summaryrefslogtreecommitdiff
path: root/newstructure/thirdparty/linux/include/coin/BonOsiTMINLPInterface.hpp
blob: 3d9554518d2938b3f2cc2c7c3d86d47ddada62d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
// (C) Copyright International Business Machines Corporation, Carnegie Mellon University 2004, 2007
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// Authors :
// Pierre Bonami, Carnegie Mellon University,
// Carl D. Laird, Carnegie Mellon University,
// Andreas Waechter, International Business Machines Corporation
//
// Date : 12/01/2004


#ifndef OsiTMINLPInterface_H
#define OsiTMINLPInterface_H

#define INT_BIAS 0e-8

#include <string>
#include <iostream>

#include "OsiSolverInterface.hpp"
#include "CoinWarmStartBasis.hpp"

#include "BonCutStrengthener.hpp"
//#include "BonRegisteredOptions.hpp"

namespace Bonmin {
  class TMINLP;
  class TMINLP2TNLP;
  class TMINLP2OsiLP;
  class TNLP2FPNLP;
  class TNLPSolver;
  class RegisteredOptions;
  class StrongBranchingSolver;

  /** Solvers for solving nonlinear programs.*/
  enum Solver{
    EIpopt=0 /** <a href="http://projects.coin-or.org/Ipopt"> Ipopt </a> interior point algorithm.*/,
    EFilterSQP /** <a href="http://www-unix.mcs.anl.gov/~leyffer/solvers.html"> filterSQP </a> Sequential Quadratic Programming algorithm.*/,
    EAll/** Use all solvers.*/
  };
/**
   This is class provides an Osi interface for a Mixed Integer Linear Program
   expressed as a TMINLP
   (so that we can use it for example as the continuous solver in Cbc).
*/

class OsiTMINLPInterface : public OsiSolverInterface
{
  friend class BonminParam;

public:

  //#############################################################################

  /**Error class to throw exceptions from OsiTMINLPInterface.
   * Inherited from CoinError, we just want to have a different class to be able to catch
   * errors thrown by OsiTMINLPInterface.
  */
class SimpleError : public CoinError
  {
  private:
    SimpleError();

  public:
    ///Alternate constructor using strings
    SimpleError(std::string message,
        std::string methodName,
	std::string f = std::string(),
	int l = -1)
        :
        CoinError(message,methodName,std::string("OsiTMINLPInterface"), f, l)
    {}
  }
  ;

#ifdef __LINE__
#define SimpleError(x, y) SimpleError((x), (y), __FILE__, __LINE__)
#endif

  // Error when problem is not solved
  TNLPSolver::UnsolvedError * newUnsolvedError(int num, Ipopt::SmartPtr<TMINLP2TNLP> problem, std::string name){
    return app_->newUnsolvedError(num, problem, name);
  }
  //#############################################################################

  enum WarmStartModes{
   None,
   FakeBasis,
   Optimum,
   InteriorPoint};

  /** Type of the messages specifically written by OsiTMINLPInterface.*/
  enum MessagesTypes{
    SOLUTION_FOUND/**found a feasible solution*/,
    INFEASIBLE_SOLUTION_FOUND/**found an infeasible problem*/,
    UNSOLVED_PROBLEM_FOUND/**found an unsolved problem*/,
    WARNING_RESOLVING /** Warn that a problem is resolved*/,
    WARN_SUCCESS_WS/** Problem not solved with warm start but solved without*/,
    WARN_SUCCESS_RANDOM/** Subproblem not solve with warm start but solved with random point*/,
    WARN_CONTINUING_ON_FAILURE/** a failure occured but is continuing*/,
    SUSPECT_PROBLEM/** Output the number of the problem.*/,
    SUSPECT_PROBLEM2/** Output the number of the problem.*/,
    IPOPT_SUMMARY /** Output summary statistics on Ipopt solution.*/,
    BETTER_SOL /** Found a better solution with random values.*/,
    LOG_HEAD/** Head of "civilized" log.*/,
    LOG_FIRST_LINE/** First line (first solve) of log.*/,
    LOG_LINE/**standard line (retry solving) of log.*/,
    ALTERNATE_OBJECTIVE/** Recomputed integer feasible with alternate objective function*/,
    WARN_RESOLVE_BEFORE_INITIAL_SOLVE /** resolve() has been called but there
                                              was no previous call to initialSolve().
                                         */,
    ERROR_NO_TNLPSOLVER /** Trying to access non-existent TNLPSolver*/,
    WARNING_NON_CONVEX_OA /** Warn that there are equality or ranged constraints and OA may works bad.*/,
    SOLVER_DISAGREE_STATUS /** Different solver gives different status for problem.*/,
    SOLVER_DISAGREE_VALUE /** Different solver gives different optimal value for problem.*/,
    OSITMINLPINTERFACE_DUMMY_END
  };

  //#############################################################################


  /** Messages written by an OsiTMINLPInterface. */
class Messages : public CoinMessages
  {
  public:
    /// Constructor
    Messages();
  };


  //#############################################################################


  /**@name Constructors and destructors */
  //@{
  /// Default Constructor
  OsiTMINLPInterface();

  /** Facilitator to initialize interface. */
  void initialize(Ipopt::SmartPtr<Bonmin::RegisteredOptions> roptions,
                  Ipopt::SmartPtr<Ipopt::OptionsList> options,
                  Ipopt::SmartPtr<Ipopt::Journalist> journalist,
                  const std::string & prefix,
                  Ipopt::SmartPtr<TMINLP> tminlp);

  /** Facilitator to initialize interface. */
  void initialize(Ipopt::SmartPtr<Bonmin::RegisteredOptions> roptions,
                  Ipopt::SmartPtr<Ipopt::OptionsList> options,
                  Ipopt::SmartPtr<Ipopt::Journalist> journalist,
                  Ipopt::SmartPtr<TMINLP> tminlp){
     initialize(roptions, options, journalist, "bonmin.", tminlp);
  }

  /** Set the model to be solved by interface.*/
  void setModel(Ipopt::SmartPtr<TMINLP> tminlp);
  /** Set the solver to be used by interface.*/
  void setSolver(Ipopt::SmartPtr<TNLPSolver> app);
  /** Sets the TMINLP2TNLP to be used by the interface.*/
  void use(Ipopt::SmartPtr<TMINLP2TNLP> tminlp2tnlp);
  /** Copy constructor
  */
  OsiTMINLPInterface (const OsiTMINLPInterface &);

  /** Virtual copy constructor */
  OsiSolverInterface * clone(bool copyData = true) const;

  /// Assignment operator
  OsiTMINLPInterface & operator=(const OsiTMINLPInterface& rhs);

  /// Destructor
  virtual ~OsiTMINLPInterface ();


  /// Read parameter file
  void readOptionFile(const std::string & fileName);

  /// Retrieve OsiTMINLPApplication option list
  const Ipopt::SmartPtr<Ipopt::OptionsList> options() const;
  /// Retrieve OsiTMINLPApplication option list
  Ipopt::SmartPtr<Ipopt::OptionsList> options();

  const char * prefix() const{
  if(!IsValid(app_)) {
    messageHandler()->message(ERROR_NO_TNLPSOLVER, messages_)<<CoinMessageEol;
    return NULL;
  }
  else
    return app_->prefix();
  }
  //@}
  //---------------------------------------------------------------------------
  /**@name Solve methods */
  //@{
  /// Solve initial continuous relaxation
  virtual void initialSolve();

  /// Solve initial continuous relaxation (precising from where)
  virtual void initialSolve(const char * whereFrom);

  /** Resolve the continuous relaxation after problem modification.
      initialSolve may or may not have been called before this is called. In
      any case, this must solve the problem, and speed the process up if it
      can reuse any remnants of data that might exist from a previous solve.
   */
  virtual void resolve();

  /** Resolve the continuous relaxation after problem modification.
      initialSolve may or may not have been called before this is called. In
      any case, this must solve the problem, and speed the process up if it
      can reuse any remnants of data that might exist from a previous solve.
   */
  virtual void resolve(const char * whereFrom);

  /** Resolve the problem with different random starting points to try to find
      a better solution (only makes sense for a non-convex problem.*/
  virtual void resolveForCost(int numretry, bool keepWs);

  /** Method to be called when a problem has failed to be solved. Will try
      to resolve it with different settings.
  */
  virtual void resolveForRobustness(int numretry);

  /// Nescessary for compatibility with OsiSolverInterface but does nothing.
  virtual void branchAndBound()
  {
    throw SimpleError("Function not implemented for OsiTMINLPInterface","branchAndBound()");
  }
  //@}



  //---------------------------------------------------------------------------
  ///@name Methods returning info on how the solution process terminated
  //@{
  /// Are there a numerical difficulties?
  virtual bool isAbandoned() const;
  /// Is optimality proven?
  virtual bool isProvenOptimal() const;
  /// Is primal infeasiblity proven?
  virtual bool isProvenPrimalInfeasible() const;
  /// Is dual infeasiblity proven?
  virtual bool isProvenDualInfeasible() const;
  /// Is the given primal objective limit reached?
  virtual bool isPrimalObjectiveLimitReached() const;
  /// Is the given dual objective limit reached?
  virtual bool isDualObjectiveLimitReached() const;
  /// Iteration limit reached?
  virtual bool isIterationLimitReached() const;

  ///Warn solver that branch-and-bound is continuing after a failure
  void continuingOnAFailure()
  {
    hasContinuedAfterNlpFailure_ = true;
  }


  //Added by Claudia
  
  double getNewCutoffDecr()
  {
    return newCutoffDecr;
  }

  void setNewCutoffDecr(double d)
  {
    newCutoffDecr = d;
  }


  /// Did we continue on a failure
  bool hasContinuedOnAFailure()
  {
    return hasContinuedAfterNlpFailure_;
  }
  /// tell to ignore the failures (don't throw, don't fathom, don't report)
  void ignoreFailures()
  {
    pretendFailIsInfeasible_ = 2;
  }
  /// Force current solution to be infeasible
  void forceInfeasible()
  {
    problem_->set_obj_value(1e200);
  }
  /// Force current solution to be branched on (make it fractionnal with small objective)
  void forceBranchable()
  {
    problem_->set_obj_value(-1e200);
    problem_->force_fractionnal_sol();
  }
  //@}


  //---------------------------------------------------------------------------
  /**@name Parameter set/get methods

     The set methods return true if the parameter was set to the given value,
     false otherwise. There can be various reasons for failure: the given
     parameter is not applicable for the solver (e.g., refactorization
     frequency for the clp algorithm), the parameter is not yet implemented
     for the solver or simply the value of the parameter is out of the range
     the solver accepts. If a parameter setting call returns false check the
     details of your solver.

     The get methods return true if the given parameter is applicable for the
     solver and is implemented. In this case the value of the parameter is
     returned in the second argument. Otherwise they return false.
  */
  //@{
  // Set an integer parameter
  bool setIntParam(OsiIntParam key, int value);
  // Set an double parameter
  bool setDblParam(OsiDblParam key, double value);
  // Set a string parameter
  bool setStrParam(OsiStrParam key, const std::string & value);
  // Get an integer parameter
  bool getIntParam(OsiIntParam key, int& value) const;
  // Get an double parameter
  bool getDblParam(OsiDblParam key, double& value) const;
  // Get a string parameter
  bool getStrParam(OsiStrParam key, std::string& value) const;

  // Get the push values for starting point
  inline double getPushFact() const
  {
    return pushValue_;
  }

  //@}


  //---------------------------------------------------------------------------
  /**@name Problem information methods

     These methods call the solver's query routines to return
     information about the problem referred to by the current object.
     Querying a problem that has no data associated with it result in
     zeros for the number of rows and columns, and NULL pointers from
     the methods that return vectors.

     Const pointers returned from any data-query method are valid as
     long as the data is unchanged and the solver is not called.
  */
  //@{
  /// Get number of columns
  virtual int getNumCols() const;

  /// Get number of rows
  virtual int getNumRows() const;

  ///get name of variables
  const OsiSolverInterface::OsiNameVec& getVarNames() ;
  /// Get pointer to array[getNumCols()] of column lower bounds
  virtual const double * getColLower() const;

  /// Get pointer to array[getNumCols()] of column upper bounds
  virtual const double * getColUpper() const;

  /** Get pointer to array[getNumRows()] of row constraint senses.
      <ul>
      <li>'L': <= constraint
      <li>'E': =  constraint
      <li>'G': >= constraint
      <li>'R': ranged constraint
      <li>'N': free constraint
      </ul>
  */
  virtual const char * getRowSense() const;

  /** Get pointer to array[getNumRows()] of rows right-hand sides
      <ul>
      <li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
      <li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
      <li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
      <li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
      </ul>
  */
  virtual const double * getRightHandSide() const;

  /** Get pointer to array[getNumRows()] of row ranges.
      <ul>
      <li> if rowsense()[i] == 'R' then
      rowrange()[i] == rowupper()[i] - rowlower()[i]
      <li> if rowsense()[i] != 'R' then
      rowrange()[i] is 0.0
      </ul>
  */
  virtual const double * getRowRange() const;

  /// Get pointer to array[getNumRows()] of row lower bounds
  virtual const double * getRowLower() const;

  /// Get pointer to array[getNumRows()] of row upper bounds
  virtual const double * getRowUpper() const;

  /** Get objective function sense (1 for min (default), -1 for max)
   * Always minimizes */
  virtual double getObjSense() const
  {
    return 1;
  }

  /// Return true if column is continuous
  virtual bool isContinuous(int colNumber) const;

  /// Return true if column is binary
  virtual bool isBinary(int columnNumber) const;

  /** Return true if column is integer.
      Note: This function returns true if the the column
      is binary or a general integer.
  */
  virtual bool isInteger(int columnNumber) const;

  /// Return true if column is general integer
  virtual bool isIntegerNonBinary(int columnNumber) const;

  /// Return true if column is binary and not fixed at either bound
  virtual bool isFreeBinary(int columnNumber) const;

  /// Get solver's value for infinity
  virtual double getInfinity() const;

  ///Get priorities on integer variables.
  const int * getPriorities() const
  {
    const TMINLP::BranchingInfo * branch = tminlp_->branchingInfo();
    if(branch)
      return branch->priorities;
    else return NULL;
  }
  ///get prefered branching directions
  const int * getBranchingDirections() const
  {
    const TMINLP::BranchingInfo * branch = tminlp_->branchingInfo();
    if(branch)
      return branch->branchingDirections;
    else return NULL;
  }
  const double * getUpPsCosts() const
  {
    const TMINLP::BranchingInfo * branch = tminlp_->branchingInfo();
    if(branch)
    return branch->upPsCosts;
    else return NULL;
  }
  const double * getDownPsCosts() const
  {
    const TMINLP::BranchingInfo * branch = tminlp_->branchingInfo();
    if(branch)
    return branch->downPsCosts;
    else return NULL;
  }


  //@}

  /**@name Methods related to querying the solution */
  //@{
  /// Get pointer to array[getNumCols()] of primal solution vector
  virtual const double * getColSolution() const;

  /// Get pointer to array[getNumRows()] of dual prices
  virtual const double * getRowPrice() const;

  /// Get a pointer to array[getNumCols()] of reduced costs
  virtual const double * getReducedCost() const;

  /** Get pointer to array[getNumRows()] of row activity levels (constraint
      matrix times the solution vector */
  virtual const double * getRowActivity() const;


  /** Get how many iterations it took to solve the problem (whatever
      "iteration" mean to the solver.
      * \todo Figure out what it could mean for Ipopt.
      */
  virtual int getIterationCount() const;

  /** get total number of calls to solve.*/
  int nCallOptimizeTNLP()
  {
    return nCallOptimizeTNLP_;
  }
  /** get total time taken to solve NLP's. */
  double totalNlpSolveTime()
  {
    return totalNlpSolveTime_;
  }
  /** get total number of iterations */
  int totalIterations()
  {
    return totalIterations_;
  }


  //@}
  //-------------------------------------------------------------------------
  /**@name Methods to modify the objective, bounds, and solution
  */
  //@{

  /** Set a single column lower bound.
      Use -getInfinity() for -infinity. */
  virtual void setColLower( int elementIndex, double elementValue );

  /** Set a single column upper bound.
      Use getInfinity() for infinity. */
  virtual void setColUpper( int elementIndex, double elementValue );

  /** Set the lower bounds for all columns
      array [getNumCols()] is an array of values for the objective.
  */
  virtual void setColLower(const double * array);

  /** Set the upper bounds for all columns
      array [getNumCols()] is an array of values for the objective.
  */
  virtual void setColUpper(const double * array);


  /** Set a single row lower bound.
      Use -getInfinity() for -infinity. */
  virtual void setRowLower( int elementIndex, double elementValue );

  /** Set a single row upper bound.
      Use getInfinity() for infinity. */
  virtual void setRowUpper( int elementIndex, double elementValue );

  /** Set the type of a single row */
  virtual void setRowType(int index, char sense, double rightHandSide,
      double range);


  /** \brief Set the objective function sense (disabled).
   * (1 for min (default), -1 for max)
   \todo Make it work.
   \bug Can not treat maximisation problems. */
  virtual void setObjSense(double s);

  /** Set the primal solution variable values
      Set the values for the starting point.
      \warning getColSolution will never return this vector (unless it is optimal).
  */
  virtual void setColSolution(const double *colsol);

  /** Set dual solution variable values.
      set the values for the starting point.
      \warning getRowPrice will never return this vector (unless it is optimal).
  */
  virtual void setRowPrice(const double * rowprice);

  //@}


  //---------------------------------------------------------------------------
  /**@name WarmStart related methods (those should really do nothing for the moment)*/
  //@{

  /*! \brief Get an empty warm start object

  This routine returns an empty CoinWarmStartBasis object. Its purpose is
  to provide a way to give a client a warm start basis object of the
  appropriate type, which can resized and modified as desired.
  */
  virtual CoinWarmStart *getEmptyWarmStart () const;

  /** Get warmstarting information */
  virtual CoinWarmStart* getWarmStart() const;

  /** Set warmstarting information. Return true/false depending on whether
      the warmstart information was accepted or not. */
  virtual bool setWarmStart(const CoinWarmStart* warmstart);

  void setWarmStartMode(int mode) {
    warmStartMode_ = (WarmStartModes) mode;
  }
  WarmStartModes getWarmStartMode() {
    return warmStartMode_;
  }

  void randomStartingPoint();

  //Returns true if a basis is available
  virtual bool basisIsAvailable() const
  {
    // Throw an exception
    throw SimpleError("Needs coding for this interface", "basisIsAvailable");
  }


  //@}

  //-------------------------------------------------------------------------
  /**@name Methods to set variable type */
  //@{
  /** Set the index-th variable to be a continuous variable */
  virtual void setContinuous(int index);
  /** Set the index-th variable to be an integer variable */
  virtual void setInteger(int index);
  //@}

  //Set numIterationSuspect_
  void setNumIterationSuspect(int value)
  {
    numIterationSuspect_ = value;
  }

  /**@name Dummy functions
   * Functions which have to be implemented in an OsiSolverInterface,
   * but which do not do anything (but throwing exceptions) here in the case of a
   * minlp solved using an nlp solver for continuous relaxations */
  //@{

  /** Cbc will understand that no matrix exsits if return -1
  */
  virtual int getNumElements() const
  {
    return -1;
  }


  /** This returns the objective function gradient at the current
   *  point.  It seems to be required for Cbc's pseudo cost
   *  initialization
  */
  virtual const double * getObjCoefficients() const;

  /** We have to keep this but it will return NULL.
   */
  virtual const CoinPackedMatrix * getMatrixByRow() const
  {
      return NULL;
  }


  /** We have to keep this but it will return NULL.
   */
  virtual const CoinPackedMatrix * getMatrixByCol() const
  {
      return NULL;
  }

  /** We have to keep this but it will throw an error.
  */
  virtual void setObjCoeff( int elementIndex, double elementValue )
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "setObjCoeff");
  }

  /** We have to keep this but it will throw an error.
  */
  virtual void addCol(const CoinPackedVectorBase& vec,
      const double collb, const double colub,
      const double obj)
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "addCol");
  }
  /** We have to keep this but it will throw an error.
  */
  virtual void deleteCols(const int num, const int * colIndices)
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "deleteCols");
  }

  /** We have to keep this but it will throw an error.
  */
  virtual void addRow(const CoinPackedVectorBase& vec,
      const double rowlb, const double rowub)
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "addRow");
  }
  /** We have to keep this but it will throw an error.
  */
  virtual void addRow(const CoinPackedVectorBase& vec,
      const char rowsen, const double rowrhs,
      const double rowrng)
  {
    throw SimpleError("OsiTMINLPInterface model does not implement this function.",
        "addRow");
  }
  /** We have to keep this but it will throw an error.
  */
  virtual void deleteRows(const int num, const int * rowIndices)
  {
    if(num)
      freeCachedRowRim();
     problem_->removeCuts(num, rowIndices);
  }


  /** We have to keep this but it will throw an error
  */
  virtual void loadProblem(const CoinPackedMatrix& matrix,
      const double* collb, const double* colub,
      const double* obj,
      const double* rowlb, const double* rowub)
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "loadProblem");
  }


  /** We have to keep this but it will throw an error.
  */
  virtual void assignProblem(CoinPackedMatrix*& matrix,
      double*& collb, double*& colub, double*& obj,
      double*& rowlb, double*& rowub)
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "assignProblem");
  }

  /** We have to keep this but it will throw an error.
  */
  virtual void loadProblem(const CoinPackedMatrix& matrix,
      const double* collb, const double* colub,
      const double* obj,
      const char* rowsen, const double* rowrhs,
      const double* rowrng)
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "loadProblem");
  }

  /** We have to keep this but it will throw an error.
  */
  virtual void assignProblem(CoinPackedMatrix*& matrix,
      double*& collb, double*& colub, double*& obj,
      char*& rowsen, double*& rowrhs,
      double*& rowrng)
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "assignProblem");
  }


  /** We have to keep this but it will throw an error.
  */
  virtual void loadProblem(const int numcols, const int numrows,
      const int* start, const int* index,
      const double* value,
      const double* collb, const double* colub,
      const double* obj,
      const double* rowlb, const double* rowub)
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "loadProblem");
  }

  /** We have to keep this but it will throw an error.
  */
  virtual void loadProblem(const int numcols, const int numrows,
      const int* start, const int* index,
      const double* value,
      const double* collb, const double* colub,
      const double* obj,
      const char* rowsen, const double* rowrhs,
      const double* rowrng)
  {
    throw SimpleError("OsiTMINLPInterface model does not implement this function.",
        "loadProblem");
  }

  /** We have to keep this but it will throw an error.
  */
  virtual int readMps(const char *filename,
      const char *extension = "mps")
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "readMps");
  }


  /** We have to keep this but it will throw an error.
  */
  virtual void writeMps(const char *filename,
      const char *extension = "mps",
      double objSense=0.0) const
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "writeMps");
  }

  /** Throws an error */
  virtual std::vector<double*> getDualRays(int maxNumRays, bool fullRay = false) const
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "getDualRays");
  }

  /** Throws an error */
  virtual std::vector<double*> getPrimalRays(int maxNumRays) const
  {
    throw SimpleError("OsiTMINLPInterface does not implement this function.",
        "getPrimalRays");
  }

  //@}


  
  //---------------------------------------------------------------------------



  /**@name Control of Ipopt output
   */
  //@{
  void setSolverOutputToDefault(){
  app_->setOutputToDefault();}
  void forceSolverOutput(int log_level){
  app_->forceSolverOutput(log_level);}
  //@}

  /**@name Sets and Getss */
  //@{
  /// Get objective function value (can't use default)
  virtual double getObjValue() const;

  //@}

  /** get pointer to the TMINLP2TNLP adapter */
  const TMINLP2TNLP * problem() const
  {
    return GetRawPtr(problem_);
  }

  TMINLP2TNLP * problem()
  {
    return GetRawPtr(problem_);
  }

  const TMINLP * model() const
  {
    return GetRawPtr(tminlp_);
  }
  
  Bonmin::TMINLP * model()
  {
    return GetRawPtr(tminlp_);
  }
  
  const Bonmin::TNLPSolver * solver() const
  {
    return GetRawPtr(app_);
  } 
 
  const std::list<Ipopt::SmartPtr<TNLPSolver> >& debug_apps() const{
    return debug_apps_;
  }

  TNLPSolver * solver()
  {
    return GetRawPtr(app_);
  } 
  /** \name Methods to build outer approximations */
  //@{
  /** \name Methods to build outer approximations */
  //@{
  /** \brief Extract a linear relaxation of the MINLP.
   * Use user-provided point to build first-order outer-approximation constraints at the optimum.
   * And put it in an OsiSolverInterface.
   */
  virtual void extractLinearRelaxation(OsiSolverInterface &si, const double *x, 
                                       bool getObj = 1);

  /** Add constraint corresponding to objective function.*/
  virtual void addObjectiveFunction(OsiSolverInterface &si, const double * x);
#if 1
  /** \brief Extract a linear relaxation of the MINLP.
   * Solve the continuous relaxation and takes first-order outer-approximation constraints at the optimum.
   * The put everything in an OsiSolverInterface.
   */
  virtual void extractLinearRelaxation(OsiSolverInterface &si, bool getObj = 1,
                                       bool solveNlp = 1){
     if(solveNlp)
       initialSolve("build initial OA");
     extractLinearRelaxation(si, getColSolution(), getObj); 
     if(solveNlp){
        app_->enableWarmStart();
        setColSolution(problem()->x_sol());
        setRowPrice(problem()->duals_sol());
     }
   }
#endif
  /** Get the outer approximation constraints at the current optimal point.
      If x2 is different from NULL only add cuts violated by x2.
   (Only get outer-approximations of nonlinear constraints of the problem.)*/
  void getOuterApproximation(OsiCuts &cs, int getObj, const double * x2, bool global)
{
  getOuterApproximation(cs, getColSolution(), getObj, x2, global);
}

  /** Get the outer approximation constraints at provided point.
      If x2 is different from NULL only add cuts violated by x2.
   (Only get outer-approximations of nonlinear constraints of the problem.)*/
  void getOuterApproximation(OsiCuts &cs, const double * x, int getObj, const double * x2, bool global){
    getOuterApproximation(cs, x, getObj, x2, 0., global);}

  /** Get the outer approximation constraints at provided point.
      If x2 is different from NULL only add cuts violated by x2 by more than delta.
   (Only get outer-approximations of nonlinear constraints of the problem.)*/
  virtual void getOuterApproximation(OsiCuts &cs, const double * x, int getObj, const double * x2,
                                     double theta, bool global);

 /** Get the outer approximation at provided point for given constraint. */
  virtual void getConstraintOuterApproximation(OsiCuts & cs, int constraintNumber,
                                               const double * x, 
                                               const double * x2, bool global);

 /** Get the outer approximation at current optimal point for given constraint. */
  void getConstraintOuterApproximation(OsiCuts & cs, int constraintNumber,
                                       const double * x2, bool global){
     getConstraintOuterApproximation(cs, constraintNumber, getColSolution(),x2,global);
  }


/** Get a benders cut from solution.*/
void getBendersCut(OsiCuts &cs, bool global);

  /** Given a point x_bar this solves the problem of finding the point which minimize a convex 
    *combination between the distance to  x_bar and the original objective function f(x):
   * \f$ min a * (\sum\limits_{i=1}^n  ||x_{ind[i]} -\overline{x}_i)||_L) + (1 - a)* s *f(x) \f$
   * \return Distance between feasibility set a x_bar on components in ind
   * \param n number of elements in array x_bar and ind
   * \param s scaling of the original objective.
   * \param a Combination to take between feasibility and original objective (must be between 0 and 1).
   * \param L L-norm to use (can be either 1 or 2).
   */
  double solveFeasibilityProblem(size_t n, const double * x_bar, const int* ind, double a, double s, int L);

  /** Given a point x_bar this solves the problem of finding the point which minimize
    * the distance to x_bar while satisfying the additional cutoff constraint:
   * \f$ min \sum\limits_{i=1}^n  ||x_{ind[i]} -\overline{x}_i)||_L$
   * \return Distance between feasibility set a x_bar on components in ind
   * \param n number of elements in array x_bar and ind
   * \param L L-norm to use (can be either 1 or 2).
   * \param cutoff objective function value of a known integer feasible solution
   */
  double solveFeasibilityProblem(size_t n, const double * x_bar, const int* ind, int L, double cutoff);

  /** Given a point x_bar setup feasibility problem and switch so that every call to initialSolve or resolve will
      solve it.*/
  void switchToFeasibilityProblem(size_t n, const double * x_bar, const int* ind, double a, double s, int L);

  /** Given a point x_bar setup feasibility problem and switch so that every call to initialSolve or resolve will
      solve it. This is to be used in the local branching heuristic */
  void switchToFeasibilityProblem(size_t n, const double * x_bar, const int* ind,
				  double rhs_local_branching_constraint);

  /** switch back to solving original problem.*/
  void switchToOriginalProblem();
  
  /** round solution and check its feasibility.*/
  void round_and_check(double tolerance,
                       OsiObject ** objects = 0, int nObjects = -1){
    if(!problem_->check_solution(objects, nObjects)){
      optimizationStatus_ = TNLPSolver::provenInfeasible;
    }
  }
  //@}

  /** \name output for OA cut generation
       \todo All OA code here should be moved to a separate class sometime.*/
  //@{
  /** OA Messages types.*/
  enum OaMessagesTypes {
    CUT_NOT_VIOLATED_ENOUGH = 0/** Says that one cut has been generarted, where from, which is the violation.*/,
    VIOLATED_OA_CUT_GENERATED/** Cut is not violated enough, give violation.*/,
    OA_CUT_GENERATED/** Print the cut which has been generated.*/,
    OA_MESSAGES_DUMMY_END/** Dummy end.*/};
  /** Class to store OA Messages.*/
  class OaMessages :public CoinMessages{
     public:
     /** Default constructor.*/
     OaMessages();
  };
  /** Like a CoinMessageHandler but can print a cut also.*/
  class OaMessageHandler : public CoinMessageHandler{
    public:
    /** Default constructor.*/
    OaMessageHandler():CoinMessageHandler(){
    }
    /** Constructor to put to file pointer (fp won't be closed).*/
    OaMessageHandler(FILE * fp):CoinMessageHandler(fp){
    }
    /** Destructor.*/
    virtual ~OaMessageHandler(){
    }
    /** Copy constructor.*/
    OaMessageHandler(const OaMessageHandler &other):
    CoinMessageHandler(other){}
    /** Constructor from a regular CoinMessageHandler.*/
    OaMessageHandler(const CoinMessageHandler &other):
    CoinMessageHandler(other){}
    /** Assignment operator.*/
    OaMessageHandler & operator=(const OaMessageHandler &rhs){
       CoinMessageHandler::operator=(rhs);
       return *this;}
    /** Virtual copy */
    virtual CoinMessageHandler* clone() const{
      return new OaMessageHandler(*this);}
    /** print an OsiRowCut.*/
    void print(OsiRowCut &row);
  };
  void setOaMessageHandler(const CoinMessageHandler &handler){
    delete oaHandler_;
    oaHandler_ = new OaMessageHandler(handler);
  }
  //@}

    //-----------------------------------------------------------------------
    /** Apply a collection of cuts.
    */
    virtual ApplyCutsReturnCode applyCuts(const OsiCuts & cs,
					  double effectivenessLb = 0.0){
       freeCachedRowRim();
      problem_->addCuts(cs);
      ApplyCutsReturnCode rc;
      return rc;}

   /** Add a collection of linear cuts to problem formulation.*/
  virtual void applyRowCuts(int numberCuts, const OsiRowCut * cuts);


  /** Add a collection of linear cuts to the problem formulation */
  virtual void applyRowCuts(int numberCuts, const OsiRowCut ** cuts)
  {
    if(numberCuts)
      freeCachedRowRim();
    problem_->addCuts(numberCuts, cuts);
  }

 /** Get infinity norm of constraint violation for x. Put into
     obj the objective value of x.*/
 double getConstraintsViolation(const double * x, double & obj);

  /** Get infinity norm of constraint violation for x and error in objective
      value where obj is the estimated objective value of x.*/
  double getNonLinearitiesViolation(const double *x, const double obj);

//---------------------------------------------------------------------------

  void extractInterfaceParams();


  /** To set some application specific defaults. */
  virtual void setAppDefaultOptions(Ipopt::SmartPtr<Ipopt::OptionsList> Options);

  /** Register all possible options to Bonmin */
  static void registerOptions (Ipopt::SmartPtr<Bonmin::RegisteredOptions> roptions);
  
  Ipopt::SmartPtr<Bonmin::RegisteredOptions> regOptions(){
    if(IsValid(app_))
      return app_->roptions();
    else
      return NULL;
  }

  /** @name Methods related to strong branching */
  //@{
  /// Set the strong branching solver
  void SetStrongBrachingSolver(Ipopt::SmartPtr<StrongBranchingSolver> strong_branching_solver);
  /// Create a hot start snapshot of the optimization process.  In our
  /// case, we initialize the StrongBrachingSolver.
  virtual void markHotStart();
  /// Optimize starting from the hot start snapshot. In our case, we
  /// call the StrongBranchingSolver to give us an approximate
  /// solution for the current state of the bounds
  virtual void solveFromHotStart();
  /// Delete the hot start snapshot. In our case we deactivate the
  /// StrongBrachingSolver.
  virtual void unmarkHotStart();
  //@}

  /// Get values of tiny_ and very_tiny_
  void get_tolerances(double &tiny, double&very_tiny, double &rhsRelax, double &infty){
    tiny = tiny_;
    very_tiny = veryTiny_;
    rhsRelax = rhsRelax_;
    infty = infty_;
  }

  void set_linearizer(Ipopt::SmartPtr<TMINLP2OsiLP> linearizer);

  Ipopt::SmartPtr<TMINLP2OsiLP> linearizer();
protected:
  
  //@}

  enum RandomGenerationType{
    uniform =0, perturb=1, perturb_suffix=2};
  /// Initialize data structures for storing the jacobian
  int initializeJacobianArrays();

  ///@name Virtual callbacks for application specific stuff
  //@{
  virtual std::string  appName()
  {
    return "bonmin";
  }
  //@}
  ///@name Protected methods
  //@{

  /** Call Ipopt to solve or resolve the problem and check for errors.*/
  void solveAndCheckErrors(bool doResolve, bool throwOnFailure,
      const char * whereFrom);


  /** Add a linear cut to the problem formulation.
  */
  virtual void applyRowCut( const OsiRowCut & rc )
  {
    const OsiRowCut * cut = &rc;
    problem_->addCuts(1, &cut);
  }
  /** We have to keep this but it will throw an error.
  */
  virtual void applyColCut( const OsiColCut & cc )
  {
    throw SimpleError("Ipopt model does not implement this function.",
        "applyColCut");
  }

//  /** Read the name of the variables in an ampl .col file. */
//  void readVarNames() const;

  //@}

  /**@name Model and solver */
  //@{
  /** TMINLP model.*/
  Ipopt::SmartPtr<TMINLP> tminlp_;
  /** Adapter for a MINLP to a NLP */
  Ipopt::SmartPtr<TMINLP2TNLP> problem_;
  /** Problem currently optimized (may be problem_ or feasibilityProblem_)*/
  Ipopt::SmartPtr<Ipopt::TNLP> problem_to_optimize_;
  /** Is true if and only if in feasibility mode.*/
  bool feasibility_mode_;
  /** Solver for a TMINLP. */
  Ipopt::SmartPtr<TNLPSolver> app_;

  /** Alternate solvers for TMINLP.*/
  std::list<Ipopt::SmartPtr<TNLPSolver> > debug_apps_;
  /** Do we use the other solvers?*/
  bool testOthers_;
  //@}

  /** Warmstart information for reoptimization */
  CoinWarmStart* warmstart_;

  /**@name Cached information on the problem */
  //@{
  /** Free cached data relative to variables */
  void freeCachedColRim();
  /** Free cached data relative to constraints */
  void freeCachedRowRim();
  /** Free all cached data*/
  void freeCachedData();
  /** Extract rowsense_ vector rhs_ vector and rowrange_ vector from the lower and upper bounds
   *  on the constraints */
  void extractSenseRhsAndRange() const;
  /// Pointer to dense vector of row sense indicators
  mutable char    *rowsense_;

  /// Pointer to dense vector of row right-hand side values
  mutable double  *rhs_;

  /// Pointer to dense vector of slack upper bounds for range constraints (undefined for non-range rows)
  mutable double  *rowrange_;
  /** Pointer to dense vector of reduced costs
      \warning Always 0. with Ipopt*/
  mutable double  *reducedCosts_;
  /** DualObjectiveLimit is used to store the cutoff in Cbc*/
  double OsiDualObjectiveLimit_;
  /** does the file variable names exists (will check automatically).*/
  mutable bool hasVarNamesFile_;
  //@}
  /// number of time NLP has been solved
  int nCallOptimizeTNLP_;
  /// Total solution time of NLP
  double totalNlpSolveTime_;
  /// toatal number of iterations
  int totalIterations_;
  /// max radius for random point
  double maxRandomRadius_;
  /// Method to pick a random starting point.
  int randomGenerationType_;
  /// Maximum perturbation value
  double max_perturbation_;
  /// Ipopt value for pushing initial point inside the bounds
  double pushValue_;
  /// Number of times problem will be resolved in initialSolve (root node)
  int numRetryInitial_;
  /// Number of times problem will be resolved in resolve
  int numRetryResolve_;
  /// Number of times infeasible problem will be resolved.
  int numRetryInfeasibles_;
  /// Number of times problem will be resolved in case of a failure
  int numRetryUnsolved_;
  /// If infeasibility for a problem is less than this, let's be carrefull. It might be feasible
  double infeasibility_epsilon_;


  //Added by Claudia
  /// Dynamic cutOff_
  int dynamicCutOff_;
  /// coeff_var_threshold_
  double coeff_var_threshold_;
  /// first_perc_for_cutoff_decr_
  double first_perc_for_cutoff_decr_;
  /// second_perc_for_cutoff_decr_
  double second_perc_for_cutoff_decr_;
 

  /** Messages specific to an OsiTMINLPInterface. */
  Messages messages_;
  /** If not 0 when a problem is not solved (failed to be solved)
      will pretend that it is infeasible. If == 1 will care
      (i.e. record the fact issue messages to user), if ==2 don't care (somebody else will) */
  int pretendFailIsInfeasible_;

  mutable int pretendSucceededNext_;

  /** did we ever continue optimization ignoring a failure. */
  bool hasContinuedAfterNlpFailure_;
  /** number iterations above which a problem is considered suspect (-1 is considered \f$+ \infty \f$).
  	If in a call to solve a problem takes more than that number of iterations it will be output to files.*/
  int numIterationSuspect_ ;
  /** Has problem been optimized since last change (include setColSolution).
     If yes getColSolution will return Ipopt point, otherwise will return
     initial point.*/
  bool hasBeenOptimized_;
  /** A fake objective function (all variables to 1) to please Cbc
      pseudo costs initialization.  AW: I changed this, it will now be
      the objective gradient at current point. */
  mutable double * obj_;
  /** flag to say wether options have been printed or not.*/
  static bool hasPrintedOptions;

  /** Adapter for TNLP to a feasibility problem */
  Ipopt::SmartPtr<TNLP2FPNLP> feasibilityProblem_;

  /** Adapter for TMINLP to an Osi LP  */
  Ipopt::SmartPtr<TMINLP2OsiLP> linearizer_;

  /** \name Arrays to store Jacobian matrix */
  //@{
  /** Row indices.*/
  int * jRow_;
  /** Column indices.*/
  int * jCol_;
  /** Values */
  double * jValues_;
  /** Number of elements.*/
  int nnz_jac;
  //@}

  ///Store the types of the constraints (linear and nonlinear).
  Ipopt::TNLP::LinearityType * constTypes_;
  /** Number of nonlinear constraint
   */
  int nNonLinear_;
  /** Value for small non-zero element which we will try to remove cleanly in OA cuts.*/
  double tiny_;
  /** Value for small non-zero element which we will take the risk to ignore in OA cuts.*/
  double veryTiny_;
  /** Amount by which to relax OA constraints RHSes*/
  double rhsRelax_;
  /** Value for infinity. */
  double infty_;
  /** status of last optimization. */
  TNLPSolver::ReturnStatus optimizationStatus_;
  /** Flag indicating if the warm start methods actually do something.*/
  WarmStartModes warmStartMode_;
  /** Is it the first solve (for random starting point at root options).*/
  bool firstSolve_;
  /** Object for strengthening cuts */
  Ipopt::SmartPtr<CutStrengthener> cutStrengthener_;

  /** \name output for OA cut generation
       \todo All OA code here should be moved to a separate class sometime.*/
  //@{
  /** OA Messages.*/
  OaMessages oaMessages_;
  /** OA Message handler. */
  OaMessageHandler * oaHandler_;
  //@}

  double newCutoffDecr;
protected:
  /** Facilitator to create an application. */
  void createApplication(Ipopt::SmartPtr<Bonmin::RegisteredOptions> roptions,
                         Ipopt::SmartPtr<Ipopt::OptionsList> options,
                         Ipopt::SmartPtr<Ipopt::Journalist> journalist,
                         const std::string & prefix);
  ///Constructor without model only for derived classes
  OsiTMINLPInterface(Ipopt::SmartPtr<TNLPSolver> app);

  /** Internal set warm start.*/
  bool internal_setWarmStart(const CoinWarmStart* ws);

  /** internal get warm start.*/
  CoinWarmStart* internal_getWarmStart() const; 

  /** Procedure that builds a fake basis. Only tries to make basis consistent with constraints activity.*/
  CoinWarmStart* build_fake_basis() const; 
private:

  /** solver to be used for all strong branching solves */
  Ipopt::SmartPtr<StrongBranchingSolver> strong_branching_solver_;
  /** status of last optimization before hot start was marked. */
  TNLPSolver::ReturnStatus optimizationStatusBeforeHotStart_;
static const char * OPT_SYMB;
static const char * FAILED_SYMB;
static const char * INFEAS_SYMB;
static const char * TIME_SYMB;
static const char * UNBOUND_SYMB;
  /** Get status as a char * for log.*/
  const char * statusAsString(TNLPSolver::ReturnStatus r){
    if(r == TNLPSolver::solvedOptimal || r == TNLPSolver::solvedOptimalTol){
      return OPT_SYMB;} 
    else if(r == TNLPSolver::provenInfeasible){
      return INFEAS_SYMB;}
    else if(r == TNLPSolver::unbounded){
      return UNBOUND_SYMB;}
    else if(r == TNLPSolver::timeLimit){
      return TIME_SYMB;}
    else return FAILED_SYMB;
  }
  const char * statusAsString(){
    return statusAsString(optimizationStatus_);}
};
}
#endif