sym_setIntParam","sci_sym_set_int_param";
- "sym_getIntParam","sci_sym_get_int_param";
- "sym_setDblParam","sci_sym_set_dbl_param";
- "sym_getDblParam","sci_sym_get_dbl_param";
- "sym_setStrParam","sci_sym_set_str_param";
- "sym_getStrParam","sci_sym_get_str_param";
- "sym_getInfinity","sci_sym_getInfinity";
-
- //problem loaders
- "sym_loadProblemBasic","sci_sym_loadProblemBasic";
- "sym_loadProblem","sci_sym_loadProblem";
- "sym_loadMPS","sci_sym_load_mps";
-
- //basic data
- "sym_getNumConstr","sci_sym_get_num_int";
- "sym_getNumVar","sci_sym_get_num_int";
- "sym_getNumElements","sci_sym_get_num_int";
-
- //variable and objective data
- "sym_isContinuous","sci_sym_isContinuous";
- "sym_isBinary","sci_sym_isBinary";
- "sym_isInteger","sci_sym_isInteger";
- "sym_setContinuous","sci_sym_set_continuous";
- "sym_setInteger","sci_sym_set_integer";
- "sym_getVarLower","sci_sym_get_dbl_arr";
- "sym_getVarUpper","sci_sym_get_dbl_arr";
- "sym_setVarLower","sci_sym_setVarBound";
- "sym_setVarUpper","sci_sym_setVarBound";
- "sym_getObjCoeff","sci_sym_get_dbl_arr";
- "sym_setObjCoeff","sci_sym_setObjCoeff";
- "sym_getObjSense","sci_sym_getObjSense";
- "sym_setObjSense","sci_sym_setObjSense";
-
- //constraint data
- "sym_getRhs","sci_sym_get_dbl_arr";
- "sym_getConstrRange","sci_sym_get_dbl_arr";
- "sym_getConstrLower","sci_sym_get_dbl_arr";
- "sym_getConstrUpper","sci_sym_get_dbl_arr";
- "sym_setConstrLower","sci_sym_setConstrBound";
- "sym_setConstrUpper","sci_sym_setConstrBound";
- "sym_setConstrType","sci_sym_setConstrType";
- "sym_getMatrix","sci_sym_get_matrix";
- "sym_getConstrSense","sci_sym_get_row_sense";
-
- //add/remove variables and constraints
- "sym_addConstr","sci_sym_addConstr";
- "sym_addVar","sci_sym_addVar";
- "sym_deleteVars","sci_sym_delete_cols";
- "sym_deleteConstrs","sci_sym_delete_rows";
-
- //primal bound
- "sym_getPrimalBound","sci_sym_getPrimalBound";
- "sym_setPrimalBound","sci_sym_setPrimalBound";
-
- //set preliminary solution
- "sym_setVarSoln","sci_sym_setColSoln";
-
- //solve
- "sym_solve","sci_sym_solve";
-
- //post solve functions
- "sym_getStatus","sci_sym_get_status";
- "sym_isOptimal","sci_sym_get_solver_status";
- "sym_isInfeasible","sci_sym_get_solver_status";
- "sym_isAbandoned","sci_sym_get_solver_status";
- "sym_isIterLimitReached","sci_sym_get_solver_status";
- "sym_isTimeLimitReached","sci_sym_get_solver_status";
- "sym_isTargetGapAchieved","sci_sym_get_solver_status";
- "sym_getVarSoln","sci_sym_getVarSoln";
- "sym_getObjVal","sci_sym_getObjVal";
- "sym_getIterCount","sci_sym_get_iteration_count";
- "sym_getConstrActivity","sci_sym_getRowActivity";
-
- //QP function
- "solveqp","sci_solveqp"
- ];
-
-//Name of all the files to be compiled
-Files = [
- "globals.cpp",
- "sci_iofunc.hpp",
- "sci_iofunc.cpp",
- "sci_sym_openclose.cpp",
- "sci_solver_status_query_functions.cpp",
- "sci_sym_solve.cpp",
- "sci_sym_loadproblem.cpp",
- "sci_sym_isenvactive.cpp",
- "sci_sym_load_mps.cpp",
- "sci_vartype.cpp",
- "sci_sym_getinfinity.cpp",
- "sci_sym_solution.cpp",
- "sym_data_query_functions.cpp"
- "sci_sym_set_variables.cpp",
- "sci_sym_setobj.cpp",
- "sci_sym_varbounds.cpp",
- "sci_sym_rowmod.cpp",
- "sci_sym_set_indices.cpp",
- "sci_sym_addrowcol.cpp",
- "sci_sym_primalbound.cpp",
- "sci_sym_setcolsoln.cpp",
- "sci_sym_getrowact.cpp",
- "sci_sym_getobjsense.cpp",
- "sci_sym_remove.cpp",
- "sci_QuadNLP.cpp",
- "QuadNLP.hpp",
- "sci_ipopt.cpp"
-
- ]
-
-tbx_build_gateway(toolbox_title,Function_Names,Files,get_absolute_file_path("builder_gateway_cpp.sce"), [], Linker_Flag, C_Flags, [], "g++");
-
-clear WITHOUT_AUTO_PUTLHSVAR toolbox_title Function_Names Files Linker_Flag C_Flags;
diff --git a/sci_gateway/cpp/sci_QuadNLP.cpp~ b/sci_gateway/cpp/sci_QuadNLP.cpp~
deleted file mode 100644
index 99987a2..0000000
--- a/sci_gateway/cpp/sci_QuadNLP.cpp~
+++ /dev/null
@@ -1,253 +0,0 @@
-/*
- * Quadratic Programming Toolbox for Scilab using IPOPT library
- * Authors :
- Sai Kiran
- Keyur Joshi
- Iswarya
- */
-
-#include "QuadNLP.hpp"
-#include "IpIpoptData.hpp"
-
-extern "C"{
-#include <api_scilab.h>
-#include <Scierror.h>
-#include <BOOL.h>
-#include <localization.h>
-#include <sciprint.h>
-
-
-double x_static,i, *op_obj_x = NULL,*op_obj_value = NULL;
-
-using namespace Ipopt;
-
-QuadNLP::~QuadNLP()
- {
- free(finalX_);
- free(finalZl_);
- free(finalZu_);}
-
-//get NLP info such as number of variables,constraints,no.of elements in jacobian and hessian to allocate memory
-bool QuadNLP::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g, Index& nnz_h_lag, IndexStyleEnum& index_style){
- n=numVars_; // Number of variables
- m=numConstr_; // Number of constraints
- nnz_jac_g = n*m; // No. of elements in Jacobian of constraints
- nnz_h_lag = n*(n+1)/2; // No. of elements in lower traingle of Hessian of the Lagrangian.
- index_style=C_STYLE; // Index style of matrices
- return true;
- }
-
-//get variable and constraint bound info
-bool QuadNLP::get_bounds_info(Index n, Number* x_l, Number* x_u, Index m, Number* g_l, Number* g_u){
-
- unsigned int i;
- for(i=0;i<n;i++){
- x_l[i]=varLB_[i];
- x_u[i]=varUB_[i];
- }
-
- for(i=0;i<m;i++){
- g_l[i]=conLB_[i];
- g_u[i]=conUB_[i];
- }
- return true;
- }
-
-//get value of objective function at vector x
-bool QuadNLP::eval_f(Index n, const Number* x, bool new_x, Number& obj_value){
- unsigned int i,j;
- obj_value=0;
-
- for (i=0;i<=n;i++){
- for (j=0;j<=n;j++){
- obj_value+=0.5*x[i]*x[j]*qMatrix_[n*i+j];
- }
- obj_value+=x[i]*lMatrix_[i];
- }
- return true;
- }
-
-//get value of gradient of objective function at vector x.
-bool QuadNLP::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f){
- unsigned int i,j;
- for(i=0;i<n;i++)
- {
- grad_f[i]=lMatrix_[i];
- for(j=0;j<n;j++)
- {
- grad_f[i]+=(qMatrix_[n*i+j])*x[j];
- }
- }
- return true;
-}
-
-//Get the values of constraints at vector x.
-bool QuadNLP::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g){
- unsigned int i,j;
- for(i=0;i<m;i++)
- {
- g[i]=0;
- for(j=0;j<n;j++)
- {
- g[i]+=x[j]*conMatrix_[i+j*m];
- }
- }
- return true;
-}
-
-// This method sets initial values for required vectors . For now we are assuming 0 to all values.
-bool QuadNLP::get_starting_point(Index n, bool init_x, Number* x,
- bool init_z, Number* z_L, Number* z_U,
- Index m, bool init_lambda,
- Number* lambda){
- if (init_x == true){ //we need to set initial values for vector x
- for (Index var=0;var<n;var++)
- x[var]=varGuess_[var];//initialize with 0 or we can change.
- }
-
- if (init_z == true){ //we need to provide initial values for vector bound multipliers
- for (Index var=0;var<n;++var){
- z_L[var]=0.0; //initialize with 0 or we can change.
- z_U[var]=0.0;//initialize with 0 or we can change.
- }
- }
-
- if (init_lambda == true){ //we need to provide initial values for lambda values.
- for (Index var=0;var<m;++var){
- lambda[var]=0.0; //initialize with 0 or we can change.
- }
- }
-
- return true;
- }
-/* Return either the sparsity structure of the Jacobian of the constraints, or the values for the Jacobian of the constraints at the point x.
-
-*/
-bool QuadNLP::eval_jac_g(Index n, const Number* x, bool new_x,
- Index m, Index nele_jac, Index* iRow, Index *jCol,
- Number* values){
-
- //It asked for structure of jacobian.
- if (values==NULL){ //Structure of jacobian (full structure)
- int index=0;
- for (int var=0;var<m;++var)//no. of constraints
- for (int flag=0;flag<n;++flag){//no. of variables
- iRow[index]=var;
- jCol[index]=flag;
- index++;
- }
- }
- //It asked for values
- else {
- int index=0;
- for (int var=0;var<m;++var)
- for (int flag=0;flag<n;++flag)
- values[index++]=conMatrix_[var+flag*m];
- }
- return true;
- }
-
-/*
- * Return either the sparsity structure of the Hessian of the Lagrangian,
- * or the values of the Hessian of the Lagrangian for the given values for
- * x,lambda,obj_factor.
-*/
-bool QuadNLP::eval_h(Index n, const Number* x, bool new_x,
- Number obj_factor, Index m, const Number* lambda,
- bool new_lambda, Index nele_hess, Index* iRow,
- Index* jCol, Number* values){
-
- if (values==NULL){
- Index idx=0;
- for (Index row = 0; row < n; row++) {
- for (Index col = 0; col <= row; col++) {
- iRow[idx] = row;
- jCol[idx] = col;
- idx++;
- }
- }
- }
- else {
- Index index=0;
- for (Index row=0;row < n;++row){
- for (Index col=0; col <= row; ++col){
- values[index++]=obj_factor*(qMatrix_[n*row+col]);
- }
- }
- }
- return true;
- }
-
-
-void QuadNLP::finalize_solution(SolverReturn status,
- Index n, const Number* x, const Number* z_L, const Number* z_U,
- Index m, const Number* g, const Number* lambda, Number obj_value,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq){
-
- finalX_ = (double*)malloc(sizeof(double) * numVars_ * 1);
- for (Index i=0; i<n; i++)
- {
- finalX_[i] = x[i];
- }
-
- finalZl_ = (double*)malloc(sizeof(double) * numVars_ * 1);
- for (Index i=0; i<n; i++)
- {
- finalZl_[i] = z_L[i];
- }
-
- finalZu_ = (double*)malloc(sizeof(double) * numVars_ * 1);
- for (Index i=0; i<n; i++)
- {
- finalZu_[i] = z_U[i];
- }
-
- finalLambda_ = (double*)malloc(sizeof(double) * numConstr_ * 1);
- for (Index i=0; i<m; i++)
- {
- finalLambda_[i] = lambda[i];
- }
-
- iter_ = ip_data->iter_count();
- finalObjVal_ = obj_value;
- status_ = status;
-
- }
-
- const double * QuadNLP::getX()
- {
- return finalX_;
- }
-
- const double * QuadNLP::getZl()
- {
- return finalZl_;
- }
-
- const double * QuadNLP::getZu()
- {
- return finalZu_;
- }
-
- const double * QuadNLP::getLambda()
- {
- return finalLambda_;
- }
-
- double QuadNLP::getObjVal()
- {
- return finalObjVal_;
- }
-
- double QuadNLP::iterCount()
- {
- return (double)iter_;
- }
-
- int QuadNLP::returnStatus()
- {
- return status_;
- }
-
-}
diff --git a/sci_gateway/cpp/sci_ipopt.cpp~ b/sci_gateway/cpp/sci_ipopt.cpp~
deleted file mode 100644
index 8d62b21..0000000
--- a/sci_gateway/cpp/sci_ipopt.cpp~
+++ /dev/null
@@ -1,409 +0,0 @@
-/*
- * Quadratic Programming Toolbox for Scilab using IPOPT library
- * Authors :
- Sai Kiran
- Keyur Joshi
- Iswarya
- */
-
-
-#include "sci_iofunc.hpp"
-#include "IpIpoptApplication.hpp"
-#include "QuadNLP.hpp"
-
-extern "C"{
-#include <api_scilab.h>
-#include <Scierror.h>
-#include <BOOL.h>
-#include <localization.h>
-#include <sciprint.h>
-
-int j;
-double *op_x, *op_obj,*p;
-
-bool readSparse(int arg,int *iRows,int *iCols,int *iNbItem,int** piNbItemRow, int** piColPos, double** pdblReal){
- SciErr sciErr;
- int* piAddr = NULL;
- int iType = 0;
- int iRet = 0;
- sciErr = getVarAddressFromPosition(pvApiCtx, arg, &piAddr);
- if(sciErr.iErr) {
- printError(&sciErr, 0);
- return false;
- }
- sciprint("\ndone\n");
- if(isSparseType(pvApiCtx, piAddr)){
- sciprint("done\n");
- sciErr =getSparseMatrix(pvApiCtx, piAddr, iRows, iCols, iNbItem, piNbItemRow, piColPos, pdblReal);
- if(sciErr.iErr) {
- printError(&sciErr, 0);
- return false;
- }
- }
-
- else {
- sciprint("\nSparse matrix required\n");
- return false;
- }
- return true;
- }
-
-int sci_solveqp(char *fname)
-{
-
- CheckInputArgument(pvApiCtx, 10, 10); // We need total 10 input arguments.
- CheckOutputArgument(pvApiCtx, 7, 7);
-
- // Error management variable
- SciErr sciErr;
- int retVal=0, *piAddressVarQ = NULL,*piAddressVarP = NULL,*piAddressVarCM = NULL,*piAddressVarCUB = NULL,*piAddressVarCLB = NULL, *piAddressVarLB = NULL,*piAddressVarUB = NULL,*piAddressVarG = NULL;
- double *QItems=NULL,*PItems=NULL,*ConItems=NULL,*conUB=NULL,*conLB=NULL,*varUB=NULL,*varLB=NULL,*init_guess = NULL,x,f,iter;
- static unsigned int nVars = 0,nCons = 0;
- unsigned int temp1 = 0,temp2 = 0;
-
-
- ////////// Manage the input argument //////////
-
-
- //Number of Variables
- getIntFromScilab(1,&nVars);
-
- //Number of Constraints
- getIntFromScilab(2,&nCons);
-
- temp1 = nVars;
- temp2 = nCons;
-
- //Q matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddressVarQ);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarQ) || isVarComplex(pvApiCtx, piAddressVarQ) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 3);
- return 0;
- }
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarQ, &temp1, &temp1, &QItems);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- //P matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 4, &piAddressVarP);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarP) || isVarComplex(pvApiCtx, piAddressVarP) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 4);
- return 0;
- }
-
- temp1 = 1;
- temp2 = nVars;
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarP, &temp1,&temp2, &PItems);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- if (nCons!=0)
- {
- //conMatrix matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 5, &piAddressVarCM);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarCM) || isVarComplex(pvApiCtx, piAddressVarCM) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 5);
- return 0;
- }
- temp1 = nCons;
- temp2 = nVars;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarCM,&temp1, &temp2, &ConItems);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
-
- //conLB matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 6, &piAddressVarCLB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarCLB) || isVarComplex(pvApiCtx, piAddressVarCLB) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 6);
- return 0;
- }
- temp1 = nCons;
- temp2 = 1;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarCLB,&temp1, &temp2, &conLB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- //conUB matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 7, &piAddressVarCUB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarCUB) || isVarComplex(pvApiCtx, piAddressVarCUB) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 7);
- return 0;
- }
-
- temp1 = nCons;
- temp2 = 1;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarCUB,&temp1, &temp2, &conUB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- }
-
- //varLB matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 8, &piAddressVarLB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarLB) || isVarComplex(pvApiCtx, piAddressVarLB) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 8);
- return 0;
- }
- temp1 = 1;
- temp2 = nVars;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarLB, &temp1,&temp2, &varLB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- //varUB matrix from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 9, &piAddressVarUB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarUB) || isVarComplex(pvApiCtx, piAddressVarUB) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 9);
- return 0;
- }
-
- temp1 = 1;
- temp2 = nVars;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarUB, &temp1,&temp2, &varUB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarLB, &temp1,&temp2, &varLB);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- //Initial Value of variables from scilab
- /* get Address of inputs */
- sciErr = getVarAddressFromPosition(pvApiCtx, 10, &piAddressVarG);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
- /* Check that the first input argument is a real matrix (and not complex) */
- if ( !isDoubleType(pvApiCtx, piAddressVarG) || isVarComplex(pvApiCtx, piAddressVarG) )
- {
- Scierror(999, "%s: Wrong type for input argument #%d: A real matrix expected.\n", fname, 10);
- return 0;
- }
-
- temp1 = 1;
- temp2 = nVars;
-
- /* get matrix */
- sciErr = getMatrixOfDouble(pvApiCtx, piAddressVarG, &temp1,&temp2, &init_guess);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- using namespace Ipopt;
-
- SmartPtr<QuadNLP> Prob = new QuadNLP(nVars,nCons,QItems,PItems,ConItems,conUB,conLB,varUB,varLB);
- SmartPtr<IpoptApplication> app = IpoptApplicationFactory();
- app->RethrowNonIpoptException(true);
-
- // Change some options
- // Note: The following choices are only examples, they might not be
- // suitable for your optimization problem.
- app->Options()->SetNumericValue("tol", 1e-7);
- app->Options()->SetStringValue("mu_strategy", "adaptive");
-
- // Indicates whether all equality constraints are linear
- app->Options()->SetStringValue("jac_c_constant", "yes");
- // Indicates whether all inequality constraints are linear
- app->Options()->SetStringValue("jac_d_constant", "yes");
- // Indicates whether the problem is a quadratic problem
- app->Options()->SetStringValue("hessian_constant", "yes");
-
- // Initialize the IpoptApplication and process the options
- ApplicationReturnStatus status;
- status = app->Initialize();
- if (status != Solve_Succeeded) {
- sciprint("\n*** Error during initialization!\n");
- return0toScilab();
- return (int) status;
- }
- // Ask Ipopt to solve the problem
-
- status = app->OptimizeTNLP(Prob);
-
- double *fX = Prob->getX();
- double ObjVal = Prob->getObjVal();
- double *Zl = Prob->getZl();
- double *Zu = Prob->getZu();
- double *Lambda = Prob->getLambda();
- double iteration = Prob->iterCount();
- int stats = Prob->returnStatus();
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 1, 1, nVars, fX);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 2,1,1,&ObjVal);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfInteger32(pvApiCtx, nbInputArgument(pvApiCtx) + 3,1,1,&stats);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 4,1,1,&iteration);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 5, 1, nVars, Zl);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 6, 1, nVars, Zu);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
- sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 7, 1, nCons, Lambda);
- if (sciErr.iErr)
- {
- printError(&sciErr, 0);
- return 0;
- }
-
-
- AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
- AssignOutputVariable(pvApiCtx, 2) = nbInputArgument(pvApiCtx) + 2;
- AssignOutputVariable(pvApiCtx, 3) = nbInputArgument(pvApiCtx) + 3;
- AssignOutputVariable(pvApiCtx, 4) = nbInputArgument(pvApiCtx) + 4;
- AssignOutputVariable(pvApiCtx, 5) = nbInputArgument(pvApiCtx) + 5;
- AssignOutputVariable(pvApiCtx, 6) = nbInputArgument(pvApiCtx) + 6;
- AssignOutputVariable(pvApiCtx, 7) = nbInputArgument(pvApiCtx) + 7;
-
- // As the SmartPtrs go out of scope, the reference count
- // will be decremented and the objects will automatically
- // be deleted.
-
-
- return 0;
- }
-
-}
-
-/*
-hessian_constan
-jacobian _constant
-
-j_s_d constant : yes
-*/
-
diff --git a/sci_gateway/cpp/sci_sym_solve.cpp~ b/sci_gateway/cpp/sci_sym_solve.cpp~
deleted file mode 100644
index 4abb268..0000000
--- a/sci_gateway/cpp/sci_sym_solve.cpp~
+++ /dev/null
@@ -1,49 +0,0 @@
-/*
- * Implementation Symphony Tool Box for Scilab
- * Contains sym_solve function
- * Author : Sai Kiran
- */
-
-#include <symphony.h>
-#include <sci_iofunc.hpp>
-extern sym_environment* global_sym_env;//defined in globals.cpp
-
-extern "C" {
-#include <api_scilab.h>
-#include <Scierror.h>
-#include <BOOL.h>
-#include <localization.h>
-#include <sciprint.h>
-#include <stdio.h>
-int process_ret_val(int);
-
-int sci_sym_solve(char *fname, unsigned long fname_len){
-
- int status=0;
-
- //check whether we have no input and one output argument or not
- CheckInputArgument(pvApiCtx, 0, 0) ;//no input argument
- CheckOutputArgument(pvApiCtx, 1, 1) ;//one output argument
-
- // Check environment
- if(global_sym_env==NULL)
- sciprint("Error: Symphony environment is not initialized.\n");
- else {// There is an environment opened
- double time_limit = -1.0;
- status = sym_get_dbl_param(global_sym_env,"time_limit",&time_limit);
-
- if (status == FUNCTION_TERMINATED_NORMALLY) {
- if ( time_limit < 0.0 )
- sciprint("\nNote: There is no limit on time.\n");
- else sciprint("\nNote: Time limit has been set to %lf.\n",time_limit);
- status=process_ret_val(sym_solve(global_sym_env));// Call function
- }
- else {
- sciprint("\nUnable to read time limit.\n");
- status = 1; //Error state
- }
- }
- // Return result to scilab
- return returnDoubleToScilab(status);
- }
-}
diff --git a/tests/unit_tests/README.rst~ b/tests/unit_tests/README.rst~
deleted file mode 100644
index e69de29..0000000
--- a/tests/unit_tests/README.rst~
+++ /dev/null
diff --git a/tests/unit_tests/qpipopt_base.tst~ b/tests/unit_tests/qpipopt_base.tst~
deleted file mode 100644
index 9de0d6b..0000000
--- a/tests/unit_tests/qpipopt_base.tst~
+++ /dev/null
@@ -1,76 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-//
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-// <-- JVM NOT MANDATORY -->
-// <-- ENGLISH IMPOSED -->
-
-
-//
-// assert_close --
-// Returns 1 if the two real matrices computed and expected are close,
-// i.e. if the relative distance between computed and expected is lesser than epsilon.
-// Arguments
-// computed, expected : the two matrices to compare
-// epsilon : a small number
-//
-function flag = assert_close ( computed, expected, epsilon )
- if expected==0.0 then
- shift = norm(computed-expected);
- else
- shift = norm(computed-expected)/norm(expected);
- end
-// if shift < epsilon then
-// flag = 1;
-// else
-// flag = 0;
-// end
-// if flag <> 1 then pause,end
- flag = assert_checktrue ( shift < epsilon );
-endfunction
-//
-// assert_equal --
-// Returns 1 if the two real matrices computed and expected are equal.
-// Arguments
-// computed, expected : the two matrices to compare
-// epsilon : a small number
-//
-//function flag = assert_equal ( computed , expected )
-// if computed==expected then
-// flag = 1;
-// else
-// flag = 0;
-// end
-// if flag <> 1 then pause,end
-//endfunction
-
-///Find the value of x that minimize following function
-// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
-// Subject to:
-// x1 + x2 ≤ 2
-// –x1 + 2x2 ≤ 2
-// 2x1 + x2 ≤ 3
-// 0 ≤ x1, 0 ≤ x2.
-Q = [1 -1; -1 2];
-p = [-2; -6];
-conMatrix = [1 1; -1 2; 2 1];
-conUB = [2; 2; 3];
-conLB = [-%inf; -%inf; -%inf];
-lb = [0; 0];
-ub = [%inf; %inf];
-nbVar = 2;
-nbCon = 3;
-[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
-
-assert_close ( x , [0.6666667 1.3333333]' , 1.e-7 );
-assert_close ( f , [ - 8.2222223] , 1.e-7 );
-
-assert_checkequal( exitflag , 0 );
diff --git a/tests/unit_tests/qpipoptmat_base .tst~ b/tests/unit_tests/qpipoptmat_base .tst~
deleted file mode 100644
index 9de0d6b..0000000
--- a/tests/unit_tests/qpipoptmat_base .tst~
+++ /dev/null
@@ -1,76 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// Author: Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: harpreet.mertia@gmail.com
-//
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-
-// <-- JVM NOT MANDATORY -->
-// <-- ENGLISH IMPOSED -->
-
-
-//
-// assert_close --
-// Returns 1 if the two real matrices computed and expected are close,
-// i.e. if the relative distance between computed and expected is lesser than epsilon.
-// Arguments
-// computed, expected : the two matrices to compare
-// epsilon : a small number
-//
-function flag = assert_close ( computed, expected, epsilon )
- if expected==0.0 then
- shift = norm(computed-expected);
- else
- shift = norm(computed-expected)/norm(expected);
- end
-// if shift < epsilon then
-// flag = 1;
-// else
-// flag = 0;
-// end
-// if flag <> 1 then pause,end
- flag = assert_checktrue ( shift < epsilon );
-endfunction
-//
-// assert_equal --
-// Returns 1 if the two real matrices computed and expected are equal.
-// Arguments
-// computed, expected : the two matrices to compare
-// epsilon : a small number
-//
-//function flag = assert_equal ( computed , expected )
-// if computed==expected then
-// flag = 1;
-// else
-// flag = 0;
-// end
-// if flag <> 1 then pause,end
-//endfunction
-
-///Find the value of x that minimize following function
-// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
-// Subject to:
-// x1 + x2 ≤ 2
-// –x1 + 2x2 ≤ 2
-// 2x1 + x2 ≤ 3
-// 0 ≤ x1, 0 ≤ x2.
-Q = [1 -1; -1 2];
-p = [-2; -6];
-conMatrix = [1 1; -1 2; 2 1];
-conUB = [2; 2; 3];
-conLB = [-%inf; -%inf; -%inf];
-lb = [0; 0];
-ub = [%inf; %inf];
-nbVar = 2;
-nbCon = 3;
-[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
-
-assert_close ( x , [0.6666667 1.3333333]' , 1.e-7 );
-assert_close ( f , [ - 8.2222223] , 1.e-7 );
-
-assert_checkequal( exitflag , 0 );