summaryrefslogtreecommitdiff
path: root/newstructure/help/en_US/intfmincon.xml
blob: a09a18a3bfaeb26567b6c301c7800088f5dd6c68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from intfmincon.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="intfmincon" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>intfmincon</refname>
    <refpurpose>Solves a constrainted multi-variable mixed integer non linear programming problem</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   xopt = intfmincon(f,x0,intcon,A,b)
   xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq)
   xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub)
   xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc)
   xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
   [xopt,fopt] = intfmincon(.....)
   [xopt,fopt,exitflag]= intfmincon(.....)
   [xopt,fopt,exitflag,gradient]=intfmincon(.....)
   [xopt,fopt,exitflag,gradient,hessian]=intfmincon(.....)
   
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Parameters</title>
   <variablelist>
   <varlistentry><term>f :</term>
      <listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry>
   <varlistentry><term>x0 :</term>
      <listitem><para> a vector of doubles, containing the starting values of variables.</para></listitem></varlistentry>
   <varlistentry><term>intcon :</term>
      <listitem><para> a vector of integers, represents which variables are constrained to be integers</para></listitem></varlistentry>
   <varlistentry><term>A :</term>
      <listitem><para> a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.</para></listitem></varlistentry>
   <varlistentry><term>b :</term>
      <listitem><para> a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.</para></listitem></varlistentry>
   <varlistentry><term>Aeq :</term>
      <listitem><para> a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.</para></listitem></varlistentry>
   <varlistentry><term>beq :</term>
      <listitem><para> a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.</para></listitem></varlistentry>
   <varlistentry><term>lb :</term>
      <listitem><para> Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.</para></listitem></varlistentry>
   <varlistentry><term>ub :</term>
      <listitem><para> Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.</para></listitem></varlistentry>
   <varlistentry><term>nlc :</term>
      <listitem><para> a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.</para></listitem></varlistentry>
   <varlistentry><term>options :</term>
      <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
   <varlistentry><term>xopt :</term>
      <listitem><para> a vector of doubles, containing the the computed solution of the optimization problem.</para></listitem></varlistentry>
   <varlistentry><term>fopt :</term>
      <listitem><para> a scalar of double, containing the the function value at x.</para></listitem></varlistentry>
   <varlistentry><term>exitflag :</term>
      <listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
   <varlistentry><term>gradient :</term>
      <listitem><para> a vector of doubles, containing the Objective's gradient of the solution.</para></listitem></varlistentry>
   <varlistentry><term>hessian  :</term>
      <listitem><para> a matrix of doubles, containing the Objective's hessian of the solution.</para></listitem></varlistentry>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
Search the minimum of a mixed integer constrained optimization problem specified by :
Find the minimum of f(x) such that
   </para>
   <para>
<latex>
\begin{eqnarray}
&amp;\mbox{min}_{x}
&amp; f(x) \\
&amp; \text{subject to} &amp; A*x \leq b \\
&amp; &amp; Aeq*x \ = beq\\
&amp; &amp; c(x) \leq  0\\
&amp; &amp; ceq(x) \ =  0\\
&amp; &amp; lb \leq x \leq ub \\
&amp; &amp; x_i \in \!\, \mathbb{Z}, i \in \!\, I
\end{eqnarray}
</latex>
   </para>
   <para>
The routine calls Bonmin for solving the Bounded Optimization problem, Bonmin is a library written in C++.
   </para>
   <para>
The options allows the user to set various parameters of the Optimization problem.
It should be defined as type "list" and contains the following fields.
<itemizedlist>
<listitem>Syntax : options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );</listitem>
<listitem>IntegerTolerance : a Scalar, a number with that value of an integer is considered integer..</listitem>
<listitem>MaxNodes : a Scalar, containing the Maximum Number of Nodes that the solver should search.</listitem>
<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
<listitem>AllowableGap : a Scalar, to stop the tree search when the gap between the objective value of the best known solution is reached.</listitem>
<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
<listitem>gradobj : a string, to turn on or off the user supplied objective gradient.</listitem>
<listitem>hessian : a Scalar, to turn on or off the user supplied objective hessian.</listitem>
<listitem>Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")</listitem>
</itemizedlist>
   </para>
   <para>
The exitflag allows to know the status of the optimization which is given back by Ipopt.
<itemizedlist>
<listitem>exitflag=0 : Optimal Solution Found </listitem>
<listitem>exitflag=1 : InFeasible Solution.</listitem>
<listitem>exitflag=2 : Objective Function is Continuous Unbounded.</listitem>
<listitem>exitflag=3 : Limit Exceeded.</listitem>
<listitem>exitflag=4 : User Interrupt.</listitem>
<listitem>exitflag=5 : MINLP Error.</listitem>
</itemizedlist>
   </para>
   <para>
For more details on exitflag see the Bonmin documentation, go to http://www.coin-or.org/Bonmin
   </para>
   <para>
</para>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//Find x in R^2 such that it minimizes:
//f(x)= -x1 -x2/3
//x0=[0,0]
//constraint-1 (c1): x1 + x2 <= 2
//constraint-2 (c2): x1 + x2/4 <= 1
//constraint-3 (c3): x1 - x2 <= 2
//constraint-4 (c4): -x1/4 - x2 <= 1
//constraint-5 (c5): -x1 - x2 <= -1
//constraint-6 (c6): -x1 + x2 <= 2
//constraint-7 (c7): x1 + x2 = 2
//Objective function to be minimised
function [y,dy]=f(x)
y=-x(1)-x(2)/3;
dy= [-1,-1/3];
endfunction
//Starting point, linear constraints and variable bounds
x0=[0 , 0];
intcon = [1]
A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1];
b=[2;1;2;1;-1;2];
Aeq=[1,1];
beq=[2];
lb=[];
ub=[];
nlc=[];
//Options
options=list("GradObj", "on");
//Calling Ipopt
[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// Press ENTER to continue

   ]]></programlisting>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//Find x in R^3 such that it minimizes:
//f(x)= x1*x2 + x2*x3
//x0=[0.1 , 0.1 , 0.1]
//constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2
//constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10
//Objective function to be minimised
function [y,dy]=f(x)
y=x(1)*x(2)+x(2)*x(3);
dy= [x(2),x(1)+x(3),x(2)];
endfunction
//Starting point, linear constraints and variable bounds
x0=[0.1 , 0.1 , 0.1];
intcon = [2]
A=[];
b=[];
Aeq=[];
beq=[];
lb=[];
ub=[];
//Nonlinear constraints
function [c,ceq,cg,cgeq]=nlc(x)
c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
ceq = [];
cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
cgeq=[];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
//Calling Ipopt
[x,fval,exitflag,output] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// Press ENTER to continue

   ]]></programlisting>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//The below problem is an unbounded problem:
//Find x in R^3 such that it minimizes:
//f(x)= -(x1^2 + x2^2 + x3^2)
//x0=[0.1 , 0.1 , 0.1]
//  x1 <= 0
//  x2 <= 0
//  x3 <= 0
//Objective function to be minimised
function y=f(x)
y=-(x(1)^2+x(2)^2+x(3)^2);
endfunction
//Starting point, linear constraints and variable bounds
x0=[0.1 , 0.1 , 0.1];
intcon = [3]
A=[];
b=[];
Aeq=[];
beq=[];
lb=[];
ub=[0,0,0];
//Options
options=list("MaxIter", [1500], "CpuTime", [500]);
//Calling Ipopt
[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,[],options)
// Press ENTER to continue

   ]]></programlisting>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//The below problem is an infeasible problem:
//Find x in R^3 such that in minimizes:
//f(x)=x1*x2 + x2*x3
//x0=[1,1,1]
//constraint-1 (c1): x1^2 <= 1
//constraint-2 (c2): x1^2 + x2^2 <= 1
//constraint-3 (c3): x3^2 <= 1
//constraint-4 (c4): x1^3 = 0.5
//constraint-5 (c5): x2^2 + x3^2 = 0.75
// 0 <= x1 <=0.6
// 0.2 <= x2 <= inf
// -inf <= x3 <= 1
//Objective function to be minimised
function [y,dy]=f(x)
y=x(1)*x(2)+x(2)*x(3);
dy= [x(2),x(1)+x(3),x(2)];
endfunction
//Starting point, linear constraints and variable bounds
x0=[1,1,1];
intcon = [2]
A=[];
b=[];
Aeq=[];
beq=[];
lb=[0 0.2,-%inf];
ub=[0.6 %inf,1];
//Nonlinear constraints
function [c,ceq,cg,cgeq]=nlc(x)
c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
cgeq = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
endfunction
//Options
options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", "on","GradCon", "on");
//Calling Ipopt
[x,fval,exitflag,grad,hessian] =intfmincon(f, x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// Press ENTER to continue
   ]]></programlisting>
</refsection>

<refsection>
   <title>Authors</title>
   <simplelist type="vert">
   <member>Harpreet Singh</member>
   </simplelist>
</refsection>
</refentry>