summaryrefslogtreecommitdiff
path: root/build/Scilab/intfminunc.sci
blob: 514101769bbc56cda56c1954b4f80e1b23536e3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in

function [xopt,fopt,exitflag,gradient,hessian] = intfminunc (varargin)
	// Solves an unconstrainted multi-variable mixed integer non linear programming optimization problem
	//
	//   Calling Sequence
	//   xopt = intfminunc(f,x0)
	//   xopt = intfminunc(f,x0,intcon)
	//   xopt = intfminunc(f,x0,intcon,options)
	//   [xopt,fopt] = intfminunc(.....)
	//   [xopt,fopt,exitflag]= intfminunc(.....)
	//   [xopt,fopt,exitflag,gradient,hessian]= intfminunc(.....)
	//
	//   Parameters
	//   f : a function, representing the objective function of the problem 
	//   x0 : a vector of doubles, containing the starting of variables.
	//	 intcon : a vector of integers, represents which variables are constrained to be integers
	//   options: a list, containing the option for user to specify. See below for details.
	//   xopt : a vector of doubles, the computed solution of the optimization problem.
	//   fopt : a scalar of double, the function value at x. 
	//   exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
  //   gradient : a vector of doubles, containing the Objective's gradient of the solution.
  //   hessian  : a matrix of doubles, containing the Objective's hessian of the solution.
	//
	//   Description
	//   Search the minimum of a multi-variable mixed integer non linear programming unconstrained optimization problem specified by :
	//   Find the minimum of f(x) such that 
	//
	//   <latex>
	//    \begin{eqnarray}
	//    &\mbox{min}_{x}
	//    & f(x)
  //    & x_i \in \!\, \mathbb{Z}, i \in \!\, I
	//    \end{eqnarray}
	//   </latex>
	//
	//   The routine calls Bonmin for solving the Un-constrained Optimization problem, Bonmin is a library written in C++.
	//
	// The options allows the user to set various parameters of the Optimization problem. 
	// It should be defined as type "list" and contains the following fields.
	// <itemizedlist>
	//   <listitem>Syntax : options= list("IntegerTolerance", [---], "MaxNodes", [---], "CpuTime", [---], "AllowableGap", [---], "MaxIter", [---]);</listitem>
	//   <listitem>IntegerTolerance : a Scalar, containing the Integer tolerance value that the solver should take.</listitem>
	//   <listitem>MaxNodes : a Scalar, containing the maximum nodes that the solver should make.</listitem>
	//	 <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
	//   <listitem>AllowableGap : a Scalar, containing the allowable gap value that the solver should take.</listitem>
	//   <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
  //   <listitem>gradobj : a string, to turn on or off the user supplied objective gradient.</listitem>
  //   <listitem>hessian : a Scalar, to turn on or off the user supplied objective hessian.</listitem>
  //   <listitem>Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")</listitem>
  // </itemizedlist>
	// </itemizedlist>
	//
	// The exitflag allows to know the status of the optimization which is given back by Bonmin.
	// <itemizedlist>
	//   <listitem>exitflag=0 : Optimal Solution Found. </listitem>
	//   <listitem>exitflag=1 : InFeasible Solution.</listitem>
	//   <listitem>exitflag=2 : Output is Continuous Unbounded.</listitem>
	//   <listitem>exitflag=3 : Limit Exceeded.</listitem>
	//   <listitem>exitflag=4 : User Interrupt.</listitem>
	//   <listitem>exitflag=5 : MINLP Error.</listitem>
	// </itemizedlist>
	//
	// For more details on exitflag see the Bonmin page, go to http://www.coin-or.org/Bonmin
	//
	// Examples
	//     //Find x in R^2 such that it minimizes the Rosenbrock function 
	//     //f = 100*(x2 - x1^2)^2 + (1-x1)^2
	//     //Objective function to be minimised
	//     function y= f(x)
	//   	    y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
	//     endfunction
	//	 //Starting point  
	//     x0=[-1,2];
  //     intcon = [2]
	//     //Options
	//     options=list("MaxIter", [1500], "CpuTime", [500]);
	//     //Calling 
	//     [xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
  // // Press ENTER to continue
	//
	// Examples
	//      //Find x in R^2 such that the below function is minimum
	//      //f = x1^2 + x2^2
	//      //Objective function to be minimised
	//      function y= f(x)
	//   	     y= x(1)^2 + x(2)^2;
	//      endfunction
	//	  //Starting point  
	//      x0=[2,1];
  //      intcon = [1];  
	//      [xopt,fopt]=intfminunc(f,x0,intcon)
  // // Press ENTER to continue
	//
	// Examples
	//     //The below problem is an unbounded problem:
	//     //Find x in R^2 such that the below function is minimum
	//     //f = - x1^2 - x2^2
	//     //Objective function to be minimised
	//     function [y,g,h] = f(x)
	//        y = -x(1)^2 - x(2)^2;
  //        g = [-2*x(1),-2*x(2)];
  //        h = [-2,0;0,-2];
	//     endfunction
	//	 //Starting point  
	//     x0=[2,1];
  //     intcon = [1]
  //     options = list("gradobj","ON","hessian","on");
	//    [xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)

	//To check the number of input and output arguments
   	[lhs , rhs] = argn();
	
	//To check the number of arguments given by the user
   	if ( rhs<2 | rhs>4 ) then
    		errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be int [2 3 4] "), "intfminunc", rhs);
    		error(errmsg);
   	end
 
	//Storing the 1st and 2nd Input Parameters  
   	fun = varargin(1);
   	x0 = varargin(2);
   //To add intcon
   intcon=[];
   if ( rhs >=3 ) then
			intcon = varargin(3);
	end

  param = list();
  //To check whether options has been entered by user   
 	if ( rhs>=4  ) then
      param =varargin(4);
 	end
  
  nbvar = size(x0,"*");

  ///////////////// To check whether the Input arguments /////////////////
  Checktype("intfminunc", fun, "fun", 1, "function");
  Checktype("intfminunc", x0, "x0", 2, "constant");
  Checktype("intfminunc", intcon, "intcon", 3, "constant");
  Checktype("intfminunc", param, "options", 4, "list");  
  
  ///////////////// To check x0 ///////////////// 
  Checkvector("intfminunc", x0, "x0", 2, nbvar)
  x0 = x0(:);
  Checkvector("intfminbnd", intcon, "intcon", 3, size(intcon,"*"))
  intcon = intcon(:);

  //Error Checks for intcon 
  for i=1:size(intcon,1)
      if(intcon(i)>nbvar) then
        errmsg = msprintf(gettext("%s: The values inside intcon should be less than the number of variables"), "intfminunc");
        error(errmsg);
      end

      if (intcon(i)<0) then
        errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "intfminunc");
        error(errmsg);
      end

      if(modulo(intcon(i),1)) then
        errmsg = msprintf(gettext("%s: The values inside intcon should be an integer "), "intfminunc");
        error(errmsg);
      end
  end
   
  //If options has been entered, then check whether an even number of entires has been entered   
  if (modulo(size(param),2)) then
    errmsg = msprintf(gettext("%s: Size of parameters should be even"), "intfminunc");
    error(errmsg);
  end 
   
  intconSize = length(intcon);
  
  options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian', "off")

  //Pushing param into default value
  
  for i = 1:(size(param))/2
    select convstr(param(2*i-1),'l')
      case 'integertolerance' then
        Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant");
        options(2) = param(2*i);
      case 'maxnodes' then
        Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant");
        options(4) = options(2*i);
      case 'cputime' then 
        Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant");
        options(6) = options(2*i);
      case 'allowablegap' then
        Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant");
        options(8) = options(2*i);
      case 'maxiter' then
        Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant");
        options(10) = options(2*i);
      case 'gradobj' then
        Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "string");
        if(convstr(param(2*i),'l') == "on") then
          options(12) = "on"
        elseif(convstr(param(2*i),'l') == "off") then
          options(12) = "off"
        else
          error(999, 'Unknown string passed in gradobj.');
        end
      case 'hessian' then
        Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "string");
        if(convstr(param(2*i),'l') == "on") then
          options(14) = "on";
        elseif(convstr(param(2*i),'l') == "off") then
          options(14) = "off";
        else
          error(999, 'Unknown string passed in hessian.');
        end
      else
        error(999, 'Unknown string argument passed.');
    end
  end 

  ///////////////// Functions Check /////////////////

  //To check the match between fun (1st Parameter) and x0 (2nd Parameter)
  if(execstr('init=fun(x0)','errcatch')==21) then
    errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "intfminunc");
    error(errmsg);
  end

  if(options(12) == "on") then
    
      if(execstr('[grad_y,grad_dy]=fun(x0)','errcatch')==59) then
        errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfminunc");
        error(errmsg);
      end

      Checkvector("intfminunc_options", grad_dy, "dy", 12, nbvar);
  end

  if(options(14) == "on") then
    
      if(execstr('[hessian_y,hessian_dy,hessian]=fun(x0)','errcatch')==59) then
        errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfminunc");
        error(errmsg);
      end

      if ( ~isequal(size(hessian),[nbvar nbvar]) ) then
        errmsg = msprintf(gettext("%s: Size of hessian should be nbvar X nbvar"), "intfminunc");
        error(errmsg);
      end
  end

  //Converting the User defined Objective function into Required form (Error Detectable)
 	function [y,check] = _f(x)
 		try
      y=fun(x)
      [y,check] =  checkIsreal(y)
	  catch
		  y=0;
		  check=1;
	  end
   endfunction
    
   //Defining an inbuilt Objective gradient function 
    function [dy,check] = _gradf(x) 
      if (options(12) =="on") then
        try
          [y,dy]=fun(x);
          [dy,check] =  checkIsreal(dy);
        catch
          dy = 0;
          check=1;
        end
      else
        try 
          dy=numderivative(fun,x);
          [dy,check] =  checkIsreal(dy);
        catch
          dy=0;
          check=1;
        end
      end
    endfunction

  //Defining a function to calculate Hessian if the respective user entry is OFF 
  function [hessy,check]=_gradhess(x)
    if (options(14) == "on") then
      try
        [obj,dy,hessy] = fun(x)
        [hessy,check] =  checkIsreal(hessy)
      catch
        hessy = 0;
        check=1;
      end
    else
      try
        [dy,hessy]=numderivative(fun,x)
        [hessy,check] =  checkIsreal(hessy)
      catch
        hessy=0;
        check=1;
      end
    end
  endfunction

    //Calling the bonmin function for solving the above problem
	  [xopt,fopt,exitflag] = inter_fminunc(_f,_gradf,_gradhess,x0,intcon,options,intconSize,nbvar);

  	//In the cases of the problem not being solved, return NULL to the output matrices
  	if( exitflag~=0 & exitflag~=3 ) then
  		gradient = [];
        hessian = [];
    else
      [ gradient, hessian] = numderivative(_f, xopt, [], [], "blockmat");
  	end

    //To print output message
    select exitflag
        case 0 then
            printf("\nOptimal Solution Found.\n");
        case 1 then
            printf("\nInFeasible Solution.\n");
        case 2 then
            printf("\nObjective Function is Continuous Unbounded.\n");
        case 3 then
            printf("\Limit Exceeded.\n");
        case 4 then
            printf("\nUser Interrupt.\n");
        case 5 then
            printf("\nMINLP Error.\n");
        else
            printf("\nInvalid status returned. Notify the Toolbox authors\n");
            break;
    end
endfunction

function [y, check] = checkIsreal(x)
	if ((~isreal(x))) then
		y = 0
		check=1;
	else
        y = x;
		check=0;
	end	
endfunction