1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
/* $Id: CbcBranchLotsize.hpp 1573 2011-01-05 01:12:36Z lou $ */
// Copyright (C) 2004, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#ifndef CbcBranchLotsize_H
#define CbcBranchLotsize_H
#include "CbcBranchBase.hpp"
/** Lotsize class */
class CbcLotsize : public CbcObject {
public:
// Default Constructor
CbcLotsize ();
/* Useful constructor - passed model index.
Also passed valid values - if range then pairs
*/
CbcLotsize (CbcModel * model, int iColumn,
int numberPoints, const double * points, bool range = false);
// Copy constructor
CbcLotsize ( const CbcLotsize &);
/// Clone
virtual CbcObject * clone() const;
// Assignment operator
CbcLotsize & operator=( const CbcLotsize& rhs);
// Destructor
~CbcLotsize ();
/// Infeasibility - large is 0.5
virtual double infeasibility(const OsiBranchingInformation * info,
int &preferredWay) const;
using CbcObject::feasibleRegion ;
/** Set bounds to contain the current solution.
More precisely, for the variable associated with this object, take the
value given in the current solution, force it within the current bounds
if required, then set the bounds to fix the variable at the integer
nearest the solution value.
*/
virtual void feasibleRegion();
/// Creates a branching object
virtual CbcBranchingObject * createCbcBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) ;
/** \brief Given a valid solution (with reduced costs, etc.),
return a branching object which would give a new feasible
point in the good direction.
The preferred branching object will force the variable to be +/-1 from
its current value, depending on the reduced cost and objective sense. If
movement in the direction which improves the objective is impossible due
to bounds on the variable, the branching object will move in the other
direction. If no movement is possible, the method returns NULL.
Only the bounds on this variable are considered when determining if the new
point is feasible.
*/
virtual CbcBranchingObject * preferredNewFeasible() const;
/** \brief Given a valid solution (with reduced costs, etc.),
return a branching object which would give a new feasible
point in a bad direction.
As for preferredNewFeasible(), but the preferred branching object will
force movement in a direction that degrades the objective.
*/
virtual CbcBranchingObject * notPreferredNewFeasible() const ;
/** Reset original upper and lower bound values from the solver.
Handy for updating bounds held in this object after bounds held in the
solver have been tightened.
*/
virtual void resetBounds(const OsiSolverInterface * solver);
/** Finds range of interest so value is feasible in range range_ or infeasible
between hi[range_] and lo[range_+1]. Returns true if feasible.
*/
bool findRange(double value) const;
/** Returns floor and ceiling
*/
virtual void floorCeiling(double & floorLotsize, double & ceilingLotsize, double value,
double tolerance) const;
/// Model column number
inline int modelSequence() const {
return columnNumber_;
}
/// Set model column number
inline void setModelSequence(int value) {
columnNumber_ = value;
}
/** Column number if single column object -1 otherwise,
so returns >= 0
Used by heuristics
*/
virtual int columnNumber() const;
/// Original variable bounds
inline double originalLowerBound() const {
return bound_[0];
}
inline double originalUpperBound() const {
return bound_[rangeType_*numberRanges_-1];
}
/// Type - 1 points, 2 ranges
inline int rangeType() const {
return rangeType_;
}
/// Number of points
inline int numberRanges() const {
return numberRanges_;
}
/// Ranges
inline double * bound() const {
return bound_;
}
/** \brief Return true if object can take part in normal heuristics
*/
virtual bool canDoHeuristics() const {
return false;
}
private:
/// Just for debug (CBC_PRINT defined in CbcBranchLotsize.cpp)
void printLotsize(double value, bool condition, int type) const;
private:
/// data
/// Column number in model
int columnNumber_;
/// Type - 1 points, 2 ranges
int rangeType_;
/// Number of points
int numberRanges_;
// largest gap
double largestGap_;
/// Ranges
double * bound_;
/// Current range
mutable int range_;
};
/** Lotsize branching object
This object can specify a two-way branch on an integer variable. For each
arm of the branch, the upper and lower bounds on the variable can be
independently specified.
Variable_ holds the index of the integer variable in the integerVariable_
array of the model.
*/
class CbcLotsizeBranchingObject : public CbcBranchingObject {
public:
/// Default constructor
CbcLotsizeBranchingObject ();
/** Create a lotsize floor/ceiling branch object
Specifies a simple two-way branch. Let \p value = x*. One arm of the
branch will be is lb <= x <= valid range below(x*), the other valid range above(x*) <= x <= ub.
Specify way = -1 to set the object state to perform the down arm first,
way = 1 for the up arm.
*/
CbcLotsizeBranchingObject (CbcModel *model, int variable,
int way , double value, const CbcLotsize * lotsize) ;
/** Create a degenerate branch object
Specifies a `one-way branch'. Calling branch() for this object will
always result in lowerValue <= x <= upperValue. Used to fix in valid range
*/
CbcLotsizeBranchingObject (CbcModel *model, int variable, int way,
double lowerValue, double upperValue) ;
/// Copy constructor
CbcLotsizeBranchingObject ( const CbcLotsizeBranchingObject &);
/// Assignment operator
CbcLotsizeBranchingObject & operator= (const CbcLotsizeBranchingObject& rhs);
/// Clone
virtual CbcBranchingObject * clone() const;
/// Destructor
virtual ~CbcLotsizeBranchingObject ();
using CbcBranchingObject::branch ;
/** \brief Sets the bounds for the variable according to the current arm
of the branch and advances the object state to the next arm.
*/
virtual double branch();
using CbcBranchingObject::print ;
/** \brief Print something about branch - only if log level high
*/
virtual void print();
/** Return the type (an integer identifier) of \c this */
virtual CbcBranchObjType type() const {
return LotsizeBranchObj;
}
// LL: compareOriginalObject can be inherited from the CbcBranchingObject
// since variable_ uniquely defines the lot sizing object.
/** Compare the \c this with \c brObj. \c this and \c brObj must be os the
same type and must have the same original object, but they may have
different feasible regions.
Return the appropriate CbcRangeCompare value (first argument being the
sub/superset if that's the case). In case of overlap (and if \c
replaceIfOverlap is true) replace the current branching object with one
whose feasible region is the overlap.
*/
virtual CbcRangeCompare compareBranchingObject
(const CbcBranchingObject* brObj, const bool replaceIfOverlap = false);
protected:
/// Lower [0] and upper [1] bounds for the down arm (way_ = -1)
double down_[2];
/// Lower [0] and upper [1] bounds for the up arm (way_ = 1)
double up_[2];
};
#endif
|