1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
#include "minconTMINLP.hpp"
#include "sci_iofunc.hpp"
extern "C"
{
#include "call_scilab.h"
#include <api_scilab.h>
#include <Scierror.h>
#include <BOOL.h>
#include <localization.h>
#include <sciprint.h>
#include <string.h>
#include <assert.h>
}
using namespace Ipopt;
using namespace Bonmin;
//#define DEBUG 0
minconTMINLP::~minconTMINLP()
{
if(finalX_) delete[] finalX_;
}
// Set the type of every variable - CONTINUOUS or INTEGER
bool minconTMINLP::get_variables_types(Index n, VariableType* var_types)
{
#ifdef DEBUG
sciprint("Code is in get_variables_types\n");
#endif
n = numVars_;
for(int i=0; i < n; i++)
var_types[i] = CONTINUOUS;
for(int i=0 ; i < intconSize_ ; ++i)
var_types[(int)(intcon_[i]-1)] = INTEGER;
return true;
}
// The linearity of the variables - LINEAR or NON_LINEAR
bool minconTMINLP::get_variables_linearity(Index n, Ipopt::TNLP::LinearityType* var_types)
{
#ifdef DEBUG
sciprint("Code is in get_variables_linearity\n");
#endif
for(int i=0;i<n;i++)
{
var_types[i] = Ipopt::TNLP::NON_LINEAR;
}
return true; }
// The linearity of the constraints - LINEAR or NON_LINEAR
bool minconTMINLP::get_constraints_linearity(Index m, Ipopt::TNLP::LinearityType* const_types)
{
#ifdef DEBUG
sciprint("Code is in get_constraints_linearity\n");
#endif
for(int i=0;i<numLC_;i++)
{
const_types[i] = Ipopt::TNLP::LINEAR;
}
for(int i=numLC_;i<m;i++)
{
const_types[i] = Ipopt::TNLP::NON_LINEAR;
}
return true;}
//get NLP info such as number of variables,constraints,no.of elements in jacobian and hessian to allocate memory
bool minconTMINLP::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g, Index& nnz_h_lag, TNLP::IndexStyleEnum& index_style)
{
#ifdef DEBUG
sciprint("Code is in get_nlp_info\n");
#endif
n=numVars_; // Number of variables
m=numCons_; // Number of constraints
nnz_jac_g = n*m; // No. of elements in Jacobian of constraints
nnz_h_lag = n*n; // No. of elements in Hessian of the Lagrangian.
index_style=TNLP::C_STYLE; // Index style of matrices
return true;
}
//get variable and constraint bound info
bool minconTMINLP::get_bounds_info(Index n, Number* x_l, Number* x_u, Index m, Number* g_l, Number* g_u)
{
#ifdef DEBUG
sciprint("Code is in get_bounds_info\n");
#endif
unsigned int i;
for(i=0;i<n;i++)
{
x_l[i]=lb_[i];
x_u[i]=ub_[i];
}
for(i=0;i<m;i++)
{
g_l[i]=conLb_[i];
g_u[i]=conUb_[i];
}
return true;
}
// This method sets initial values for required vectors . For now we are assuming 0 to all values.
bool minconTMINLP::get_starting_point(Index n, bool init_x, Number* x,bool init_z, Number* z_L, Number* z_U,Index m, bool init_lambda,Number* lambda)
{
assert(init_x == true);
assert(init_z == false);
assert(init_lambda == false);
if (init_x == true)
{ //we need to set initial values for vector x
for (Index var=0;var<n;var++)
{x[var]=x0_[var];}//initialize with 0.
}
return true;
}
//get value of objective function at vector x
bool minconTMINLP::eval_f(Index n, const Number* x, bool new_x, Number& obj_value)
{
#ifdef DEBUG
sciprint("Code is eval_f\n");
#endif
char name[20]="_f";
Number *obj;
if (getFunctionFromScilab(n,name,x, 7, 1,2,&obj))
{
return false;
}
obj_value = *obj;
return true;
}
//get value of gradient of objective function at vector x.
bool minconTMINLP::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)
{
#ifdef DEBUG
sciprint("Code is in eval_grad_f\n");
#endif
char name[20]="_gradf";
Number *resg;
if (getFunctionFromScilab(n,name,x, 7, 1,2,&resg))
{
return false;
}
Index i;
for(i=0;i<numVars_;i++)
{
grad_f[i]=resg[i];
}
return true;
}
// return the value of the constraints: g(x)
bool minconTMINLP::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g)
{
#ifdef DEBUG
sciprint("Code is in eval_g\n");
#endif
// return the value of the constraints: g(x)
if(m==0)
{
g=NULL;
}
else
{
char name[20]="_addnlc";
Number *con;
if (getFunctionFromScilab(n,name,x, 7, 1,2,&con))
{
return false;
}
Index i;
for(i=0;i<m;i++)
{
g[i]=con[i];
}
}
return true;
}
// return the structure or values of the jacobian
bool minconTMINLP::eval_jac_g(Index n, const Number* x, bool new_x,Index m, Index nele_jac, Index* iRow, Index *jCol,Number* values)
{
#ifdef DEBUG
sciprint("Code is in eval_jac_g\n");
#endif
if (values == NULL)
{
if(m==0)// return the structure of the jacobian of the constraints
{
iRow=NULL;
jCol=NULL;
}
else
{
unsigned int i,j,idx=0;
for(i=0;i<m;i++)
for(j=0;j<n;j++)
{
iRow[idx]=i;
jCol[idx]=j;
idx++;
}
}
}
else
{
if(m==0)
{
values=NULL;
}
else
{
double* resj;
char name[20]="_gradnlc";
if (getFunctionFromScilab(n,name,x, 7, 1,2,&resj))
{
return false;
}
int c = 0;
for(int i=0;i<m;i++)
{
for(int j=0;j<n;j++)
{
values[c] = resj[j*(int)m+i];
c++;
}
}
}
}
return true;
}
/*
* Return either the sparsity structure of the Hessian of the Lagrangian,
* or the values of the Hessian of the Lagrangian for the given values for
* x,lambda,obj_factor.
*/
bool minconTMINLP::eval_h(Index n, const Number* x, bool new_x,Number obj_factor, Index m, const Number* lambda,bool new_lambda, Index nele_hess, Index* iRow,Index* jCol, Number* values)
{
#ifdef DEBUG
sciprint("Code is in eval_h\n");
#endif
double check;
if (values==NULL)
{
Index idx=0;
for (Index row = 0; row < numVars_; row++)
{
for (Index col = 0; col < numVars_; col++)
{
iRow[idx] = row;
jCol[idx] = col;
idx++;
}
}
}
else
{ char name[20]="_gradhess";
Number *resCh;
if (getHessFromScilab(n,m,name,x, &obj_factor, lambda, 7, 3,2,&resCh))
{
return false;
}
Index index=0;
for (Index row=0;row < numVars_ ;++row)
{
for (Index col=0; col < numVars_; ++col)
{
values[index++]=resCh[numVars_*row+col];
}
}
}
return true;
}
void minconTMINLP::finalize_solution(SolverReturn status,Index n, const Number* x, Number obj_value)
{
#ifdef DEBUG
sciprint("Code is in finalize_solution\n");
sciprint("%d",status);
#endif
finalObjVal_ = obj_value;
status_ = status;
if(status==0 ||status== 3)
{
finalX_ = new double[n];
for (Index i=0; i<numVars_; i++)
{
finalX_[i] = x[i];
}
}
}
const double * minconTMINLP::getX()
{
return finalX_;
}
double minconTMINLP::getObjVal()
{
return finalObjVal_;
}
int minconTMINLP::returnStatus()
{
return status_;
}
|