summaryrefslogtreecommitdiff
path: root/build/cpp/minconTMINLP.hpp
blob: 5b3006a3ba197013811dfa8cd1227e14bd3091fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
// Copyright (C) 2016 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in

#ifndef minconTMINLP_HPP
#define minconTMINLP_HPP

#include "BonTMINLP.hpp"
#include "IpTNLP.hpp"
#include "call_scilab.h"

using namespace  Ipopt;
using namespace Bonmin;
    
class minconTMINLP : public TMINLP
{
	private:

    Index numVars_;             //Number of variables

    Index numCons_;             //Number of constraints

    Index numLC_;               //Number of Linear constraints
  	
  	Index intconSize_;
 
    Number *x0_= NULL;          //lb_ is a pointer to a matrix of size of 1*numVars_ with lower bound of all variables.
 
    Number *lb_= NULL;          //lb_ is a pointer to a matrix of size of 1*numVars_ with lower bound of all variables.

    Number *ub_= NULL;          //ub_ is a pointer to a matrix of size of 1*numVars_ with upper bound of all variables.

    Number *conLb_= NULL;       //conLb_ is a pointer to a matrix of size of numCon_*1 with lower bound of all constraints.

    Number *conUb_= NULL;       //conUb_ is a pointer to a matrix of size of numCon_*1 with upper bound of all constraints.

    Number *finalX_= NULL;		  //finalX_ is a pointer to a matrix of size of 1*numVars_ with final value for the primal variables.

  	Number finalObjVal_;        //finalObjVal_ is a scalar with the final value of the objective.

    Number *intcon_ = NULL;

  	int status_;			 		//Solver return status
  	minconTMINLP(const minconTMINLP&);
  	minconTMINLP& operator=(const minconTMINLP&);

public:
	// Constructor
    	minconTMINLP(Index nV, Number *x0, Number *lb, Number *ub, Index nLC, Index nCons, Number *conlb, Number *conub, Index intconSize, Number *intcon):numVars_(nV),x0_(x0),lb_(lb),ub_(ub),numLC_(nLC),numCons_(nCons),conLb_(conlb),conUb_(conub),intconSize_(intconSize),intcon_(intcon),finalX_(0),finalObjVal_(1e20){	}
  
	/** default destructor */
  	virtual ~minconTMINLP();

  	virtual bool get_variables_types(Index n, VariableType* var_types);
 
    virtual bool get_variables_linearity(Index n, Ipopt::TNLP::LinearityType* var_types);

    virtual bool get_constraints_linearity(Index m, Ipopt::TNLP::LinearityType* const_types);
  	
  	/** Method to return some info about the nlp */
  	virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
                            Index& nnz_h_lag, TNLP::IndexStyleEnum& index_style);

  	/** Method to return the bounds for my problem */
  	virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
                               Index m, Number* g_l, Number* g_u);

  	/** Method to return the starting point for the algorithm */
  	virtual bool get_starting_point(Index n, bool init_x, Number* x,
                                  bool init_z, Number* z_L, Number* z_U,
                                  Index m, bool init_lambda,
                                  Number* lambda);

  	/** Method to return the objective value */
  	virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value);

  	/** Method to return the gradient of the objective */
  	virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f);

  	/** Method to return the constraint residuals */
  	virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g);

  	/** Method to return:
  	*   1) The structure of the jacobian (if "values" is NULL)
   	*   2) The values of the jacobian (if "values" is not NULL)
   	*/
  	virtual bool eval_jac_g(Index n, const Number* x, bool new_x,Index m, Index nele_jac, Index* iRow, Index *jCol,Number* values);

  	/** Method to return:
   	*   1) The structure of the hessian of the lagrangian (if "values" is NULL)
   	*   2) The values of the hessian of the lagrangian (if "values" is not NULL)
   	*/
  	virtual bool eval_h(Index n, const Number* x, bool new_x,Number obj_factor, Index m, const Number* lambda,bool new_lambda, Index nele_hess, Index* iRow,Index* jCol, Number* values);

  	/** This method is called when the algorithm is complete so the TNLP can store/write the solution */
  	virtual void finalize_solution(SolverReturn status,Index n, const Number* x, Number obj_value);
  	
  	virtual const SosInfo * sosConstraints() const{return NULL;}
    virtual const BranchingInfo* branchingInfo() const{return NULL;}
  
  	const double * getX();		//Returns a pointer to a matrix of size of 1*numVars_ 
					//with final value for the primal variables.
  
  	const double * getGrad();       //Returns a pointer to a matrix of size of 1*numVars_ 
					//with final value of gradient for the primal variables.

  	const double * getHess();       //Returns a pointer to a matrix of size of numVars_*numVars_ 
					//with final value of hessian for the primal variables.

  	double getObjVal();		//Returns the output of the final value of the objective.

  	double iterCount();		//Returns the iteration count

  	int returnStatus();		//Returns the status count
};

#endif