1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
// Copyright (C) 2016 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Pranav Deshpande and Akshay Miterani
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [xopt,fopt,status,output] = cbcmatrixintlinprog (varargin)
// Sci file wrapper for the matrix_cbcintlinprog.cpp file
// To check the number of input and output argument
[lhs , rhs] = argn();
// To check the number of argument given by user
if ( rhs < 4 | rhs == 5 | rhs == 7 | rhs > 9 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set [4 6 8 9]"), "cbcintlinprog", rhs);
error(errmsg);
end
c = [];
intcon = [];
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
options = list();
c = varargin(1)
intcon = varargin(2)
A = varargin(3)
b = varargin(4)
if(size(c,2) == 0) then
errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input objective coefficients is empty"),"cbcintlinprog");
error(errmsg);
end
if (size(c,2)~=1) then
errmsg = msprintf(gettext("%s: Objective Coefficients should be a column matrix"), "cbcintlinprog");
error(errmsg);
end
nbVar = size(c,1);
if ( rhs<5 ) then
Aeq = []
beq = []
else
Aeq = varargin(5);
beq = varargin(6);
end
if ( rhs<7 ) then
lb = repmat(-%inf,1,nbVar);
ub = repmat(%inf,1,nbVar);
else
lb = varargin(7);
ub = varargin(8);
end
if (rhs<9|size(varargin(9))==0) then
options = list();
else
options = varargin(9);
end
//Check type of variables
Checktype("cbcintlinprog", c, "c", 1, "constant")
Checktype("cbcintlinprog", intcon, "intcon", 2, "constant")
Checktype("cbcintlinprog", A, "A", 3, "constant")
Checktype("cbcintlinprog", b, "b", 4, "constant")
Checktype("cbcintlinprog", Aeq, "Aeq", 5, "constant")
Checktype("cbcintlinprog", beq, "beq", 6, "constant")
Checktype("cbcintlinprog", lb, "lb", 7, "constant")
Checktype("cbcintlinprog", ub, "ub", 8, "constant")
// Check if the user gives empty matrix
if (size(lb,2)==0) then
lb = repmat(-%inf,nbVar,1);
end
if (size(intcon,2)==0) then
intcon = [];
end
if (size(ub,2)==0) then
ub = repmat(%inf,nbVar,1);
end
// Calculating the size of equality and inequality constraints
nbConInEq = size(A,1);
nbConEq = size(Aeq,1);
// Check if the user gives row vector
// and Changing it to a column matrix
if (size(lb,2)== [nbVar]) then
lb = lb';
end
if (size(ub,2)== [nbVar]) then
ub = ub';
end
if (size(b,2)== [nbConInEq]) then
b = b';
end
if (size(beq,2)== [nbConEq]) then
beq = beq';
end
for i=1:size(intcon,2)
if(intcon(i)>nbVar) then
errmsg = msprintf(gettext("%s: The values inside intcon should be less than the number of variables"), "cbcintlinprog");
error(errmsg);
end
if (intcon(i)<0) then
errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "cbcintlinprog");
error(errmsg);
end
if(modulo(intcon(i),1)) then
errmsg = msprintf(gettext("%s: The values inside intcon should be an integer "), "cbcintlinprog");
error(errmsg);
end
end
//Check the size of inequality constraint which should equal to the number of inequality constraints
if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
errmsg = msprintf(gettext("%s: The size of inequality constraint is not equal to the number of variables"), "cbcintlinprog");
error(errmsg);
end
//Check the size of lower bound of inequality constraint which should equal to the number of constraints
if ( size(b,1) ~= size(A,1)) then
errmsg = msprintf(gettext("%s: The Lower Bound of inequality constraint is not equal to the number of constraint"), "cbcintlinprog");
error(errmsg);
end
//Check the size of equality constraint which should equal to the number of inequality constraints
if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0) then
errmsg = msprintf(gettext("%s: The size of equality constraint is not equal to the number of variables"), "cbcintlinprog");
error(errmsg);
end
//Check the size of upper bound of equality constraint which should equal to the number of constraints
if ( size(beq,1) ~= size(Aeq,1)) then
errmsg = msprintf(gettext("%s: The equality constraint upper bound is not equal to the number of equality constraint"), "cbcintlinprog");
error(errmsg);
end
//Check the size of Lower Bound which should equal to the number of variables
if ( size(lb,1) ~= nbVar) then
errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "cbcintlinprog");
error(errmsg);
end
//Check the size of Upper Bound which should equal to the number of variables
if ( size(ub,1) ~= nbVar) then
errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "cbcintlinprog");
error(errmsg);
end
if (type(options) ~= 15) then
errmsg = msprintf(gettext("%s: Options should be a list "), "cbcintlinprog");
error(errmsg);
end
if (modulo(size(options),2)) then
errmsg = msprintf(gettext("%s: Size of parameters should be even"), "cbcintlinprog");
error(errmsg);
end
//Check if the user gives a matrix instead of a vector
if (((size(intcon,1)~=1)& (size(intcon,2)~=1))&(size(intcon,2)~=0)) then
errmsg = msprintf(gettext("%s: intcon should be a vector"), "cbcintlinprog");
error(errmsg);
end
if (size(lb,1)~=1)& (size(lb,2)~=1) then
errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "cbcintlinprog");
error(errmsg);
end
if (size(ub,1)~=1)& (size(ub,2)~=1) then
errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "cbcintlinprog");
error(errmsg);
end
if (nbConInEq) then
if ((size(b,1)~=1)& (size(b,2)~=1)) then
errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "cbcintlinprog");
error(errmsg);
end
end
if (nbConEq) then
if (size(beq,1)~=1)& (size(beq,2)~=1) then
errmsg = msprintf(gettext("%s: Constraint Upper Bound should be a vector"), "cbcintlinprog");
error(errmsg);
end
end
//Changing the inputs in symphony's format
conMatrix = [A;Aeq]
nbCon = size(conMatrix,1);
conLB = [repmat(-%inf,size(A,1),1);beq];
conUB = [b;beq] ;
isInt = repmat(%f,1,nbVar);
// Changing intcon into column vector
intcon = intcon(:);
for i=1:size(intcon,1)
isInt(intcon(i)) = %t
end
objSense = 1.0;
//Changing into row vector
lb = lb';
ub = ub';
c = c';
//Pusing options as required to a double array
optval = [];
if length(options) == 0 then
optval = [0 0 0 0];
else
optval = [0 0 0 0];
for i=1:2:length(options)
select options(i)
case 'IntegerTolerance' then
optval(1) = options(i+1);
case 'MaxNodes' then
optval(2) = options(i+1);
case 'MaxTime' then
optval(3) = options(i+1);
case 'AllowableGap' then
optval(4) = options(i+1);
else
error(999, 'Unknown string argument passed.');
end
end
end
[xopt,fopt,status,nodes,nfpoints,L,U,niter] = sci_matrix_intlinprog(nbVar,nbCon,c,intcon,conMatrix,conLB,conUB,lb,ub,objSense,optval);
//Debugging Prints
//disp(c);disp(intcon);disp(conMatrix);disp(conLB);disp(conUB);disp(lb);disp(ub);disp(Aeq);disp(beq);disp(xopt);
//disp(L);disp(U);
//disp(options);
output = struct("relativegap" , [],..
"absolutegap" , [],..
"numnodes" , [],..
"numfeaspoints" , [],..
"numiterations" , [],..
"constrviolation" , [],..
"message" , '');
output.numnodes=[nodes];
output.numfeaspoints=[nfpoints];
output.numiterations=[niter];
output.relativegap=(U-L)/(abs(U)+1);
output.absolutegap=(U-L);
output.constrviolation = max([0;norm(Aeq*xopt-beq, 'inf');(lb'-xopt);(xopt-ub');(A*xopt-b)]);
select status
case 0 then
output.message="Optimal Solution"
case 1 then
output.message="Primal Infeasible"
case 2 then
output.message="Solution Limit is reached"
case 3 then
output.message="Node Limit is reached"
case 4 then
output.message="Numerical Difficulties"
case 5 then
output.message="Time Limit Reached"
case 6 then
output.message="Continuous Solution Unbounded"
case 7 then
output.message="Dual Infeasible"
else
output.message="Invalid status returned. Notify the Toolbox authors"
break;
end
endfunction
|