1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
|
// Copyright (C) 2006, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#ifndef OsiBranchingObject_H
#define OsiBranchingObject_H
#include <cassert>
#include <string>
#include <vector>
#include "CoinError.hpp"
#include "CoinTypes.hpp"
class OsiSolverInterface;
class OsiSolverBranch;
class OsiBranchingObject;
class OsiBranchingInformation;
//#############################################################################
//This contains the abstract base class for an object and for branching.
//It also contains a simple integer class
//#############################################################################
/** Abstract base class for `objects'.
The branching model used in Osi is based on the idea of an <i>object</i>.
In the abstract, an object is something that has a feasible region, can be
evaluated for infeasibility, can be branched on (<i>i.e.</i>, there's some
constructive action to be taken to move toward feasibility), and allows
comparison of the effect of branching.
This class (OsiObject) is the base class for an object. To round out the
branching model, the class OsiBranchingObject describes how to perform a
branch, and the class OsiBranchDecision describes how to compare two
OsiBranchingObjects.
To create a new type of object you need to provide three methods:
#infeasibility(), #feasibleRegion(), and #createBranch(), described below.
This base class is primarily virtual to allow for any form of structure.
Any form of discontinuity is allowed.
As there is an overhead in getting information from solvers and because
other useful information is available there is also an OsiBranchingInformation
class which can contain pointers to information.
If used it must at minimum contain pointers to current value of objective,
maximum allowed objective and pointers to arrays for bounds and solution
and direction of optimization. Also integer and primal tolerance.
Classes which inherit might have other information such as depth, number of
solutions, pseudo-shadow prices etc etc.
May be easier just to throw in here - as I keep doing
*/
class OsiObject {
public:
/// Default Constructor
OsiObject ();
/// Copy constructor
OsiObject ( const OsiObject &);
/// Assignment operator
OsiObject & operator=( const OsiObject& rhs);
/// Clone
virtual OsiObject * clone() const=0;
/// Destructor
virtual ~OsiObject ();
/** Infeasibility of the object
This is some measure of the infeasibility of the object. 0.0
indicates that the object is satisfied.
The preferred branching direction is returned in whichWay, where for
normal two-way branching 0 is down, 1 is up
This is used to prepare for strong branching but should also think of
case when no strong branching
The object may also compute an estimate of cost of going "up" or "down".
This will probably be based on pseudo-cost ideas
This should also set mutable infeasibility_ and whichWay_
This is for instant re-use for speed
Default for this just calls infeasibility with OsiBranchingInformation
NOTE - Convention says that an infeasibility of COIN_DBL_MAX means
object has worked out it can't be satisfied!
*/
double infeasibility(const OsiSolverInterface * solver,int &whichWay) const ;
// Faster version when more information available
virtual double infeasibility(const OsiBranchingInformation * info, int &whichWay) const =0;
// This does NOT set mutable stuff
virtual double checkInfeasibility(const OsiBranchingInformation * info) const;
/** For the variable(s) referenced by the object,
look at the current solution and set bounds to match the solution.
Returns measure of how much it had to move solution to make feasible
*/
virtual double feasibleRegion(OsiSolverInterface * solver) const ;
/** For the variable(s) referenced by the object,
look at the current solution and set bounds to match the solution.
Returns measure of how much it had to move solution to make feasible
Faster version
*/
virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const =0;
/** Create a branching object and indicate which way to branch first.
The branching object has to know how to create branches (fix
variables, etc.)
*/
virtual OsiBranchingObject * createBranch(OsiSolverInterface * /*solver*/,
const OsiBranchingInformation * /*info*/,
int /*way*/) const {throw CoinError("Need code","createBranch","OsiBranchingObject"); return NULL; }
/** \brief Return true if object can take part in normal heuristics
*/
virtual bool canDoHeuristics() const
{return true;}
/** \brief Return true if object can take part in move to nearest heuristic
*/
virtual bool canMoveToNearest() const
{return false;}
/** Column number if single column object -1 otherwise,
Used by heuristics
*/
virtual int columnNumber() const;
/// Return Priority - note 1 is highest priority
inline int priority() const
{ return priority_;}
/// Set priority
inline void setPriority(int priority)
{ priority_ = priority;}
/** \brief Return true if branch should only bound variables
*/
virtual bool boundBranch() const
{return true;}
/// Return true if knows how to deal with Pseudo Shadow Prices
virtual bool canHandleShadowPrices() const
{ return false;}
/// Return maximum number of ways branch may have
inline int numberWays() const
{ return numberWays_;}
/// Set maximum number of ways branch may have
inline void setNumberWays(int numberWays)
{ numberWays_ = static_cast<short int>(numberWays) ; }
/** Return preferred way to branch. If two
then way=0 means down and 1 means up, otherwise
way points to preferred branch
*/
inline void setWhichWay(int way)
{ whichWay_ = static_cast<short int>(way) ; }
/** Return current preferred way to branch. If two
then way=0 means down and 1 means up, otherwise
way points to preferred branch
*/
inline int whichWay() const
{ return whichWay_;}
/// Get pre-emptive preferred way of branching - -1 off, 0 down, 1 up (for 2-way)
virtual int preferredWay() const
{ return -1;}
/// Return infeasibility
inline double infeasibility() const
{ return infeasibility_;}
/// Return "up" estimate (default 1.0e-5)
virtual double upEstimate() const;
/// Return "down" estimate (default 1.0e-5)
virtual double downEstimate() const;
/** Reset variable bounds to their original values.
Bounds may be tightened, so it may be good to be able to reset them to
their original values.
*/
virtual void resetBounds(const OsiSolverInterface * ) {}
/** Change column numbers after preprocessing
*/
virtual void resetSequenceEtc(int , const int * ) {}
/// Updates stuff like pseudocosts before threads
virtual void updateBefore(const OsiObject * ) {}
/// Updates stuff like pseudocosts after threads finished
virtual void updateAfter(const OsiObject * , const OsiObject * ) {}
protected:
/// data
/// Computed infeasibility
mutable double infeasibility_;
/// Computed preferred way to branch
mutable short whichWay_;
/// Maximum number of ways on branch
short numberWays_;
/// Priority
int priority_;
};
/// Define a class to add a bit of complexity to OsiObject
/// This assumes 2 way branching
class OsiObject2 : public OsiObject {
public:
/// Default Constructor
OsiObject2 ();
/// Copy constructor
OsiObject2 ( const OsiObject2 &);
/// Assignment operator
OsiObject2 & operator=( const OsiObject2& rhs);
/// Destructor
virtual ~OsiObject2 ();
/// Set preferred way of branching - -1 off, 0 down, 1 up (for 2-way)
inline void setPreferredWay(int value)
{preferredWay_=value;}
/// Get preferred way of branching - -1 off, 0 down, 1 up (for 2-way)
virtual int preferredWay() const
{ return preferredWay_;}
protected:
/// Preferred way of branching - -1 off, 0 down, 1 up (for 2-way)
int preferredWay_;
/// "Infeasibility" on other way
mutable double otherInfeasibility_;
};
/** \brief Abstract branching object base class
In the abstract, an OsiBranchingObject contains instructions for how to
branch. We want an abstract class so that we can describe how to branch on
simple objects (<i>e.g.</i>, integers) and more exotic objects
(<i>e.g.</i>, cliques or hyperplanes).
The #branch() method is the crucial routine: it is expected to be able to
step through a set of branch arms, executing the actions required to create
each subproblem in turn. The base class is primarily virtual to allow for
a wide range of problem modifications.
See OsiObject for an overview of the two classes (OsiObject and
OsiBranchingObject) which make up Osi's branching
model.
*/
class OsiBranchingObject {
public:
/// Default Constructor
OsiBranchingObject ();
/// Constructor
OsiBranchingObject (OsiSolverInterface * solver, double value);
/// Copy constructor
OsiBranchingObject ( const OsiBranchingObject &);
/// Assignment operator
OsiBranchingObject & operator=( const OsiBranchingObject& rhs);
/// Clone
virtual OsiBranchingObject * clone() const=0;
/// Destructor
virtual ~OsiBranchingObject ();
/// The number of branch arms created for this branching object
inline int numberBranches() const
{return numberBranches_;}
/// The number of branch arms left for this branching object
inline int numberBranchesLeft() const
{return numberBranches_-branchIndex_;}
/// Increment the number of branch arms left for this branching object
inline void incrementNumberBranchesLeft()
{ numberBranches_ ++;}
/** Set the number of branch arms left for this branching object
Just for forcing
*/
inline void setNumberBranchesLeft(int /*value*/)
{/*assert (value==1&&!branchIndex_);*/ numberBranches_=1;}
/// Decrement the number of branch arms left for this branching object
inline void decrementNumberBranchesLeft()
{branchIndex_++;}
/** \brief Execute the actions required to branch, as specified by the
current state of the branching object, and advance the object's
state.
Returns change in guessed objective on next branch
*/
virtual double branch(OsiSolverInterface * solver)=0;
/** \brief Execute the actions required to branch, as specified by the
current state of the branching object, and advance the object's
state.
Returns change in guessed objective on next branch
*/
virtual double branch() {return branch(NULL);}
/** \brief Return true if branch should fix variables
*/
virtual bool boundBranch() const
{return true;}
/** Get the state of the branching object
This is just the branch index
*/
inline int branchIndex() const
{return branchIndex_;}
/** Set the state of the branching object.
*/
inline void setBranchingIndex(int branchIndex)
{ branchIndex_ = static_cast<short int>(branchIndex) ; }
/// Current value
inline double value() const
{return value_;}
/// Return pointer back to object which created
inline const OsiObject * originalObject() const
{return originalObject_;}
/// Set pointer back to object which created
inline void setOriginalObject(const OsiObject * object)
{originalObject_=object;}
/** Double checks in case node can change its mind!
Returns objective value
Can change objective etc */
virtual void checkIsCutoff(double ) {}
/// For debug
int columnNumber() const;
/** \brief Print something about branch - only if log level high
*/
virtual void print(const OsiSolverInterface * =NULL) const {}
protected:
/// Current value - has some meaning about branch
double value_;
/// Pointer back to object which created
const OsiObject * originalObject_;
/** Number of branches
*/
int numberBranches_;
/** The state of the branching object. i.e. branch index
This starts at 0 when created
*/
short branchIndex_;
};
/* This contains information
This could also contain pseudo shadow prices
or information for dealing with computing and trusting pseudo-costs
*/
class OsiBranchingInformation {
public:
/// Default Constructor
OsiBranchingInformation ();
/** Useful Constructor
(normalSolver true if has matrix etc etc)
copySolution true if constructot should make a copy
*/
OsiBranchingInformation (const OsiSolverInterface * solver, bool normalSolver,bool copySolution=false);
/// Copy constructor
OsiBranchingInformation ( const OsiBranchingInformation &);
/// Assignment operator
OsiBranchingInformation & operator=( const OsiBranchingInformation& rhs);
/// Clone
virtual OsiBranchingInformation * clone() const;
/// Destructor
virtual ~OsiBranchingInformation ();
// Note public
public:
/// data
/** State of search
0 - no solution
1 - only heuristic solutions
2 - branched to a solution
3 - no solution but many nodes
*/
int stateOfSearch_;
/// Value of objective function (in minimization sense)
double objectiveValue_;
/// Value of objective cutoff (in minimization sense)
double cutoff_;
/// Direction 1.0 for minimization, -1.0 for maximization
double direction_;
/// Integer tolerance
double integerTolerance_;
/// Primal tolerance
double primalTolerance_;
/// Maximum time remaining before stopping on time
double timeRemaining_;
/// Dual to use if row bound violated (if negative then pseudoShadowPrices off)
double defaultDual_;
/// Pointer to solver
mutable const OsiSolverInterface * solver_;
/// The number of columns
int numberColumns_;
/// Pointer to current lower bounds on columns
mutable const double * lower_;
/// Pointer to current solution
mutable const double * solution_;
/// Pointer to current upper bounds on columns
mutable const double * upper_;
/// Highly optional target (hot start) solution
const double * hotstartSolution_;
/// Pointer to duals
const double * pi_;
/// Pointer to row activity
const double * rowActivity_;
/// Objective
const double * objective_;
/// Pointer to current lower bounds on rows
const double * rowLower_;
/// Pointer to current upper bounds on rows
const double * rowUpper_;
/// Elements in column copy of matrix
const double * elementByColumn_;
/// Column starts
const CoinBigIndex * columnStart_;
/// Column lengths
const int * columnLength_;
/// Row indices
const int * row_;
/** Useful region of length CoinMax(numberColumns,2*numberRows)
This is allocated and deleted before OsiObject::infeasibility
It is zeroed on entry and should be so on exit
It only exists if defaultDual_>=0.0
*/
double * usefulRegion_;
/// Useful index region to go with usefulRegion_
int * indexRegion_;
/// Number of solutions found
int numberSolutions_;
/// Number of branching solutions found (i.e. exclude heuristics)
int numberBranchingSolutions_;
/// Depth in tree
int depth_;
/// TEMP
bool owningSolution_;
};
/// This just adds two-wayness to a branching object
class OsiTwoWayBranchingObject : public OsiBranchingObject {
public:
/// Default constructor
OsiTwoWayBranchingObject ();
/** Create a standard tw0-way branch object
Specifies a simple two-way branch.
Specify way = -1 to set the object state to perform the down arm first,
way = 1 for the up arm.
*/
OsiTwoWayBranchingObject (OsiSolverInterface *solver,const OsiObject * originalObject,
int way , double value) ;
/// Copy constructor
OsiTwoWayBranchingObject ( const OsiTwoWayBranchingObject &);
/// Assignment operator
OsiTwoWayBranchingObject & operator= (const OsiTwoWayBranchingObject& rhs);
/// Destructor
virtual ~OsiTwoWayBranchingObject ();
using OsiBranchingObject::branch ;
/** \brief Sets the bounds for the variable according to the current arm
of the branch and advances the object state to the next arm.
state.
Returns change in guessed objective on next branch
*/
virtual double branch(OsiSolverInterface * solver)=0;
inline int firstBranch() const { return firstBranch_; }
/// Way returns -1 on down +1 on up
inline int way() const
{ return !branchIndex_ ? firstBranch_ : -firstBranch_;}
protected:
/// Which way was first branch -1 = down, +1 = up
int firstBranch_;
};
/// Define a single integer class
class OsiSimpleInteger : public OsiObject2 {
public:
/// Default Constructor
OsiSimpleInteger ();
/// Useful constructor - passed solver index
OsiSimpleInteger (const OsiSolverInterface * solver, int iColumn);
/// Useful constructor - passed solver index and original bounds
OsiSimpleInteger (int iColumn, double lower, double upper);
/// Copy constructor
OsiSimpleInteger ( const OsiSimpleInteger &);
/// Clone
virtual OsiObject * clone() const;
/// Assignment operator
OsiSimpleInteger & operator=( const OsiSimpleInteger& rhs);
/// Destructor
virtual ~OsiSimpleInteger ();
using OsiObject::infeasibility ;
/// Infeasibility - large is 0.5
virtual double infeasibility(const OsiBranchingInformation * info, int & whichWay) const;
using OsiObject::feasibleRegion ;
/** Set bounds to fix the variable at the current (integer) value.
Given an integer value, set the lower and upper bounds to fix the
variable. Returns amount it had to move variable.
*/
virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;
/** Creates a branching object
The preferred direction is set by \p way, 0 for down, 1 for up.
*/
virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;
/// Set solver column number
inline void setColumnNumber(int value)
{columnNumber_=value;}
/** Column number if single column object -1 otherwise,
so returns >= 0
Used by heuristics
*/
virtual int columnNumber() const;
/// Original bounds
inline double originalLowerBound() const
{ return originalLower_;}
inline void setOriginalLowerBound(double value)
{ originalLower_=value;}
inline double originalUpperBound() const
{ return originalUpper_;}
inline void setOriginalUpperBound(double value)
{ originalUpper_=value;}
/** Reset variable bounds to their original values.
Bounds may be tightened, so it may be good to be able to reset them to
their original values.
*/
virtual void resetBounds(const OsiSolverInterface * solver) ;
/** Change column numbers after preprocessing
*/
virtual void resetSequenceEtc(int numberColumns, const int * originalColumns);
/// Return "up" estimate (default 1.0e-5)
virtual double upEstimate() const;
/// Return "down" estimate (default 1.0e-5)
virtual double downEstimate() const;
/// Return true if knows how to deal with Pseudo Shadow Prices
virtual bool canHandleShadowPrices() const
{ return false;}
protected:
/// data
/// Original lower bound
double originalLower_;
/// Original upper bound
double originalUpper_;
/// Column number in solver
int columnNumber_;
};
/** Simple branching object for an integer variable
This object can specify a two-way branch on an integer variable. For each
arm of the branch, the upper and lower bounds on the variable can be
independently specified. 0 -> down, 1-> up.
*/
class OsiIntegerBranchingObject : public OsiTwoWayBranchingObject {
public:
/// Default constructor
OsiIntegerBranchingObject ();
/** Create a standard floor/ceiling branch object
Specifies a simple two-way branch. Let \p value = x*. One arm of the
branch will be lb <= x <= floor(x*), the other ceil(x*) <= x <= ub.
Specify way = -1 to set the object state to perform the down arm first,
way = 1 for the up arm.
*/
OsiIntegerBranchingObject (OsiSolverInterface *solver,const OsiSimpleInteger * originalObject,
int way , double value) ;
/** Create a standard floor/ceiling branch object
Specifies a simple two-way branch in a more flexible way. One arm of the
branch will be lb <= x <= downUpperBound, the other upLowerBound <= x <= ub.
Specify way = -1 to set the object state to perform the down arm first,
way = 1 for the up arm.
*/
OsiIntegerBranchingObject (OsiSolverInterface *solver,const OsiSimpleInteger * originalObject,
int way , double value, double downUpperBound, double upLowerBound) ;
/// Copy constructor
OsiIntegerBranchingObject ( const OsiIntegerBranchingObject &);
/// Assignment operator
OsiIntegerBranchingObject & operator= (const OsiIntegerBranchingObject& rhs);
/// Clone
virtual OsiBranchingObject * clone() const;
/// Destructor
virtual ~OsiIntegerBranchingObject ();
using OsiBranchingObject::branch ;
/** \brief Sets the bounds for the variable according to the current arm
of the branch and advances the object state to the next arm.
state.
Returns change in guessed objective on next branch
*/
virtual double branch(OsiSolverInterface * solver);
using OsiBranchingObject::print ;
/** \brief Print something about branch - only if log level high
*/
virtual void print(const OsiSolverInterface * solver=NULL);
protected:
// Probably could get away with just value which is already stored
/// Lower [0] and upper [1] bounds for the down arm (way_ = -1)
double down_[2];
/// Lower [0] and upper [1] bounds for the up arm (way_ = 1)
double up_[2];
};
/** Define Special Ordered Sets of type 1 and 2. These do not have to be
integer - so do not appear in lists of integers.
which_ points columns of matrix
*/
class OsiSOS : public OsiObject2 {
public:
// Default Constructor
OsiSOS ();
/** Useful constructor - which are indices
and weights are also given. If null then 0,1,2..
type is SOS type
*/
OsiSOS (const OsiSolverInterface * solver, int numberMembers,
const int * which, const double * weights, int type=1);
// Copy constructor
OsiSOS ( const OsiSOS &);
/// Clone
virtual OsiObject * clone() const;
// Assignment operator
OsiSOS & operator=( const OsiSOS& rhs);
// Destructor
virtual ~OsiSOS ();
using OsiObject::infeasibility ;
/// Infeasibility - large is 0.5
virtual double infeasibility(const OsiBranchingInformation * info,int & whichWay) const;
using OsiObject::feasibleRegion ;
/** Set bounds to fix the variable at the current (integer) value.
Given an integer value, set the lower and upper bounds to fix the
variable. Returns amount it had to move variable.
*/
virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;
/** Creates a branching object
The preferred direction is set by \p way, 0 for down, 1 for up.
*/
virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;
/// Return "up" estimate (default 1.0e-5)
virtual double upEstimate() const;
/// Return "down" estimate (default 1.0e-5)
virtual double downEstimate() const;
/// Redoes data when sequence numbers change
virtual void resetSequenceEtc(int numberColumns, const int * originalColumns);
/// Number of members
inline int numberMembers() const
{return numberMembers_;}
/// Members (indices in range 0 ... numberColumns-1)
inline const int * members() const
{return members_;}
/// SOS type
inline int sosType() const
{return sosType_;}
/// SOS type
inline int setType() const
{return sosType_;}
/** Array of weights */
inline const double * weights() const
{ return weights_;}
/** \brief Return true if object can take part in normal heuristics
*/
virtual bool canDoHeuristics() const
{return (sosType_==1&&integerValued_);}
/// Set whether set is integer valued or not
inline void setIntegerValued(bool yesNo)
{ integerValued_=yesNo;}
/// Return true if knows how to deal with Pseudo Shadow Prices
virtual bool canHandleShadowPrices() const
{ return true;}
/// Set number of members
inline void setNumberMembers(int value)
{numberMembers_=value;}
/// Members (indices in range 0 ... numberColumns-1)
inline int * mutableMembers() const
{return members_;}
/// Set SOS type
inline void setSosType(int value)
{sosType_=value;}
/** Array of weights */
inline double * mutableWeights() const
{ return weights_;}
protected:
/// data
/// Members (indices in range 0 ... numberColumns-1)
int * members_;
/// Weights
double * weights_;
/// Number of members
int numberMembers_;
/// SOS type
int sosType_;
/// Whether integer valued
bool integerValued_;
};
/** Branching object for Special ordered sets
*/
class OsiSOSBranchingObject : public OsiTwoWayBranchingObject {
public:
// Default Constructor
OsiSOSBranchingObject ();
// Useful constructor
OsiSOSBranchingObject (OsiSolverInterface * solver, const OsiSOS * originalObject,
int way,
double separator);
// Copy constructor
OsiSOSBranchingObject ( const OsiSOSBranchingObject &);
// Assignment operator
OsiSOSBranchingObject & operator=( const OsiSOSBranchingObject& rhs);
/// Clone
virtual OsiBranchingObject * clone() const;
// Destructor
virtual ~OsiSOSBranchingObject ();
using OsiBranchingObject::branch ;
/// Does next branch and updates state
virtual double branch(OsiSolverInterface * solver);
using OsiBranchingObject::print ;
/** \brief Print something about branch - only if log level high
*/
virtual void print(const OsiSolverInterface * solver=NULL);
private:
/// data
};
/** Lotsize class */
class OsiLotsize : public OsiObject2 {
public:
// Default Constructor
OsiLotsize ();
/* Useful constructor - passed model index.
Also passed valid values - if range then pairs
*/
OsiLotsize (const OsiSolverInterface * solver, int iColumn,
int numberPoints, const double * points, bool range=false);
// Copy constructor
OsiLotsize ( const OsiLotsize &);
/// Clone
virtual OsiObject * clone() const;
// Assignment operator
OsiLotsize & operator=( const OsiLotsize& rhs);
// Destructor
virtual ~OsiLotsize ();
using OsiObject::infeasibility ;
/// Infeasibility - large is 0.5
virtual double infeasibility(const OsiBranchingInformation * info, int & whichWay) const;
using OsiObject::feasibleRegion ;
/** Set bounds to contain the current solution.
More precisely, for the variable associated with this object, take the
value given in the current solution, force it within the current bounds
if required, then set the bounds to fix the variable at the integer
nearest the solution value. Returns amount it had to move variable.
*/
virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;
/** Creates a branching object
The preferred direction is set by \p way, 0 for down, 1 for up.
*/
virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;
/// Set solver column number
inline void setColumnNumber(int value)
{columnNumber_=value;}
/** Column number if single column object -1 otherwise,
so returns >= 0
Used by heuristics
*/
virtual int columnNumber() const;
/** Reset original upper and lower bound values from the solver.
Handy for updating bounds held in this object after bounds held in the
solver have been tightened.
*/
virtual void resetBounds(const OsiSolverInterface * solver);
/** Finds range of interest so value is feasible in range range_ or infeasible
between hi[range_] and lo[range_+1]. Returns true if feasible.
*/
bool findRange(double value, double integerTolerance) const;
/** Returns floor and ceiling
*/
virtual void floorCeiling(double & floorLotsize, double & ceilingLotsize, double value,
double tolerance) const;
/// Original bounds
inline double originalLowerBound() const
{ return bound_[0];}
inline double originalUpperBound() const
{ return bound_[rangeType_*numberRanges_-1];}
/// Type - 1 points, 2 ranges
inline int rangeType() const
{ return rangeType_;}
/// Number of points
inline int numberRanges() const
{ return numberRanges_;}
/// Ranges
inline double * bound() const
{ return bound_;}
/** Change column numbers after preprocessing
*/
virtual void resetSequenceEtc(int numberColumns, const int * originalColumns);
/// Return "up" estimate (default 1.0e-5)
virtual double upEstimate() const;
/// Return "down" estimate (default 1.0e-5)
virtual double downEstimate() const;
/// Return true if knows how to deal with Pseudo Shadow Prices
virtual bool canHandleShadowPrices() const
{ return true;}
/** \brief Return true if object can take part in normal heuristics
*/
virtual bool canDoHeuristics() const
{return false;}
private:
/// data
/// Column number in model
int columnNumber_;
/// Type - 1 points, 2 ranges
int rangeType_;
/// Number of points
int numberRanges_;
// largest gap
double largestGap_;
/// Ranges
double * bound_;
/// Current range
mutable int range_;
};
/** Lotsize branching object
This object can specify a two-way branch on an integer variable. For each
arm of the branch, the upper and lower bounds on the variable can be
independently specified.
Variable_ holds the index of the integer variable in the integerVariable_
array of the model.
*/
class OsiLotsizeBranchingObject : public OsiTwoWayBranchingObject {
public:
/// Default constructor
OsiLotsizeBranchingObject ();
/** Create a lotsize floor/ceiling branch object
Specifies a simple two-way branch. Let \p value = x*. One arm of the
branch will be is lb <= x <= valid range below(x*), the other valid range above(x*) <= x <= ub.
Specify way = -1 to set the object state to perform the down arm first,
way = 1 for the up arm.
*/
OsiLotsizeBranchingObject (OsiSolverInterface *solver,const OsiLotsize * originalObject,
int way , double value) ;
/// Copy constructor
OsiLotsizeBranchingObject ( const OsiLotsizeBranchingObject &);
/// Assignment operator
OsiLotsizeBranchingObject & operator= (const OsiLotsizeBranchingObject& rhs);
/// Clone
virtual OsiBranchingObject * clone() const;
/// Destructor
virtual ~OsiLotsizeBranchingObject ();
using OsiBranchingObject::branch ;
/** \brief Sets the bounds for the variable according to the current arm
of the branch and advances the object state to the next arm.
state.
Returns change in guessed objective on next branch
*/
virtual double branch(OsiSolverInterface * solver);
using OsiBranchingObject::print ;
/** \brief Print something about branch - only if log level high
*/
virtual void print(const OsiSolverInterface * solver=NULL);
protected:
/// Lower [0] and upper [1] bounds for the down arm (way_ = -1)
double down_[2];
/// Lower [0] and upper [1] bounds for the up arm (way_ = 1)
double up_[2];
};
#endif
|