1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [xopt,fopt,exitflag,gradient,hessian] = intfmincon (varargin)
// Solves a constrainted multi-variable mixed integer non linear programming problem
//
// Calling Sequence
// xopt = intfmincon(f,x0,intcon,A,b)
// xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq)
// xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub)
// xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc)
// xopt = intfmincon(f,x0,intcon,A,b,Aeq,beq,lb,ub,nlc,options)
// [xopt,fopt] = intfmincon(.....)
// [xopt,fopt,exitflag]= intfmincon(.....)
// [xopt,fopt,exitflag,gradient]=intfmincon(.....)
// [xopt,fopt,exitflag,gradient,hessian]=intfmincon(.....)
//
// Parameters
// f : a function, representing the objective function of the problem
// x0 : a vector of doubles, containing the starting values of variables.
// intcon : a vector of integers, represents which variables are constrained to be integers
// A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// lb : Lower bounds, specified as a vector or array of double. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.
// ub : Upper bounds, specified as a vector or array of double. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.
// nlc : a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.
// options : a list, containing the option for user to specify. See below for details.
// xopt : a vector of doubles, containing the the computed solution of the optimization problem.
// fopt : a scalar of double, containing the the function value at x.
// exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
// gradient : a vector of doubles, containing the Objective's gradient of the solution.
// hessian : a matrix of doubles, containing the Objective's hessian of the solution.
//
// Description
// Search the minimum of a multi-variable function on bounded interval specified by :
// Find the minimum of f(x) such that
//
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
// & f(x)\\
// & \text{subject to} & x1 \ < x \ < x2 \\
// \end{eqnarray}
// </latex>
//
// The routine calls Bonmin for solving the Bounded Optimization problem, Bonmin is a library written in C++.
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
// <itemizedlist>
// <listitem>Syntax : options= list("IntegerTolerance", [---], "MaxNodes",[---], "MaxIter", [---], "AllowableGap",[---] "CpuTime", [---],"gradobj", "off", "hessian", "off" );</listitem>
// <listitem>IntegerTolerance : a Scalar, a number with that value of an integer is considered integer..</listitem>
// <listitem>MaxNodes : a Scalar, containing the Maximum Number of Nodes that the solver should search.</listitem>
// <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
// <listitem>AllowableGap : a Scalar, to stop the tree search when the gap between the objective value of the best known solution is reached.</listitem>
// <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
// <listitem>gradobj : a string, to turn on or off the user supplied objective gradient.</listitem>
// <listitem>hessian : a Scalar, to turn on or off the user supplied objective hessian.</listitem>
// <listitem>Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")</listitem>
// </itemizedlist>
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
// <itemizedlist>
// <listitem>exitflag=0 : Optimal Solution Found </listitem>
// <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
// <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
// <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
// </itemizedlist>
//
// For more details on exitflag see the Bonmin documentation, go to http://www.coin-or.org/Bonmin
//
// Examples
// //Find x in R^6 such that it minimizes:
// //f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6)
// //-2 <= x1,x2,x3,x4,x5,x6 <= 2
// //Objective function to be minimised
// function y=f(x)
// y=0
// for i =1:6
// y=y+sin(x(i));
// end
// endfunction
// //Variable bounds
// x1 = [-2, -2, -2, -2, -2, -2];
// x2 = [2, 2, 2, 2, 2, 2];
// intcon = [2 3 4]
// //Options
// options=list("MaxIter",[1500],"CpuTime", [100])
// [x,fval] =intfmincon(f ,intcon, x1, x2, options)
// // Press ENTER to continue
//
// Examples
// //Find x in R such that it minimizes:
// //f(x)= 1/x^2
// //0 <= x <= 1000
// //Objective function to be minimised
// function y=f(x)
// y=1/x^2;
// endfunction
// //Variable bounds
// x1 = [0];
// x2 = [1000];
// intcon = [1];
// [x,fval,exitflag,output,lambda] =intfmincon(f,intcon , x1, x2)
// // Press ENTER to continue
//
// Examples
// //The below problem is an unbounded problem:
// //Find x in R^2 such that it minimizes:
// //f(x)= -[(x1-1)^2 + (x2-1)^2]
// //-inf <= x1,x2 <= inf
// //Objective function to be minimised
// function y=f(x)
// y=-((x(1)-1)^2+(x(2)-1)^2);
// endfunction
// //Variable bounds
// x1 = [-%inf , -%inf];
// x2 = [ %inf , %inf];
// //Options
// options=list("MaxIter",[1500],"CpuTime", [100])
// [x,fval,exitflag,output,lambda] =intfmincon(f,intcon, x1, x2, options)
// Authors
// Harpreet Singh
//To check the number of input and output arguments
[lhs , rhs] = argn();
//To check the number of arguments given by the user
if ( rhs<4 | rhs>11 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be int [4 5] "), "intfmincon", rhs);
error(errmsg);
end
//Storing the Input Parameters
fun = varargin(1);
x0 = varargin(2);
intcon = varargin(3);
A = varargin(4);
b = varargin(5);
Aeq = [];
beq = [];
lb = [];
ub = [];
nlc = [];
if (rhs>5) then
Aeq = varargin(6);
beq = varargin(7);
end
if (rhs>7) then
lb = varargin(8);
ub = varargin(9);
end
if (rhs>9) then
nlc = varargin(10);
end
param = list();
//To check whether options has been entered by user
if ( rhs> 10) then
param =varargin(11);
end
//To check whether the Input arguments
Checktype("intfmincon", fun, "fun", 1, "function");
Checktype("intfmincon", x0, "x0", 2, "constant");
Checktype("intfmincon", intcon, "intcon", 3, "constant");
Checktype("intfmincon", A, "A", 4, "constant");
Checktype("intfmincon", b, "b", 5, "constant");
Checktype("intfmincon", Aeq, "Aeq", 6, "constant");
Checktype("intfmincon", beq, "beq", 7, "constant");
Checktype("intfmincon", lb, "lb", 8, "constant");
Checktype("intfmincon", ub, "ub", 9, "constant");
Checktype("intfmincon", nlc, "nlc", 10, ["constant","function"]);
Checktype("intfmincon", param, "options", 11, "list");
nbVar = size(x0,"*");
if(nbVar==0) then
errmsg = msprintf(gettext("%s: x0 cannot be an empty"), "intfmincon");
error(errmsg);
end
if(size(lb,"*")==0) then
lb = repmat(-%inf,nbVar,1);
end
if(size(ub,"*")==0) then
ub = repmat(%inf,nbVar,1);
end
//////////////// To Check linear constraints /////////
//To check for correct size of A(3rd paramter)
if(size(A,2)~=nbVar & size(A,2)~=0) then
errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear inequality constraints X No of Variables) or an Empty Matrix for Linear Inequality Constraint coefficient Matrix A"), solver_name);
error(errmsg);
end
nbConInEq=size(A,"r");
//To check for the correct size of Aeq (5th paramter)
if(size(Aeq,2)~=nbVar & size(Aeq,2)~=0) then
errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear equality constraints X No of Variables) or an Empty Matrix for Linear Equality Constraint coefficient Matrix Aeq"), solver_name);
error(errmsg);
end
nbConEq=size(Aeq,"r");
///////////////// To check vectors /////////////////
Checkvector("intfmincon", x0, "x0", 2, nbVar);
x0 = x0(:);
if(size(intcon,"*")) then
Checkvector("intfmincon", intcon, "intcon", 3, size(intcon,"*"))
intcon = intcon(:);
end
if(nbConInEq) then
Checkvector("intfmincon", b, "b", 5, nbConInEq);
b = b(:);
end
if(nbConEq) then
Checkvector("intfmincon", beq, "beq", 7, nbConEq);
beq = beq(:);
end
Checkvector("intfmincon", lb, "lb", 8, nbVar);
lb = lb(:);
Checkvector("intfmincon", ub, "ub", 9, nbVar);
ub = ub(:);
/////////////// To check integer //////////////////////
for i=1:size(intcon,1)
if(intcon(i)>nbVar) then
errmsg = msprintf(gettext("%s: The values inside intcon should be less than the number of variables"), "intfmincon");
error(errmsg);
end
if (intcon(i)<0) then
errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "intfmincon");
error(errmsg);
end
if(modulo(intcon(i),1)) then
errmsg = msprintf(gettext("%s: The values inside intcon should be an integer "), "intfmincon");
error(errmsg);
end
end
options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off",'gradcon',"off")
//Pushing param into default value
for i = 1:(size(param))/2
select convstr(param(2*i-1),'l')
case 'integertolerance' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant");
options(2) = param(2*i);
case 'maxnodes' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant");
options(4) = param(2*i);
case 'cputime' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant");
options(6) = param(2*i);
case 'allowablegap' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant");
options(8) = param(2*i);
case 'maxiter' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "constant");
options(10) = param(2*i);
case 'gradobj' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "string");
if(convstr(options(2*i),'l') == "on") then
options(12) = "on"
elseif(convstr(options(2*i),'l') == "off") then
options(12) = "off"
else
error(999, 'Unknown string passed in gradobj.');
end
case 'hessian' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "function");
options(14) = param(2*i);
case 'GradCon' then
Checktype("intfmincon_options", param(2*i), param(2*i-1), 2*i, "string");
if(convstr(options(2*i),'l') == "on") then
options(16) = "on"
elseif(convstr(options(2*i),'l') == "off") then
options(16) = "off"
else
error(999, 'Unknown string passed in gradcon.');
end
else
error(999, 'Unknown string argument passed.');
end
end
///////////////// Functions Check /////////////////
//To check the match between f (1st Parameter) and x0 (2nd Parameter)
if(execstr('init=fun(x0)','errcatch')==21) then
errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "intfmincon");
error(errmsg);
end
if(options(12) == "on") then
if(execstr('[grad_y,grad_dy]=fun(x1)','errcatch')==59) then
errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfmincon");
error(errmsg);
end
Checkvector("intfmincon_options", grad_dy, "dy", 12, nbVar);
end
if(options(14) == "on") then
if(execstr('[hessian_y,hessian_dy,hessian]=fun(x1)','errcatch')==59) then
errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfmincon");
error(errmsg);
end
if ( ~isequal(size(hessian) == [nbVar nbVar]) ) then
errmsg = msprintf(gettext("%s: Size of hessian should be nbVar X nbVar"), "intfmincon");
error(errmsg);
end
end
numNlic = 0;
numNlec = 0;
numNlc = 0;
if (type(nlc) == 13 | type(nlc) == 11) then
if(execstr('[sample_c,sample_ceq] = nlc(x0)','errcatch')==21) then
errmsg = msprintf(gettext("%s: Non-Linear Constraint function and x0 did not match"), solver_name);
error(errmsg);
end
numNlic = size(sample_c,"*");
numNlec = size(sample_ceq,"*");
numNlc = no_nlic + no_nlec;
end
/////////////// Creating conLb and conUb ////////////////////////
conLb = [repmat(-%inf,nbConInEq,1);beq;repmat(-%inf,numNlic,1);repmat(0,numNlic,1);]
conUb = [b;beq;repmat(0,numNlic,1);repmat(0,numNlic,1);]
//Converting the User defined Objective function into Required form (Error Detectable)
function [y,check] = _f(x)
try
y=fun(x)
[y,check] = checkIsreal(y)
catch
y=0;
check=1;
end
endfunction
//Defining an inbuilt Objective gradient function
function [dy,check] = _gradf(x)
if (options(12) =="on") then
try
[y,dy]=fun(x)
[dy,check] = checkIsreal(dy)
catch
dy = 0;
check=1;
end
else
try
dy=numderivative(fun,x)
[dy,check] = checkIsreal(dy)
catch
dy=0;
check=1;
end
end
endfunction
function [y,check] = _addnlc(x)
x= x(:);
c=[]
ceq = [];
try
if(type(nlc) == 13 & numNlc~=0) then
{
[c,ceq] = nlc(x);
}
end
ylin = [A*x;Aeq*x];
y = [ylin;c(:);ceq(:)];
[y,check] = checkIsreal(y)
catch
y=0;
check=1;
end
endfunction
//Defining an inbuilt Objective gradient function
function [dy,check] = _gradnlc(x)
if (options(16) =="on") then
try
[y,dy]=_addnlc(x)
[dy,check] = checkIsreal(dy)
catch
dy = 0;
check=1;
end
else
try
dy=numderivative(_addnlc,x)
[dy,check] = checkIsreal(dy)
catch
dy=0;
check=1;
end
end
endfunction
//Defining a function to calculate Hessian if the respective user entry is OFF
function [hessy,check]=_gradhess(x,obj_factor,lambda)
if (type(options(14)) == "function") then
try
[obj,dy,hessy] = fun(x,obj_factor,lambda)
[hessy,check] = checkIsreal(hessy)
catch
hessy = 0;
check=1;
end
else
try
[dy,hessfy]=numderivative(_f,x,%eps^(1/3),1,"blockmat");
hessny = []
if(type(nlc) == 13 & numNlc~=0) then
{
[dy,hessny] = numderivative(_addnlc,x,%eps^(1/3),1,"blockmat");
}
end
hessianc = []
for i = 1:numNlc
hessianc = hessianc + lambda(i)*hessny((i-1)*nbVar+1:nbVar*i,:)
end
hessy = obj_factor*hessfy + hessianc;
[hessy,check] = checkIsreal(hessy)
catch
hessy=0;
check=1;
end
end
endfunction
intconsize = size(intcon,"*");
[xopt,fopt,exitflag] = inter_fmincon(_f,_gradf,_addnlc,_gradnlc,_gradhess,x0,lb,ub,conLb,conUb,intcon,options,nbConInEq+nbConEq);
//In the cases of the problem not being solved, return NULL to the output matrices
if( exitflag~=0 & exitflag~=3 ) then
gradient = [];
hessian = [];
else
[ gradient, hessian] = numderivative(_f, xopt, [], [], "blockmat");
end
//To print output message
select exitflag
case 0 then
printf("\nOptimal Solution Found.\n");
case 1 then
printf("\nInFeasible Solution.\n");
case 2 then
printf("\nObjective Function is Continuous Unbounded.\n");
case 3 then
printf("\Limit Exceeded.\n");
case 4 then
printf("\nUser Interrupt.\n");
case 5 then
printf("\nMINLP Error.\n");
else
printf("\nInvalid status returned. Notify the Toolbox authors\n");
break;
end
endfunction
function [y, check] = checkIsreal(x)
if ((~isreal(x))) then
y = 0
check=1;
else
y = x;
check=0;
end
endfunction
|