summaryrefslogtreecommitdiff
path: root/newstructure/thirdparty/linux/include/coin/CbcTreeLocal.hpp
blob: efff91cd611c97b26c42d9769d77c9e9dbbdaf42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/* $Id: CbcTreeLocal.hpp 1573 2011-01-05 01:12:36Z lou $ */
// Copyright (C) 2004, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#ifndef CbcTreeLocal_H
#define CbcTreeLocal_H

//#############################################################################
/*  This implements (approximately) local branching as in the 2002 paper by
    Matteo Fischetti and Andrea Lodi.

    The very simple version of the algorithm for problems with
    0-1 variables and continuous is as follows:

    Obtain a feasible solution (one can be passed in).

    Add a cut which limits search to a k neighborhood of this solution.
    (At most k 0-1 variables may change value)
    Do branch and bound on this problem.

    If finished search and proven optimal then we can reverse cut so
    any solutions must be at least k+1 away from solution and we can
    add a new cut limiting search to a k neighborhood of new solution
    repeat.

    If finished search and no new solution then the simplest version
    would reverse last cut and complete search.  The version implemented
    here can use time and node limits and can widen search (increase effective k)
    .... and more

*/

#include "CbcTree.hpp"
#include "CbcNode.hpp"
#include "OsiRowCut.hpp"
class CbcModel;


class CbcTreeLocal : public CbcTree {

public:

    // Default Constructor
    CbcTreeLocal ();

    /* Constructor with solution.
       If solution NULL no solution, otherwise must be integer
       range is initial upper bound (k) on difference from given solution.
       typeCuts -
                0 means just 0-1 cuts and will need to refine 0-1 solution
            1 uses weaker cuts on all integer variables
       maxDiversification is maximum number of range widenings to try
       timeLimit is seconds in subTree
       nodeLimit is nodes in subTree
       refine is whether to see if we can prove current solution is optimal
       when we fix all 0-1 (in case typeCuts==0 and there are general integer variables)
       if false then no refinement but reverse cuts weaker
    */
    CbcTreeLocal (CbcModel * model, const double * solution , int range = 10,
                  int typeCuts = 0, int maxDiversification = 0,
                  int timeLimit = 1000000, int nodeLimit = 1000000, bool refine = true);
    // Copy constructor
    CbcTreeLocal ( const CbcTreeLocal & rhs);

    // = operator
    CbcTreeLocal & operator=(const CbcTreeLocal & rhs);

    virtual ~CbcTreeLocal();

    /// Clone
    virtual CbcTree * clone() const;
    /// Create C++ lines to get to current state
    virtual void generateCpp( FILE * fp) ;

    /*! \name Heap access and maintenance methods */
//@{

    /// Return the top node of the heap
    virtual CbcNode * top() const;

    /// Add a node to the heap
    virtual void push(CbcNode * x);

    /// Remove the top node from the heap
    virtual void pop() ;

//@}
    /*! \name Other stuff */
//@{

    /// Create cut - return -1 if bad, 0 if okay and 1 if cut is everything
    int createCut(const double * solution, OsiRowCut & cut);

    /// Test if empty *** note may be overridden
    virtual bool empty() ;

    /// We may have got an intelligent tree so give it one more chance
    virtual void endSearch() ;
    /// Other side of last cut branch (if bias==rhs_ will be weakest possible)
    void reverseCut(int state, double bias = 0.0);
    /// Delete last cut branch
    void deleteCut(OsiRowCut & cut);
    /// Pass in solution (so can be used after heuristic)
    void passInSolution(const double * solution, double solutionValue);
    // range i.e. k
    inline int range() const {
        return range_;
    }
    // setrange i.e. k
    inline void setRange(int value) {
        range_ = value;
    }
    // Type of cuts - 0=just 0-1, 1=all
    inline int typeCuts() const {
        return typeCuts_;
    }
    // Type of cuts - 0=just 0-1, 1=all
    inline void setTypeCuts(int value) {
        typeCuts_ = value;
    }
    // maximum number of diversifications
    inline int maxDiversification() const {
        return maxDiversification_;
    }
    // maximum number of diversifications
    inline void setMaxDiversification(int value) {
        maxDiversification_ = value;
    }
    // time limit per subtree
    inline int timeLimit() const {
        return timeLimit_;
    }
    // time limit per subtree
    inline void setTimeLimit(int value) {
        timeLimit_ = value;
    }
    // node limit for subtree
    inline int nodeLimit() const {
        return nodeLimit_;
    }
    // node limit for subtree
    inline void setNodeLimit(int value) {
        nodeLimit_ = value;
    }
    // Whether to do refinement step
    inline bool refine() const {
        return refine_;
    }
    // Whether to do refinement step
    inline void setRefine(bool yesNo) {
        refine_ = yesNo;
    }

//@}
private:
    // Node for local cuts
    CbcNode * localNode_;
    // best solution
    double * bestSolution_;
    // saved solution
    double * savedSolution_;
    // solution number at start of pass
    int saveNumberSolutions_;
    /* Cut.  If zero size then no solution yet.  Otherwise is left hand branch */
    OsiRowCut cut_;
    // This cut fixes all 0-1 variables
    OsiRowCut fixedCut_;
    // Model
    CbcModel * model_;
    // Original lower bounds
    double * originalLower_;
    // Original upper bounds
    double * originalUpper_;
    // range i.e. k
    int range_;
    // Type of cuts - 0=just 0-1, 1=all
    int typeCuts_;
    // maximum number of diversifications
    int maxDiversification_;
    // current diversification
    int diversification_;
    // Whether next will be strong diversification
    bool nextStrong_;
    // Current rhs
    double rhs_;
    // Save allowable gap
    double savedGap_;
    // Best solution
    double bestCutoff_;
    // time limit per subtree
    int timeLimit_;
    // time when subtree started
    int startTime_;
    // node limit for subtree
    int nodeLimit_;
    // node count when subtree started
    int startNode_;
    // -1 not started, 0 == stop on first solution, 1 don't stop on first, 2 refinement step
    int searchType_;
    // Whether to do refinement step
    bool refine_;

};

class CbcTreeVariable : public CbcTree {

public:

    // Default Constructor
    CbcTreeVariable ();

    /* Constructor with solution.
       If solution NULL no solution, otherwise must be integer
       range is initial upper bound (k) on difference from given solution.
       typeCuts -
                0 means just 0-1 cuts and will need to refine 0-1 solution
            1 uses weaker cuts on all integer variables
       maxDiversification is maximum number of range widenings to try
       timeLimit is seconds in subTree
       nodeLimit is nodes in subTree
       refine is whether to see if we can prove current solution is optimal
       when we fix all 0-1 (in case typeCuts==0 and there are general integer variables)
       if false then no refinement but reverse cuts weaker
    */
    CbcTreeVariable (CbcModel * model, const double * solution , int range = 10,
                     int typeCuts = 0, int maxDiversification = 0,
                     int timeLimit = 1000000, int nodeLimit = 1000000, bool refine = true);
    // Copy constructor
    CbcTreeVariable ( const CbcTreeVariable & rhs);

    // = operator
    CbcTreeVariable & operator=(const CbcTreeVariable & rhs);

    virtual ~CbcTreeVariable();

    /// Clone
    virtual CbcTree * clone() const;
    /// Create C++ lines to get to current state
    virtual void generateCpp( FILE * fp) ;

    /*! \name Heap access and maintenance methods */
//@{

    /// Return the top node of the heap
    virtual CbcNode * top() const;

    /// Add a node to the heap
    virtual void push(CbcNode * x);

    /// Remove the top node from the heap
    virtual void pop() ;

//@}
    /*! \name Other stuff */
//@{

    /// Create cut - return -1 if bad, 0 if okay and 1 if cut is everything
    int createCut(const double * solution, OsiRowCut & cut);

    /// Test if empty *** note may be overridden
    virtual bool empty() ;

    /// We may have got an intelligent tree so give it one more chance
    virtual void endSearch() ;
    /// Other side of last cut branch (if bias==rhs_ will be weakest possible)
    void reverseCut(int state, double bias = 0.0);
    /// Delete last cut branch
    void deleteCut(OsiRowCut & cut);
    /// Pass in solution (so can be used after heuristic)
    void passInSolution(const double * solution, double solutionValue);
    // range i.e. k
    inline int range() const {
        return range_;
    }
    // setrange i.e. k
    inline void setRange(int value) {
        range_ = value;
    }
    // Type of cuts - 0=just 0-1, 1=all
    inline int typeCuts() const {
        return typeCuts_;
    }
    // Type of cuts - 0=just 0-1, 1=all
    inline void setTypeCuts(int value) {
        typeCuts_ = value;
    }
    // maximum number of diversifications
    inline int maxDiversification() const {
        return maxDiversification_;
    }
    // maximum number of diversifications
    inline void setMaxDiversification(int value) {
        maxDiversification_ = value;
    }
    // time limit per subtree
    inline int timeLimit() const {
        return timeLimit_;
    }
    // time limit per subtree
    inline void setTimeLimit(int value) {
        timeLimit_ = value;
    }
    // node limit for subtree
    inline int nodeLimit() const {
        return nodeLimit_;
    }
    // node limit for subtree
    inline void setNodeLimit(int value) {
        nodeLimit_ = value;
    }
    // Whether to do refinement step
    inline bool refine() const {
        return refine_;
    }
    // Whether to do refinement step
    inline void setRefine(bool yesNo) {
        refine_ = yesNo;
    }

//@}
private:
    // Node for local cuts
    CbcNode * localNode_;
    // best solution
    double * bestSolution_;
    // saved solution
    double * savedSolution_;
    // solution number at start of pass
    int saveNumberSolutions_;
    /* Cut.  If zero size then no solution yet.  Otherwise is left hand branch */
    OsiRowCut cut_;
    // This cut fixes all 0-1 variables
    OsiRowCut fixedCut_;
    // Model
    CbcModel * model_;
    // Original lower bounds
    double * originalLower_;
    // Original upper bounds
    double * originalUpper_;
    // range i.e. k
    int range_;
    // Type of cuts - 0=just 0-1, 1=all
    int typeCuts_;
    // maximum number of diversifications
    int maxDiversification_;
    // current diversification
    int diversification_;
    // Whether next will be strong diversification
    bool nextStrong_;
    // Current rhs
    double rhs_;
    // Save allowable gap
    double savedGap_;
    // Best solution
    double bestCutoff_;
    // time limit per subtree
    int timeLimit_;
    // time when subtree started
    int startTime_;
    // node limit for subtree
    int nodeLimit_;
    // node count when subtree started
    int startNode_;
    // -1 not started, 0 == stop on first solution, 1 don't stop on first, 2 refinement step
    int searchType_;
    // Whether to do refinement step
    bool refine_;

};
#endif