summaryrefslogtreecommitdiff
path: root/help/intfminunc.xml
blob: dd1ae3e6acb58966da4db1ecdbbf9e2d56b76539 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from intfminunc.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="intfminunc" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>intfminunc</refname>
    <refpurpose>Solves a multi-variable unconstrainted optimization problem</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   xopt = intfminunc(f,x0)
   xopt = intfminunc(f,x0,intcon)
   xopt = intfminunc(f,x0,intcon,options)
   [xopt,fopt] = intfminunc(.....)
   [xopt,fopt,exitflag]= intfminunc(.....)
   [xopt,fopt,exitflag,gradient,hessian]= intfminunc(.....)
   
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Parameters</title>
   <variablelist>
   <varlistentry><term>f :</term>
      <listitem><para> a function, representing the objective function of the problem</para></listitem></varlistentry>
   <varlistentry><term>x0 :</term>
      <listitem><para> a vector of doubles, containing the starting of variables.</para></listitem></varlistentry>
   <varlistentry><term>intcon :</term>
      <listitem><para> a vector of integers, represents which variables are constrained to be integers</para></listitem></varlistentry>
   <varlistentry><term>options:</term>
      <listitem><para> a list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
   <varlistentry><term>xopt :</term>
      <listitem><para> a vector of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
   <varlistentry><term>fopt :</term>
      <listitem><para> a scalar of double, the function value at x.</para></listitem></varlistentry>
   <varlistentry><term>exitflag :</term>
      <listitem><para> a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
   <varlistentry><term>gradient :</term>
      <listitem><para> a vector of doubles, containing the Objective's gradient of the solution.</para></listitem></varlistentry>
   <varlistentry><term>hessian  :</term>
      <listitem><para> a matrix of doubles, containing the Objective's hessian of the solution.</para></listitem></varlistentry>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
Search the minimum of an unconstrained optimization problem specified by :
Find the minimum of f(x) such that
   </para>
   <para>
<latex>
\begin{eqnarray}
&amp;\mbox{min}_{x}
&amp; f(x)\\
\end{eqnarray}
</latex>
   </para>
   <para>
The routine calls Bonmin for solving the Un-constrained Optimization problem, Bonmin is a library written in C++.
   </para>
   <para>
The options allows the user to set various parameters of the Optimization problem.
It should be defined as type "list" and contains the following fields.
<itemizedlist>
<listitem>Syntax : options= list("IntegerTolerance", [---], "MaxNodes", [---], "CpuTime", [---], "AllowableGap", [---], "MaxIter", [---]);</listitem>
<listitem>IntegerTolerance : a Scalar, containing the Integer tolerance value that the solver should take.</listitem>
<listitem>MaxNodes : a Scalar, containing the maximum nodes that the solver should make.</listitem>
<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
<listitem>AllowableGap : a Scalar, containing the allowable gap value that the solver should take.</listitem>
<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
<listitem>gradobj : a string, to turn on or off the user supplied objective gradient.</listitem>
<listitem>hessian : a Scalar, to turn on or off the user supplied objective hessian.</listitem>
<listitem>Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")</listitem>
</itemizedlist>
</itemizedlist>
   </para>
   <para>
The exitflag allows to know the status of the optimization which is given back by Bonmin.
<itemizedlist>
<listitem>exitflag=0 : Optimal Solution Found. </listitem>
<listitem>exitflag=1 : InFeasible Solution.</listitem>
<listitem>exitflag=2 : Output is Continuous Unbounded.</listitem>
<listitem>exitflag=3 : Limit Exceeded.</listitem>
<listitem>exitflag=4 : User Interrupt.</listitem>
<listitem>exitflag=5 : MINLP Error.</listitem>
</itemizedlist>
   </para>
   <para>
For more details on exitflag see the Bonmin page, go to http://www.coin-or.org/Bonmin
   </para>
   <para>
</para>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//Find x in R^2 such that it minimizes the Rosenbrock function
//f = 100*(x2 - x1^2)^2 + (1-x1)^2
//Objective function to be minimised
function y= f(x)
y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
endfunction
//Starting point
x0=[-1,2];
intcon = [2]
//Options
options=list("MaxIter", [1500], "CpuTime", [500]);
//Calling
[xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
// Press ENTER to continue

   ]]></programlisting>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//Find x in R^2 such that the below function is minimum
//f = x1^2 + x2^2
//Objective function to be minimised
function y= f(x)
y= x(1)^2 + x(2)^2;
endfunction
//Starting point
x0=[2,1];
intcon = [1];
[xopt,fopt]=intfminunc(f,x0,intcon)
// Press ENTER to continue

   ]]></programlisting>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
//The below problem is an unbounded problem:
//Find x in R^2 such that the below function is minimum
//f = - x1^2 - x2^2
//Objective function to be minimised
function [y,g,h] = f(x)
y = -x(1)^2 - x(2)^2;
g = [-2*x(1),-2*x(2)];
h = [-2,0;0,-2];
endfunction
//Starting point
x0=[2,1];
intcon = [1]
options = list("gradobj","ON","hessian","on");
[xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
   ]]></programlisting>
</refsection>
</refentry>