1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
|
// Copyright (C) 2004, 2011 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// $Id: IpIpoptCalculatedQuantities.hpp 2020 2011-06-16 20:46:16Z andreasw $
//
// Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
#ifndef __IPIPOPTCALCULATEDQUANTITIES_HPP__
#define __IPIPOPTCALCULATEDQUANTITIES_HPP__
#include "IpSmartPtr.hpp"
#include "IpCachedResults.hpp"
#include <string>
namespace Ipopt
{
class IpoptNLP;
class IpoptData;
class Vector;
class Matrix;
class SymMatrix;
class Journalist;
class OptionsList;
class RegisteredOptions;
/** Norm types */
enum ENormType {
NORM_1=0,
NORM_2,
NORM_MAX
};
/** Base class for additional calculated quantities that is special
* to a particular type of algorithm, such as the CG penalty
* function, or using iterative linear solvers. The regular
* IpoptCalculatedQuantities object should be given a derivation of
* this base class when it is created. */
class IpoptAdditionalCq : public ReferencedObject
{
public:
/**@name Constructors/Destructors */
//@{
/** Default Constructor */
IpoptAdditionalCq()
{}
/** Default destructor */
virtual ~IpoptAdditionalCq()
{}
//@}
/** This method is called to initialize the global algorithmic
* parameters. The parameters are taken from the OptionsList
* object. */
virtual bool Initialize(const Journalist& jnlst,
const OptionsList& options,
const std::string& prefix) = 0;
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Copy Constructor */
IpoptAdditionalCq(const IpoptAdditionalCq&);
/** Overloaded Equals Operator */
void operator=(const IpoptAdditionalCq&);
//@}
};
/** Class for all IPOPT specific calculated quantities.
*
*/
class IpoptCalculatedQuantities : public ReferencedObject
{
public:
/**@name Constructors/Destructors */
//@{
/** Constructor */
IpoptCalculatedQuantities(const SmartPtr<IpoptNLP>& ip_nlp,
const SmartPtr<IpoptData>& ip_data);
/** Default destructor */
virtual ~IpoptCalculatedQuantities();
//@}
/** Method for setting pointer for additional calculated
* quantities. This needs to be called before Initialized. */
void SetAddCq(SmartPtr<IpoptAdditionalCq> add_cq)
{
DBG_ASSERT(!HaveAddCq());
add_cq_ = add_cq;
}
/** Method detecting if additional object for calculated
* quantities has already been set */
bool HaveAddCq()
{
return IsValid(add_cq_);
}
/** This method must be called to initialize the global
* algorithmic parameters. The parameters are taken from the
* OptionsList object. */
bool Initialize(const Journalist& jnlst,
const OptionsList& options,
const std::string& prefix);
/** @name Slacks */
//@{
/** Slacks for x_L (at current iterate) */
SmartPtr<const Vector> curr_slack_x_L();
/** Slacks for x_U (at current iterate) */
SmartPtr<const Vector> curr_slack_x_U();
/** Slacks for s_L (at current iterate) */
SmartPtr<const Vector> curr_slack_s_L();
/** Slacks for s_U (at current iterate) */
SmartPtr<const Vector> curr_slack_s_U();
/** Slacks for x_L (at trial point) */
SmartPtr<const Vector> trial_slack_x_L();
/** Slacks for x_U (at trial point) */
SmartPtr<const Vector> trial_slack_x_U();
/** Slacks for s_L (at trial point) */
SmartPtr<const Vector> trial_slack_s_L();
/** Slacks for s_U (at trial point) */
SmartPtr<const Vector> trial_slack_s_U();
/** Indicating whether or not we "fudged" the slacks */
Index AdjustedTrialSlacks();
/** Reset the flags for "fudged" slacks */
void ResetAdjustedTrialSlacks();
//@}
/** @name Objective function */
//@{
/** Value of objective function (at current point) */
virtual Number curr_f();
/** Unscaled value of the objective function (at the current point) */
virtual Number unscaled_curr_f();
/** Value of objective function (at trial point) */
virtual Number trial_f();
/** Unscaled value of the objective function (at the trial point) */
virtual Number unscaled_trial_f();
/** Gradient of objective function (at current point) */
SmartPtr<const Vector> curr_grad_f();
/** Gradient of objective function (at trial point) */
SmartPtr<const Vector> trial_grad_f();
//@}
/** @name Barrier Objective Function */
//@{
/** Barrier Objective Function Value
* (at current iterate with current mu)
*/
virtual Number curr_barrier_obj();
/** Barrier Objective Function Value
* (at trial point with current mu)
*/
virtual Number trial_barrier_obj();
/** Gradient of barrier objective function with respect to x
* (at current point with current mu) */
SmartPtr<const Vector> curr_grad_barrier_obj_x();
/** Gradient of barrier objective function with respect to s
* (at current point with current mu) */
SmartPtr<const Vector> curr_grad_barrier_obj_s();
/** Gradient of the damping term with respect to x (times
* kappa_d) */
SmartPtr<const Vector> grad_kappa_times_damping_x();
/** Gradient of the damping term with respect to s (times
* kappa_d) */
SmartPtr<const Vector> grad_kappa_times_damping_s();
//@}
/** @name Constraints */
//@{
/** c(x) (at current point) */
SmartPtr<const Vector> curr_c();
/** unscaled c(x) (at current point) */
SmartPtr<const Vector> unscaled_curr_c();
/** c(x) (at trial point) */
SmartPtr<const Vector> trial_c();
/** unscaled c(x) (at trial point) */
SmartPtr<const Vector> unscaled_trial_c();
/** d(x) (at current point) */
SmartPtr<const Vector> curr_d();
/** unscaled d(x) (at current point) */
SmartPtr<const Vector> unscaled_curr_d();
/** d(x) (at trial point) */
SmartPtr<const Vector> trial_d();
/** d(x) - s (at current point) */
SmartPtr<const Vector> curr_d_minus_s();
/** d(x) - s (at trial point) */
SmartPtr<const Vector> trial_d_minus_s();
/** Jacobian of c (at current point) */
SmartPtr<const Matrix> curr_jac_c();
/** Jacobian of c (at trial point) */
SmartPtr<const Matrix> trial_jac_c();
/** Jacobian of d (at current point) */
SmartPtr<const Matrix> curr_jac_d();
/** Jacobian of d (at trial point) */
SmartPtr<const Matrix> trial_jac_d();
/** Product of Jacobian (evaluated at current point) of C
* transpose with general vector */
SmartPtr<const Vector> curr_jac_cT_times_vec(const Vector& vec);
/** Product of Jacobian (evaluated at trial point) of C
* transpose with general vector */
SmartPtr<const Vector> trial_jac_cT_times_vec(const Vector& vec);
/** Product of Jacobian (evaluated at current point) of D
* transpose with general vector */
SmartPtr<const Vector> curr_jac_dT_times_vec(const Vector& vec);
/** Product of Jacobian (evaluated at trial point) of D
* transpose with general vector */
SmartPtr<const Vector> trial_jac_dT_times_vec(const Vector& vec);
/** Product of Jacobian (evaluated at current point) of C
* transpose with current y_c */
SmartPtr<const Vector> curr_jac_cT_times_curr_y_c();
/** Product of Jacobian (evaluated at trial point) of C
* transpose with trial y_c */
SmartPtr<const Vector> trial_jac_cT_times_trial_y_c();
/** Product of Jacobian (evaluated at current point) of D
* transpose with current y_d */
SmartPtr<const Vector> curr_jac_dT_times_curr_y_d();
/** Product of Jacobian (evaluated at trial point) of D
* transpose with trial y_d */
SmartPtr<const Vector> trial_jac_dT_times_trial_y_d();
/** Product of Jacobian (evaluated at current point) of C
* with general vector */
SmartPtr<const Vector> curr_jac_c_times_vec(const Vector& vec);
/** Product of Jacobian (evaluated at current point) of D
* with general vector */
SmartPtr<const Vector> curr_jac_d_times_vec(const Vector& vec);
/** Constraint Violation (at current iterate). This value should
* be used in the line search, and not curr_primal_infeasibility().
* What type of norm is used depends on constr_viol_normtype */
virtual Number curr_constraint_violation();
/** Constraint Violation (at trial point). This value should
* be used in the line search, and not curr_primal_infeasibility().
* What type of norm is used depends on constr_viol_normtype */
virtual Number trial_constraint_violation();
/** Real constraint violation in a given norm (at current
* iterate). This considers the inequality constraints without
* slacks. */
virtual Number curr_nlp_constraint_violation(ENormType NormType);
/** Unscaled real constraint violation in a given norm (at current
* iterate). This considers the inequality constraints without
* slacks. */
virtual Number unscaled_curr_nlp_constraint_violation(ENormType NormType);
/** Unscaled real constraint violation in a given norm (at trial
* iterate). This considers the inequality constraints without
* slacks. */
virtual Number unscaled_trial_nlp_constraint_violation(ENormType NormType);
//@}
/** @name Hessian matrices */
//@{
/** exact Hessian at current iterate (uncached) */
SmartPtr<const SymMatrix> curr_exact_hessian();
//@}
/** @name primal-dual error and its components */
//@{
/** x-part of gradient of Lagrangian function (at current point) */
SmartPtr<const Vector> curr_grad_lag_x();
/** x-part of gradient of Lagrangian function (at trial point) */
SmartPtr<const Vector> trial_grad_lag_x();
/** s-part of gradient of Lagrangian function (at current point) */
SmartPtr<const Vector> curr_grad_lag_s();
/** s-part of gradient of Lagrangian function (at trial point) */
SmartPtr<const Vector> trial_grad_lag_s();
/** x-part of gradient of Lagrangian function (at current point)
including linear damping term */
SmartPtr<const Vector> curr_grad_lag_with_damping_x();
/** s-part of gradient of Lagrangian function (at current point)
including linear damping term */
SmartPtr<const Vector> curr_grad_lag_with_damping_s();
/** Complementarity for x_L (for current iterate) */
SmartPtr<const Vector> curr_compl_x_L();
/** Complementarity for x_U (for current iterate) */
SmartPtr<const Vector> curr_compl_x_U();
/** Complementarity for s_L (for current iterate) */
SmartPtr<const Vector> curr_compl_s_L();
/** Complementarity for s_U (for current iterate) */
SmartPtr<const Vector> curr_compl_s_U();
/** Complementarity for x_L (for trial iterate) */
SmartPtr<const Vector> trial_compl_x_L();
/** Complementarity for x_U (for trial iterate) */
SmartPtr<const Vector> trial_compl_x_U();
/** Complementarity for s_L (for trial iterate) */
SmartPtr<const Vector> trial_compl_s_L();
/** Complementarity for s_U (for trial iterate) */
SmartPtr<const Vector> trial_compl_s_U();
/** Relaxed complementarity for x_L (for current iterate and current mu) */
SmartPtr<const Vector> curr_relaxed_compl_x_L();
/** Relaxed complementarity for x_U (for current iterate and current mu) */
SmartPtr<const Vector> curr_relaxed_compl_x_U();
/** Relaxed complementarity for s_L (for current iterate and current mu) */
SmartPtr<const Vector> curr_relaxed_compl_s_L();
/** Relaxed complementarity for s_U (for current iterate and current mu) */
SmartPtr<const Vector> curr_relaxed_compl_s_U();
/** Primal infeasibility in a given norm (at current iterate). */
virtual Number curr_primal_infeasibility(ENormType NormType);
/** Primal infeasibility in a given norm (at trial point) */
virtual Number trial_primal_infeasibility(ENormType NormType);
/** Dual infeasibility in a given norm (at current iterate) */
virtual Number curr_dual_infeasibility(ENormType NormType);
/** Dual infeasibility in a given norm (at trial iterate) */
virtual Number trial_dual_infeasibility(ENormType NormType);
/** Unscaled dual infeasibility in a given norm (at current iterate) */
virtual Number unscaled_curr_dual_infeasibility(ENormType NormType);
/** Complementarity (for all complementarity conditions together)
* in a given norm (at current iterate) */
virtual Number curr_complementarity(Number mu, ENormType NormType);
/** Complementarity (for all complementarity conditions together)
* in a given norm (at trial iterate) */
virtual Number trial_complementarity(Number mu, ENormType NormType);
/** Complementarity (for all complementarity conditions together)
* in a given norm (at current iterate) without NLP scaling. */
virtual Number unscaled_curr_complementarity(Number mu, ENormType NormType);
/** Centrality measure (in spirit of the -infinity-neighborhood. */
Number CalcCentralityMeasure(const Vector& compl_x_L,
const Vector& compl_x_U,
const Vector& compl_s_L,
const Vector& compl_s_U);
/** Centrality measure at current point */
virtual Number curr_centrality_measure();
/** Total optimality error for the original NLP at the current
* iterate, using scaling factors based on multipliers. Note
* that here the constraint violation is measured without slacks
* (nlp_constraint_violation) */
virtual Number curr_nlp_error();
/** Total optimality error for the original NLP at the current
* iterate, but using no scaling based on multipliers, and no
* scaling for the NLP. Note that here the constraint violation
* is measured without slacks (nlp_constraint_violation) */
virtual Number unscaled_curr_nlp_error();
/** Total optimality error for the barrier problem at the
* current iterate, using scaling factors based on multipliers. */
virtual Number curr_barrier_error();
/** Norm of the primal-dual system for a given mu (at current
* iterate). The norm is defined as the sum of the 1-norms of
* dual infeasibiliy, primal infeasibility, and complementarity,
* all divided by the number of elements of the vectors of which
* the norm is taken.
*/
virtual Number curr_primal_dual_system_error(Number mu);
/** Norm of the primal-dual system for a given mu (at trial
* iterate). The norm is defined as the sum of the 1-norms of
* dual infeasibiliy, primal infeasibility, and complementarity,
* all divided by the number of elements of the vectors of which
* the norm is taken.
*/
virtual Number trial_primal_dual_system_error(Number mu);
//@}
/** @name Computing fraction-to-the-boundary step sizes */
//@{
/** Fraction to the boundary from (current) primal variables x and s
* for a given step */
Number primal_frac_to_the_bound(Number tau,
const Vector& delta_x,
const Vector& delta_s);
/** Fraction to the boundary from (current) primal variables x and s
* for internal (current) step */
Number curr_primal_frac_to_the_bound(Number tau);
/** Fraction to the boundary from (current) dual variables z and v
* for a given step */
Number dual_frac_to_the_bound(Number tau,
const Vector& delta_z_L,
const Vector& delta_z_U,
const Vector& delta_v_L,
const Vector& delta_v_U);
/** Fraction to the boundary from (current) dual variables z and v
* for a given step, without caching */
Number uncached_dual_frac_to_the_bound(Number tau,
const Vector& delta_z_L,
const Vector& delta_z_U,
const Vector& delta_v_L,
const Vector& delta_v_U);
/** Fraction to the boundary from (current) dual variables z and v
* for internal (current) step */
Number curr_dual_frac_to_the_bound(Number tau);
/** Fraction to the boundary from (current) slacks for a given
* step in the slacks. Usually, one will use the
* primal_frac_to_the_bound method to compute the primal fraction
* to the boundary step size, but if it is cheaper to provide the
* steps in the slacks directly (e.g. when the primal step sizes
* are only temporary), the this method is more efficient. This
* method does not cache computations. */
Number uncached_slack_frac_to_the_bound(Number tau,
const Vector& delta_x_L,
const Vector& delta_x_U,
const Vector& delta_s_L,
const Vector& delta_s_U);
//@}
/** @name Sigma matrices */
//@{
SmartPtr<const Vector> curr_sigma_x();
SmartPtr<const Vector> curr_sigma_s();
//@}
/** average of current values of the complementarities */
Number curr_avrg_compl();
/** average of trial values of the complementarities */
Number trial_avrg_compl();
/** inner_product of current barrier obj. fn. gradient with
* current search direction */
Number curr_gradBarrTDelta();
/** Compute the norm of a specific type of a set of vectors (uncached) */
Number
CalcNormOfType(ENormType NormType,
std::vector<SmartPtr<const Vector> > vecs);
/** Compute the norm of a specific type of two vectors (uncached) */
Number
CalcNormOfType(ENormType NormType,
const Vector& vec1, const Vector& vec2);
/** Norm type used for calculating constraint violation */
ENormType constr_viol_normtype() const
{
return constr_viol_normtype_;
}
/** Method returning true if this is a square problem */
bool IsSquareProblem() const;
/** Method returning the IpoptNLP object. This should only be
* used with care! */
SmartPtr<IpoptNLP>& GetIpoptNLP()
{
return ip_nlp_;
}
IpoptAdditionalCq& AdditionalCq()
{
DBG_ASSERT(IsValid(add_cq_));
return *add_cq_;
}
/** Methods for IpoptType */
//@{
/** Called by IpoptType to register the options */
static void RegisterOptions(SmartPtr<RegisteredOptions> roptions);
//@}
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Default Constructor */
IpoptCalculatedQuantities();
/** Copy Constructor */
IpoptCalculatedQuantities(const IpoptCalculatedQuantities&);
/** Overloaded Equals Operator */
void operator=(const IpoptCalculatedQuantities&);
//@}
/** @name Pointers for easy access to data and NLP information */
//@{
/** Ipopt NLP object */
SmartPtr<IpoptNLP> ip_nlp_;
/** Ipopt Data object */
SmartPtr<IpoptData> ip_data_;
/** Chen-Goldfarb specific calculated quantities */
SmartPtr<IpoptAdditionalCq> add_cq_;
//@}
/** @name Algorithmic Parameters that can be set throught the
* options list. Those parameters are initialize by calling the
* Initialize method.*/
//@{
/** Parameter in formula for computing overall primal-dual
* optimality error */
Number s_max_;
/** Weighting factor for the linear damping term added to the
* barrier objective funciton. */
Number kappa_d_;
/** fractional movement allowed in bounds */
Number slack_move_;
/** Norm type to be used when calculating the constraint violation */
ENormType constr_viol_normtype_;
/** Flag indicating whether the TNLP with identical structure has
* already been solved before. */
bool warm_start_same_structure_;
/** Desired value of the barrier parameter */
Number mu_target_;
//@}
/** @name Caches for slacks */
//@{
CachedResults< SmartPtr<Vector> > curr_slack_x_L_cache_;
CachedResults< SmartPtr<Vector> > curr_slack_x_U_cache_;
CachedResults< SmartPtr<Vector> > curr_slack_s_L_cache_;
CachedResults< SmartPtr<Vector> > curr_slack_s_U_cache_;
CachedResults< SmartPtr<Vector> > trial_slack_x_L_cache_;
CachedResults< SmartPtr<Vector> > trial_slack_x_U_cache_;
CachedResults< SmartPtr<Vector> > trial_slack_s_L_cache_;
CachedResults< SmartPtr<Vector> > trial_slack_s_U_cache_;
Index num_adjusted_slack_x_L_;
Index num_adjusted_slack_x_U_;
Index num_adjusted_slack_s_L_;
Index num_adjusted_slack_s_U_;
//@}
/** @name Cached for objective function stuff */
//@{
CachedResults<Number> curr_f_cache_;
CachedResults<Number> trial_f_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_f_cache_;
CachedResults< SmartPtr<const Vector> > trial_grad_f_cache_;
//@}
/** @name Caches for barrier function stuff */
//@{
CachedResults<Number> curr_barrier_obj_cache_;
CachedResults<Number> trial_barrier_obj_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_barrier_obj_x_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_barrier_obj_s_cache_;
CachedResults< SmartPtr<const Vector> > grad_kappa_times_damping_x_cache_;
CachedResults< SmartPtr<const Vector> > grad_kappa_times_damping_s_cache_;
//@}
/** @name Caches for constraint stuff */
//@{
CachedResults< SmartPtr<const Vector> > curr_c_cache_;
CachedResults< SmartPtr<const Vector> > trial_c_cache_;
CachedResults< SmartPtr<const Vector> > curr_d_cache_;
CachedResults< SmartPtr<const Vector> > trial_d_cache_;
CachedResults< SmartPtr<const Vector> > curr_d_minus_s_cache_;
CachedResults< SmartPtr<const Vector> > trial_d_minus_s_cache_;
CachedResults< SmartPtr<const Matrix> > curr_jac_c_cache_;
CachedResults< SmartPtr<const Matrix> > trial_jac_c_cache_;
CachedResults< SmartPtr<const Matrix> > curr_jac_d_cache_;
CachedResults< SmartPtr<const Matrix> > trial_jac_d_cache_;
CachedResults< SmartPtr<const Vector> > curr_jac_cT_times_vec_cache_;
CachedResults< SmartPtr<const Vector> > trial_jac_cT_times_vec_cache_;
CachedResults< SmartPtr<const Vector> > curr_jac_dT_times_vec_cache_;
CachedResults< SmartPtr<const Vector> > trial_jac_dT_times_vec_cache_;
CachedResults< SmartPtr<const Vector> > curr_jac_c_times_vec_cache_;
CachedResults< SmartPtr<const Vector> > curr_jac_d_times_vec_cache_;
CachedResults<Number> curr_constraint_violation_cache_;
CachedResults<Number> trial_constraint_violation_cache_;
CachedResults<Number> curr_nlp_constraint_violation_cache_;
CachedResults<Number> unscaled_curr_nlp_constraint_violation_cache_;
CachedResults<Number> unscaled_trial_nlp_constraint_violation_cache_;
//@}
/** Cache for the exact Hessian */
CachedResults< SmartPtr<const SymMatrix> > curr_exact_hessian_cache_;
/** @name Components of primal-dual error */
//@{
CachedResults< SmartPtr<const Vector> > curr_grad_lag_x_cache_;
CachedResults< SmartPtr<const Vector> > trial_grad_lag_x_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_lag_s_cache_;
CachedResults< SmartPtr<const Vector> > trial_grad_lag_s_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_lag_with_damping_x_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_lag_with_damping_s_cache_;
CachedResults< SmartPtr<const Vector> > curr_compl_x_L_cache_;
CachedResults< SmartPtr<const Vector> > curr_compl_x_U_cache_;
CachedResults< SmartPtr<const Vector> > curr_compl_s_L_cache_;
CachedResults< SmartPtr<const Vector> > curr_compl_s_U_cache_;
CachedResults< SmartPtr<const Vector> > trial_compl_x_L_cache_;
CachedResults< SmartPtr<const Vector> > trial_compl_x_U_cache_;
CachedResults< SmartPtr<const Vector> > trial_compl_s_L_cache_;
CachedResults< SmartPtr<const Vector> > trial_compl_s_U_cache_;
CachedResults< SmartPtr<const Vector> > curr_relaxed_compl_x_L_cache_;
CachedResults< SmartPtr<const Vector> > curr_relaxed_compl_x_U_cache_;
CachedResults< SmartPtr<const Vector> > curr_relaxed_compl_s_L_cache_;
CachedResults< SmartPtr<const Vector> > curr_relaxed_compl_s_U_cache_;
CachedResults<Number> curr_primal_infeasibility_cache_;
CachedResults<Number> trial_primal_infeasibility_cache_;
CachedResults<Number> curr_dual_infeasibility_cache_;
CachedResults<Number> trial_dual_infeasibility_cache_;
CachedResults<Number> unscaled_curr_dual_infeasibility_cache_;
CachedResults<Number> curr_complementarity_cache_;
CachedResults<Number> trial_complementarity_cache_;
CachedResults<Number> curr_centrality_measure_cache_;
CachedResults<Number> curr_nlp_error_cache_;
CachedResults<Number> unscaled_curr_nlp_error_cache_;
CachedResults<Number> curr_barrier_error_cache_;
CachedResults<Number> curr_primal_dual_system_error_cache_;
CachedResults<Number> trial_primal_dual_system_error_cache_;
//@}
/** @name Caches for fraction to the boundary step sizes */
//@{
CachedResults<Number> primal_frac_to_the_bound_cache_;
CachedResults<Number> dual_frac_to_the_bound_cache_;
//@}
/** @name Caches for sigma matrices */
//@{
CachedResults< SmartPtr<const Vector> > curr_sigma_x_cache_;
CachedResults< SmartPtr<const Vector> > curr_sigma_s_cache_;
//@}
/** Cache for average of current complementarity */
CachedResults<Number> curr_avrg_compl_cache_;
/** Cache for average of trial complementarity */
CachedResults<Number> trial_avrg_compl_cache_;
/** Cache for grad barrier obj. fn inner product with step */
CachedResults<Number> curr_gradBarrTDelta_cache_;
/** @name Indicator vectors required for the linear damping terms
* to handle unbounded solution sets. */
//@{
/** Indicator vector for selecting the elements in x that have
* only lower bounds. */
SmartPtr<Vector> dampind_x_L_;
/** Indicator vector for selecting the elements in x that have
* only upper bounds. */
SmartPtr<Vector> dampind_x_U_;
/** Indicator vector for selecting the elements in s that have
* only lower bounds. */
SmartPtr<Vector> dampind_s_L_;
/** Indicator vector for selecting the elements in s that have
* only upper bounds. */
SmartPtr<Vector> dampind_s_U_;
//@}
/** @name Temporary vectors for intermediate calcuations. We keep
* these around to avoid unnecessarily many new allocations of
* Vectors. */
//@{
SmartPtr<Vector> tmp_x_;
SmartPtr<Vector> tmp_s_;
SmartPtr<Vector> tmp_c_;
SmartPtr<Vector> tmp_d_;
SmartPtr<Vector> tmp_x_L_;
SmartPtr<Vector> tmp_x_U_;
SmartPtr<Vector> tmp_s_L_;
SmartPtr<Vector> tmp_s_U_;
/** Accessor methods for the temporary vectors */
Vector& Tmp_x();
Vector& Tmp_s();
Vector& Tmp_c();
Vector& Tmp_d();
Vector& Tmp_x_L();
Vector& Tmp_x_U();
Vector& Tmp_s_L();
Vector& Tmp_s_U();
//@}
/** flag indicating if Initialize method has been called (for
* debugging) */
bool initialize_called_;
/** @name Auxiliary functions */
//@{
/** Compute new vector containing the slack to a lower bound
* (uncached)
*/
SmartPtr<Vector> CalcSlack_L(const Matrix& P,
const Vector& x,
const Vector& x_bound);
/** Compute new vector containing the slack to a upper bound
* (uncached)
*/
SmartPtr<Vector> CalcSlack_U(const Matrix& P,
const Vector& x,
const Vector& x_bound);
/** Compute barrier term at given point
* (uncached)
*/
Number CalcBarrierTerm(Number mu,
const Vector& slack_x_L,
const Vector& slack_x_U,
const Vector& slack_s_L,
const Vector& slack_s_U);
/** Compute complementarity for slack / multiplier pair */
SmartPtr<const Vector> CalcCompl(const Vector& slack,
const Vector& mult);
/** Compute fraction to the boundary parameter for lower and upper bounds */
Number CalcFracToBound(const Vector& slack_L,
Vector& tmp_L,
const Matrix& P_L,
const Vector& slack_U,
Vector& tmp_U,
const Matrix& P_U,
const Vector& delta,
Number tau);
/** Compute the scaling factors for the optimality error. */
void ComputeOptimalityErrorScaling(const Vector& y_c, const Vector& y_d,
const Vector& z_L, const Vector& z_U,
const Vector& v_L, const Vector& v_U,
Number s_max,
Number& s_d, Number& s_c);
/** Check if slacks are becoming too small. If slacks are
* becoming too small, they are change. The return value is the
* number of corrected slacks. */
Index CalculateSafeSlack(SmartPtr<Vector>& slack,
const SmartPtr<const Vector>& bound,
const SmartPtr<const Vector>& curr_point,
const SmartPtr<const Vector>& multiplier);
/** Computes the indicator vectors that can be used to filter out
* those entries in the slack_... variables, that correspond to
* variables with only lower and upper bounds. This is required
* for the linear damping term in the barrier objective function
* to handle unbounded solution sets. */
void ComputeDampingIndicators(SmartPtr<const Vector>& dampind_x_L,
SmartPtr<const Vector>& dampind_x_U,
SmartPtr<const Vector>& dampind_s_L,
SmartPtr<const Vector>& dampind_s_U);
/** Check if we are in the restoration phase. Returns true, if the
* ip_nlp is of the type RestoIpoptNLP. ToDo: We probably want to
* handle this more elegant and don't have an explicit dependency
* here. Now I added this because otherwise the caching doesn't
* work properly since the restoration phase objective function
* depends on the current barrier parameter. */
bool in_restoration_phase();
//@}
};
} // namespace Ipopt
#endif
|