1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
|
// $Id$
// Copyright (C) 2000, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#ifndef OsiClpSolverInterface_H
#define OsiClpSolverInterface_H
#include <string>
#include <cfloat>
#include <map>
#include "ClpSimplex.hpp"
#include "ClpLinearObjective.hpp"
#include "CoinPackedMatrix.hpp"
#include "OsiSolverInterface.hpp"
#include "CoinWarmStartBasis.hpp"
#include "ClpEventHandler.hpp"
#include "ClpNode.hpp"
#include "CoinIndexedVector.hpp"
#include "CoinFinite.hpp"
class OsiRowCut;
class OsiClpUserSolver;
class OsiClpDisasterHandler;
class CoinSet;
static const double OsiClpInfinity = COIN_DBL_MAX;
//#############################################################################
/** Clp Solver Interface
Instantiation of OsiClpSolverInterface for the Model Algorithm.
*/
class OsiClpSolverInterface :
virtual public OsiSolverInterface {
friend void OsiClpSolverInterfaceUnitTest(const std::string & mpsDir, const std::string & netlibDir);
public:
//---------------------------------------------------------------------------
/**@name Solve methods */
//@{
/// Solve initial LP relaxation
virtual void initialSolve();
/// Resolve an LP relaxation after problem modification
virtual void resolve();
/// Resolve an LP relaxation after problem modification (try GUB)
virtual void resolveGub(int needed);
/// Invoke solver's built-in enumeration algorithm
virtual void branchAndBound();
/** Solve when primal column and dual row solutions are near-optimal
options - 0 no presolve (use primal and dual)
1 presolve (just use primal)
2 no presolve (just use primal)
basis - 0 use all slack basis
1 try and put some in basis
*/
void crossover(int options,int basis);
//@}
/*! @name OsiSimplexInterface methods
\brief Methods for the Osi Simplex API.
The current implementation should work for both minimisation and
maximisation in mode 1 (tableau access). In mode 2 (single pivot), only
minimisation is supported as of 100907.
*/
//@{
/** \brief Simplex API capability.
Returns
- 0 if no simplex API
- 1 if can just do getBInv etc
- 2 if has all OsiSimplex methods
*/
virtual int canDoSimplexInterface() const;
/*! \brief Enables simplex mode 1 (tableau access)
Tells solver that calls to getBInv etc are about to take place.
Underlying code may need mutable as this may be called from
CglCut::generateCuts which is const. If that is too horrific then
each solver e.g. BCP or CBC will have to do something outside
main loop.
*/
virtual void enableFactorization() const;
/*! \brief Undo any setting changes made by #enableFactorization */
virtual void disableFactorization() const;
/** Returns true if a basis is available
AND problem is optimal. This should be used to see if
the BInvARow type operations are possible and meaningful.
*/
virtual bool basisIsAvailable() const;
/** The following two methods may be replaced by the
methods of OsiSolverInterface using OsiWarmStartBasis if:
1. OsiWarmStartBasis resize operation is implemented
more efficiently and
2. It is ensured that effects on the solver are the same
Returns a basis status of the structural/artificial variables
At present as warm start i.e 0 free, 1 basic, 2 upper, 3 lower
NOTE artificials are treated as +1 elements so for <= rhs
artificial will be at lower bound if constraint is tight
This means that Clpsimplex flips artificials as it works
in terms of row activities
*/
virtual void getBasisStatus(int* cstat, int* rstat) const;
/** Set the status of structural/artificial variables and
factorize, update solution etc
NOTE artificials are treated as +1 elements so for <= rhs
artificial will be at lower bound if constraint is tight
This means that Clpsimplex flips artificials as it works
in terms of row activities
Returns 0 if OK, 1 if problem is bad e.g. duplicate elements, too large ...
*/
virtual int setBasisStatus(const int* cstat, const int* rstat);
///Get the reduced gradient for the cost vector c
virtual void getReducedGradient(double* columnReducedCosts,
double * duals,
const double * c) const ;
///Get a row of the tableau (slack part in slack if not NULL)
virtual void getBInvARow(int row, double* z, double * slack=NULL) const;
/** Get a row of the tableau (slack part in slack if not NULL)
If keepScaled is true then scale factors not applied after so
user has to use coding similar to what is in this method
*/
virtual void getBInvARow(int row, CoinIndexedVector * z, CoinIndexedVector * slack=NULL,
bool keepScaled=false) const;
///Get a row of the basis inverse
virtual void getBInvRow(int row, double* z) const;
///Get a column of the tableau
virtual void getBInvACol(int col, double* vec) const ;
///Get a column of the tableau
virtual void getBInvACol(int col, CoinIndexedVector * vec) const ;
/** Update (i.e. ftran) the vector passed in.
Unscaling is applied after - can't be applied before
*/
virtual void getBInvACol(CoinIndexedVector * vec) const ;
///Get a column of the basis inverse
virtual void getBInvCol(int col, double* vec) const ;
/** Get basic indices (order of indices corresponds to the
order of elements in a vector retured by getBInvACol() and
getBInvCol()).
*/
virtual void getBasics(int* index) const;
/*! \brief Enables simplex mode 2 (individual pivot control)
This method is supposed to ensure that all typical things (like
reduced costs, etc.) are updated when individual pivots are executed
and can be queried by other methods.
*/
virtual void enableSimplexInterface(bool doingPrimal);
/// Copy across enabled stuff from one solver to another
void copyEnabledSuff(OsiClpSolverInterface & rhs);
/*! \brief Undo setting changes made by #enableSimplexInterface */
virtual void disableSimplexInterface();
/// Copy across enabled stuff from one solver to another
void copyEnabledStuff(ClpSimplex & rhs);
/** Perform a pivot by substituting a colIn for colOut in the basis.
The status of the leaving variable is given in statOut. Where
1 is to upper bound, -1 to lower bound
Return code is 0 for okay,
1 if inaccuracy forced re-factorization (should be okay) and
-1 for singular factorization
*/
virtual int pivot(int colIn, int colOut, int outStatus);
/** Obtain a result of the primal pivot
Outputs: colOut -- leaving column, outStatus -- its status,
t -- step size, and, if dx!=NULL, *dx -- primal ray direction.
Inputs: colIn -- entering column, sign -- direction of its change (+/-1).
Both for colIn and colOut, artificial variables are index by
the negative of the row index minus 1.
Return code (for now): 0 -- leaving variable found,
-1 -- everything else?
Clearly, more informative set of return values is required
Primal and dual solutions are updated
*/
virtual int primalPivotResult(int colIn, int sign,
int& colOut, int& outStatus,
double& t, CoinPackedVector* dx);
/** Obtain a result of the dual pivot (similar to the previous method)
Differences: entering variable and a sign of its change are now
the outputs, the leaving variable and its statuts -- the inputs
If dx!=NULL, then *dx contains dual ray
Return code: same
*/
virtual int dualPivotResult(int& colIn, int& sign,
int colOut, int outStatus,
double& t, CoinPackedVector* dx);
//@}
//---------------------------------------------------------------------------
/**@name Parameter set/get methods
The set methods return true if the parameter was set to the given value,
false otherwise. There can be various reasons for failure: the given
parameter is not applicable for the solver (e.g., refactorization
frequency for the clp algorithm), the parameter is not yet implemented
for the solver or simply the value of the parameter is out of the range
the solver accepts. If a parameter setting call returns false check the
details of your solver.
The get methods return true if the given parameter is applicable for the
solver and is implemented. In this case the value of the parameter is
returned in the second argument. Otherwise they return false.
*/
//@{
// Set an integer parameter
bool setIntParam(OsiIntParam key, int value);
// Set an double parameter
bool setDblParam(OsiDblParam key, double value);
// Set a string parameter
bool setStrParam(OsiStrParam key, const std::string & value);
// Get an integer parameter
bool getIntParam(OsiIntParam key, int& value) const;
// Get an double parameter
bool getDblParam(OsiDblParam key, double& value) const;
// Get a string parameter
bool getStrParam(OsiStrParam key, std::string& value) const;
// Set a hint parameter - overrides OsiSolverInterface
virtual bool setHintParam(OsiHintParam key, bool yesNo=true,
OsiHintStrength strength=OsiHintTry,
void * otherInformation=NULL);
//@}
//---------------------------------------------------------------------------
///@name Methods returning info on how the solution process terminated
//@{
/// Are there a numerical difficulties?
virtual bool isAbandoned() const;
/// Is optimality proven?
virtual bool isProvenOptimal() const;
/// Is primal infeasiblity proven?
virtual bool isProvenPrimalInfeasible() const;
/// Is dual infeasiblity proven?
virtual bool isProvenDualInfeasible() const;
/// Is the given primal objective limit reached?
virtual bool isPrimalObjectiveLimitReached() const;
/// Is the given dual objective limit reached?
virtual bool isDualObjectiveLimitReached() const;
/// Iteration limit reached?
virtual bool isIterationLimitReached() const;
//@}
//---------------------------------------------------------------------------
/**@name WarmStart related methods */
//@{
/*! \brief Get an empty warm start object
This routine returns an empty CoinWarmStartBasis object. Its purpose is
to provide a way to give a client a warm start basis object of the
appropriate type, which can resized and modified as desired.
*/
virtual CoinWarmStart *getEmptyWarmStart () const;
/// Get warmstarting information
virtual CoinWarmStart* getWarmStart() const;
/// Get warmstarting information
inline CoinWarmStartBasis* getPointerToWarmStart()
{ return &basis_;}
/// Get warmstarting information
inline const CoinWarmStartBasis* getConstPointerToWarmStart() const
{ return &basis_;}
/** Set warmstarting information. Return true/false depending on whether
the warmstart information was accepted or not. */
virtual bool setWarmStart(const CoinWarmStart* warmstart);
/** \brief Get warm start information.
Return warm start information for the current state of the solver
interface. If there is no valid warm start information, an empty warm
start object wil be returned. This does not necessarily create an
object - may just point to one. must Delete set true if user
should delete returned object.
OsiClp version always returns pointer and false.
*/
virtual CoinWarmStart* getPointerToWarmStart(bool & mustDelete) ;
/// Set column status in ClpSimplex and warmStart
void setColumnStatus(int iColumn, ClpSimplex::Status status);
//@}
//---------------------------------------------------------------------------
/**@name Hotstart related methods (primarily used in strong branching).
The user can create a hotstart (a snapshot) of the optimization process
then reoptimize over and over again always starting from there.<br>
<strong>NOTE</strong>: between hotstarted optimizations only
bound changes are allowed. */
//@{
/// Create a hotstart point of the optimization process
virtual void markHotStart();
/// Optimize starting from the hotstart
virtual void solveFromHotStart();
/// Delete the snapshot
virtual void unmarkHotStart();
/** Start faster dual - returns negative if problems 1 if infeasible,
Options to pass to solver
1 - create external reduced costs for columns
2 - create external reduced costs for rows
4 - create external row activity (columns always done)
Above only done if feasible
When set resolve does less work
*/
int startFastDual(int options);
/// Stop fast dual
void stopFastDual();
/// Sets integer tolerance and increment
void setStuff(double tolerance,double increment);
/// Return a conflict analysis cut from small model
OsiRowCut * smallModelCut(const double * originalLower, const double * originalUpper,
int numberRowsAtContinuous,const int * whichGenerator,
int typeCut=0);
/** Return a conflict analysis cut from model
If type is 0 then genuine cut, if 1 then only partially processed
*/
OsiRowCut * modelCut(const double * originalLower, const double * originalUpper,
int numberRowsAtContinuous,const int * whichGenerator,
int typeCut=0);
//@}
//---------------------------------------------------------------------------
/**@name Problem information methods
These methods call the solver's query routines to return
information about the problem referred to by the current object.
Querying a problem that has no data associated with it result in
zeros for the number of rows and columns, and NULL pointers from
the methods that return vectors.
Const pointers returned from any data-query method are valid as
long as the data is unchanged and the solver is not called.
*/
//@{
/**@name Methods related to querying the input data */
//@{
/// Get number of columns
virtual int getNumCols() const {
return modelPtr_->numberColumns(); }
/// Get number of rows
virtual int getNumRows() const {
return modelPtr_->numberRows(); }
/// Get number of nonzero elements
virtual int getNumElements() const {
int retVal = 0;
const CoinPackedMatrix * matrix =modelPtr_->matrix();
if ( matrix != NULL ) retVal=matrix->getNumElements();
return retVal; }
/// Return name of row if one exists or Rnnnnnnn
/// maxLen is currently ignored and only there to match the signature from the base class!
virtual std::string getRowName(int rowIndex,
unsigned maxLen = static_cast<unsigned>(std::string::npos)) const;
/// Return name of column if one exists or Cnnnnnnn
/// maxLen is currently ignored and only there to match the signature from the base class!
virtual std::string getColName(int colIndex,
unsigned maxLen = static_cast<unsigned>(std::string::npos)) const;
/// Get pointer to array[getNumCols()] of column lower bounds
virtual const double * getColLower() const { return modelPtr_->columnLower(); }
/// Get pointer to array[getNumCols()] of column upper bounds
virtual const double * getColUpper() const { return modelPtr_->columnUpper(); }
/** Get pointer to array[getNumRows()] of row constraint senses.
<ul>
<li>'L' <= constraint
<li>'E' = constraint
<li>'G' >= constraint
<li>'R' ranged constraint
<li>'N' free constraint
</ul>
*/
virtual const char * getRowSense() const;
/** Get pointer to array[getNumRows()] of rows right-hand sides
<ul>
<li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
<li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
<li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
<li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
</ul>
*/
virtual const double * getRightHandSide() const ;
/** Get pointer to array[getNumRows()] of row ranges.
<ul>
<li> if rowsense()[i] == 'R' then
rowrange()[i] == rowupper()[i] - rowlower()[i]
<li> if rowsense()[i] != 'R' then
rowrange()[i] is undefined
</ul>
*/
virtual const double * getRowRange() const ;
/// Get pointer to array[getNumRows()] of row lower bounds
virtual const double * getRowLower() const { return modelPtr_->rowLower(); }
/// Get pointer to array[getNumRows()] of row upper bounds
virtual const double * getRowUpper() const { return modelPtr_->rowUpper(); }
/// Get pointer to array[getNumCols()] of objective function coefficients
virtual const double * getObjCoefficients() const
{ if (fakeMinInSimplex_)
return linearObjective_ ;
else
return modelPtr_->objective(); }
/// Get objective function sense (1 for min (default), -1 for max)
virtual double getObjSense() const
{ return ((fakeMinInSimplex_)?-modelPtr_->optimizationDirection():
modelPtr_->optimizationDirection()); }
/// Return true if column is continuous
virtual bool isContinuous(int colNumber) const;
/// Return true if variable is binary
virtual bool isBinary(int colIndex) const;
/** Return true if column is integer.
Note: This function returns true if the the column
is binary or a general integer.
*/
virtual bool isInteger(int colIndex) const;
/// Return true if variable is general integer
virtual bool isIntegerNonBinary(int colIndex) const;
/// Return true if variable is binary and not fixed at either bound
virtual bool isFreeBinary(int colIndex) const;
/** Return array of column length
0 - continuous
1 - binary (may get fixed later)
2 - general integer (may get fixed later)
*/
virtual const char * getColType(bool refresh=false) const;
/** Return true if column is integer but does not have to
be declared as such.
Note: This function returns true if the the column
is binary or a general integer.
*/
bool isOptionalInteger(int colIndex) const;
/** Set the index-th variable to be an optional integer variable */
void setOptionalInteger(int index);
/// Get pointer to row-wise copy of matrix
virtual const CoinPackedMatrix * getMatrixByRow() const;
/// Get pointer to column-wise copy of matrix
virtual const CoinPackedMatrix * getMatrixByCol() const;
/// Get pointer to mutable column-wise copy of matrix
virtual CoinPackedMatrix * getMutableMatrixByCol() const;
/// Get solver's value for infinity
virtual double getInfinity() const { return OsiClpInfinity; }
//@}
/**@name Methods related to querying the solution */
//@{
/// Get pointer to array[getNumCols()] of primal solution vector
virtual const double * getColSolution() const;
/// Get pointer to array[getNumRows()] of dual prices
virtual const double * getRowPrice() const;
/// Get a pointer to array[getNumCols()] of reduced costs
virtual const double * getReducedCost() const;
/** Get pointer to array[getNumRows()] of row activity levels (constraint
matrix times the solution vector */
virtual const double * getRowActivity() const;
/// Get objective function value
virtual double getObjValue() const;
/** Get how many iterations it took to solve the problem (whatever
"iteration" mean to the solver. */
virtual int getIterationCount() const
{ return modelPtr_->numberIterations(); }
/** Get as many dual rays as the solver can provide. (In case of proven
primal infeasibility there should be at least one.)
The first getNumRows() ray components will always be associated with
the row duals (as returned by getRowPrice()). If \c fullRay is true,
the final getNumCols() entries will correspond to the ray components
associated with the nonbasic variables. If the full ray is requested
and the method cannot provide it, it will throw an exception.
<strong>NOTE for implementers of solver interfaces:</strong> <br>
The double pointers in the vector should point to arrays of length
getNumRows() and they should be allocated via new[]. <br>
<strong>NOTE for users of solver interfaces:</strong> <br>
It is the user's responsibility to free the double pointers in the
vector using delete[].
*/
virtual std::vector<double*> getDualRays(int maxNumRays,
bool fullRay = false) const;
/** Get as many primal rays as the solver can provide. (In case of proven
dual infeasibility there should be at least one.)
<strong>NOTE for implementers of solver interfaces:</strong> <br>
The double pointers in the vector should point to arrays of length
getNumCols() and they should be allocated via new[]. <br>
<strong>NOTE for users of solver interfaces:</strong> <br>
It is the user's responsibility to free the double pointers in the
vector using delete[].
*/
virtual std::vector<double*> getPrimalRays(int maxNumRays) const;
//@}
//@}
//---------------------------------------------------------------------------
/**@name Problem modifying methods */
//@{
//-------------------------------------------------------------------------
/**@name Changing bounds on variables and constraints */
//@{
/** Set an objective function coefficient */
virtual void setObjCoeff( int elementIndex, double elementValue );
/** Set a single column lower bound<br>
Use -DBL_MAX for -infinity. */
virtual void setColLower( int elementIndex, double elementValue );
/** Set a single column upper bound<br>
Use DBL_MAX for infinity. */
virtual void setColUpper( int elementIndex, double elementValue );
/** Set a single column lower and upper bound */
virtual void setColBounds( int elementIndex,
double lower, double upper );
/** Set the bounds on a number of columns simultaneously<br>
The default implementation just invokes setColLower() and
setColUpper() over and over again.
@param indexFirst,indexLast pointers to the beginning and after the
end of the array of the indices of the variables whose
<em>either</em> bound changes
@param boundList the new lower/upper bound pairs for the variables
*/
virtual void setColSetBounds(const int* indexFirst,
const int* indexLast,
const double* boundList);
/** Set a single row lower bound<br>
Use -DBL_MAX for -infinity. */
virtual void setRowLower( int elementIndex, double elementValue );
/** Set a single row upper bound<br>
Use DBL_MAX for infinity. */
virtual void setRowUpper( int elementIndex, double elementValue ) ;
/** Set a single row lower and upper bound */
virtual void setRowBounds( int elementIndex,
double lower, double upper ) ;
/** Set the type of a single row<br> */
virtual void setRowType(int index, char sense, double rightHandSide,
double range);
/** Set the bounds on a number of rows simultaneously<br>
The default implementation just invokes setRowLower() and
setRowUpper() over and over again.
@param indexFirst,indexLast pointers to the beginning and after the
end of the array of the indices of the constraints whose
<em>either</em> bound changes
@param boundList the new lower/upper bound pairs for the constraints
*/
virtual void setRowSetBounds(const int* indexFirst,
const int* indexLast,
const double* boundList);
/** Set the type of a number of rows simultaneously<br>
The default implementation just invokes setRowType()
over and over again.
@param indexFirst,indexLast pointers to the beginning and after the
end of the array of the indices of the constraints whose
<em>any</em> characteristics changes
@param senseList the new senses
@param rhsList the new right hand sides
@param rangeList the new ranges
*/
virtual void setRowSetTypes(const int* indexFirst,
const int* indexLast,
const char* senseList,
const double* rhsList,
const double* rangeList);
/** Set the objective coefficients for all columns
array [getNumCols()] is an array of values for the objective.
This defaults to a series of set operations and is here for speed.
*/
virtual void setObjective(const double * array);
/** Set the lower bounds for all columns
array [getNumCols()] is an array of values for the objective.
This defaults to a series of set operations and is here for speed.
*/
virtual void setColLower(const double * array);
/** Set the upper bounds for all columns
array [getNumCols()] is an array of values for the objective.
This defaults to a series of set operations and is here for speed.
*/
virtual void setColUpper(const double * array);
// using OsiSolverInterface::setRowName ;
/// Set name of row
// virtual void setRowName(int rowIndex, std::string & name) ;
virtual void setRowName(int rowIndex, std::string name) ;
// using OsiSolverInterface::setColName ;
/// Set name of column
// virtual void setColName(int colIndex, std::string & name) ;
virtual void setColName(int colIndex, std::string name) ;
//@}
//-------------------------------------------------------------------------
/**@name Integrality related changing methods */
//@{
/** Set the index-th variable to be a continuous variable */
virtual void setContinuous(int index);
/** Set the index-th variable to be an integer variable */
virtual void setInteger(int index);
/** Set the variables listed in indices (which is of length len) to be
continuous variables */
virtual void setContinuous(const int* indices, int len);
/** Set the variables listed in indices (which is of length len) to be
integer variables */
virtual void setInteger(const int* indices, int len);
/// Number of SOS sets
inline int numberSOS() const
{ return numberSOS_;}
/// SOS set info
inline const CoinSet * setInfo() const
{ return setInfo_;}
/** \brief Identify integer variables and SOS and create corresponding objects.
Record integer variables and create an OsiSimpleInteger object for each
one. All existing OsiSimpleInteger objects will be destroyed.
If the solver supports SOS then do the same for SOS.
If justCount then no objects created and we just store numberIntegers_
Returns number of SOS
*/
virtual int findIntegersAndSOS(bool justCount);
//@}
//-------------------------------------------------------------------------
/// Set objective function sense (1 for min (default), -1 for max,)
virtual void setObjSense(double s )
{ modelPtr_->setOptimizationDirection( s < 0 ? -1 : 1); }
/** Set the primal solution column values
colsol[numcols()] is an array of values of the problem column
variables. These values are copied to memory owned by the
solver object or the solver. They will be returned as the
result of colsol() until changed by another call to
setColsol() or by a call to any solver routine. Whether the
solver makes use of the solution in any way is
solver-dependent.
*/
virtual void setColSolution(const double * colsol);
/** Set dual solution vector
rowprice[numrows()] is an array of values of the problem row
dual variables. These values are copied to memory owned by the
solver object or the solver. They will be returned as the
result of rowprice() until changed by another call to
setRowprice() or by a call to any solver routine. Whether the
solver makes use of the solution in any way is
solver-dependent.
*/
virtual void setRowPrice(const double * rowprice);
//-------------------------------------------------------------------------
/**@name Methods to expand a problem.<br>
Note that if a column is added then by default it will correspond to a
continuous variable. */
//@{
//using OsiSolverInterface::addCol ;
/** */
virtual void addCol(const CoinPackedVectorBase& vec,
const double collb, const double colub,
const double obj);
/*! \brief Add a named column (primal variable) to the problem.
*/
virtual void addCol(const CoinPackedVectorBase& vec,
const double collb, const double colub,
const double obj, std::string name) ;
/** Add a column (primal variable) to the problem. */
virtual void addCol(int numberElements, const int * rows, const double * elements,
const double collb, const double colub,
const double obj) ;
/*! \brief Add a named column (primal variable) to the problem.
*/
virtual void addCol(int numberElements,
const int* rows, const double* elements,
const double collb, const double colub,
const double obj, std::string name) ;
/** */
virtual void addCols(const int numcols,
const CoinPackedVectorBase * const * cols,
const double* collb, const double* colub,
const double* obj);
/** */
virtual void addCols(const int numcols,
const int * columnStarts, const int * rows, const double * elements,
const double* collb, const double* colub,
const double* obj);
/** */
virtual void deleteCols(const int num, const int * colIndices);
/** */
virtual void addRow(const CoinPackedVectorBase& vec,
const double rowlb, const double rowub);
/** */
/*! \brief Add a named row (constraint) to the problem.
The default implementation adds the row, then changes the name. This
can surely be made more efficient within an OsiXXX class.
*/
virtual void addRow(const CoinPackedVectorBase& vec,
const double rowlb, const double rowub,
std::string name) ;
virtual void addRow(const CoinPackedVectorBase& vec,
const char rowsen, const double rowrhs,
const double rowrng);
/** Add a row (constraint) to the problem. */
virtual void addRow(int numberElements, const int * columns, const double * element,
const double rowlb, const double rowub) ;
/*! \brief Add a named row (constraint) to the problem.
*/
virtual void addRow(const CoinPackedVectorBase& vec,
const char rowsen, const double rowrhs,
const double rowrng, std::string name) ;
/** */
virtual void addRows(const int numrows,
const CoinPackedVectorBase * const * rows,
const double* rowlb, const double* rowub);
/** */
virtual void addRows(const int numrows,
const CoinPackedVectorBase * const * rows,
const char* rowsen, const double* rowrhs,
const double* rowrng);
/** */
virtual void addRows(const int numrows,
const int * rowStarts, const int * columns, const double * element,
const double* rowlb, const double* rowub);
///
void modifyCoefficient(int row, int column, double newElement,
bool keepZero=false)
{modelPtr_->modifyCoefficient(row,column,newElement, keepZero);}
/** */
virtual void deleteRows(const int num, const int * rowIndices);
/** If solver wants it can save a copy of "base" (continuous) model here
*/
virtual void saveBaseModel() ;
/** Strip off rows to get to this number of rows.
If solver wants it can restore a copy of "base" (continuous) model here
*/
virtual void restoreBaseModel(int numberRows);
//-----------------------------------------------------------------------
/** Apply a collection of row cuts which are all effective.
applyCuts seems to do one at a time which seems inefficient.
*/
virtual void applyRowCuts(int numberCuts, const OsiRowCut * cuts);
/** Apply a collection of row cuts which are all effective.
applyCuts seems to do one at a time which seems inefficient.
This uses array of pointers
*/
virtual void applyRowCuts(int numberCuts, const OsiRowCut ** cuts);
/** Apply a collection of cuts.
Only cuts which have an <code>effectiveness >= effectivenessLb</code>
are applied.
<ul>
<li> ReturnCode.getNumineffective() -- number of cuts which were
not applied because they had an
<code>effectiveness < effectivenessLb</code>
<li> ReturnCode.getNuminconsistent() -- number of invalid cuts
<li> ReturnCode.getNuminconsistentWrtIntegerModel() -- number of
cuts that are invalid with respect to this integer model
<li> ReturnCode.getNuminfeasible() -- number of cuts that would
make this integer model infeasible
<li> ReturnCode.getNumApplied() -- number of integer cuts which
were applied to the integer model
<li> cs.size() == getNumineffective() +
getNuminconsistent() +
getNuminconsistentWrtIntegerModel() +
getNuminfeasible() +
getNumApplied()
</ul>
*/
virtual ApplyCutsReturnCode applyCuts(const OsiCuts & cs,
double effectivenessLb = 0.0);
//@}
//@}
//---------------------------------------------------------------------------
public:
/**@name Methods to input a problem */
//@{
/** Load in an problem by copying the arguments (the constraints on the
rows are given by lower and upper bounds). If a pointer is NULL then the
following values are the default:
<ul>
<li> <code>colub</code>: all columns have upper bound infinity
<li> <code>collb</code>: all columns have lower bound 0
<li> <code>rowub</code>: all rows have upper bound infinity
<li> <code>rowlb</code>: all rows have lower bound -infinity
<li> <code>obj</code>: all variables have 0 objective coefficient
</ul>
*/
virtual void loadProblem(const CoinPackedMatrix& matrix,
const double* collb, const double* colub,
const double* obj,
const double* rowlb, const double* rowub);
/** Load in an problem by assuming ownership of the arguments (the
constraints on the rows are given by lower and upper bounds). For
default values see the previous method. <br>
<strong>WARNING</strong>: The arguments passed to this method will be
freed using the C++ <code>delete</code> and <code>delete[]</code>
functions.
*/
virtual void assignProblem(CoinPackedMatrix*& matrix,
double*& collb, double*& colub, double*& obj,
double*& rowlb, double*& rowub);
/** Load in an problem by copying the arguments (the constraints on the
rows are given by sense/rhs/range triplets). If a pointer is NULL then the
following values are the default:
<ul>
<li> <code>colub</code>: all columns have upper bound infinity
<li> <code>collb</code>: all columns have lower bound 0
<li> <code>obj</code>: all variables have 0 objective coefficient
<li> <code>rowsen</code>: all rows are >=
<li> <code>rowrhs</code>: all right hand sides are 0
<li> <code>rowrng</code>: 0 for the ranged rows
</ul>
*/
virtual void loadProblem(const CoinPackedMatrix& matrix,
const double* collb, const double* colub,
const double* obj,
const char* rowsen, const double* rowrhs,
const double* rowrng);
/** Load in an problem by assuming ownership of the arguments (the
constraints on the rows are given by sense/rhs/range triplets). For
default values see the previous method. <br>
<strong>WARNING</strong>: The arguments passed to this method will be
freed using the C++ <code>delete</code> and <code>delete[]</code>
functions.
*/
virtual void assignProblem(CoinPackedMatrix*& matrix,
double*& collb, double*& colub, double*& obj,
char*& rowsen, double*& rowrhs,
double*& rowrng);
/** Just like the other loadProblem() methods except that the matrix is
given as a ClpMatrixBase. */
virtual void loadProblem(const ClpMatrixBase& matrix,
const double* collb, const double* colub,
const double* obj,
const double* rowlb, const double* rowub) ;
/** Just like the other loadProblem() methods except that the matrix is
given in a standard column major ordered format (without gaps). */
virtual void loadProblem(const int numcols, const int numrows,
const CoinBigIndex * start, const int* index,
const double* value,
const double* collb, const double* colub,
const double* obj,
const double* rowlb, const double* rowub);
/** Just like the other loadProblem() methods except that the matrix is
given in a standard column major ordered format (without gaps). */
virtual void loadProblem(const int numcols, const int numrows,
const CoinBigIndex * start, const int* index,
const double* value,
const double* collb, const double* colub,
const double* obj,
const char* rowsen, const double* rowrhs,
const double* rowrng);
/// This loads a model from a coinModel object - returns number of errors
virtual int loadFromCoinModel ( CoinModel & modelObject, bool keepSolution=false);
using OsiSolverInterface::readMps ;
/** Read an mps file from the given filename (defaults to Osi reader) - returns
number of errors (see OsiMpsReader class) */
virtual int readMps(const char *filename,
const char *extension = "mps") ;
/** Read an mps file from the given filename returns
number of errors (see OsiMpsReader class) */
int readMps(const char *filename,bool keepNames,bool allowErrors);
/// Read an mps file
virtual int readMps (const char *filename, const char*extension,
int & numberSets, CoinSet ** & sets);
/** Write the problem into an mps file of the given filename.
If objSense is non zero then -1.0 forces the code to write a
maximization objective and +1.0 to write a minimization one.
If 0.0 then solver can do what it wants */
virtual void writeMps(const char *filename,
const char *extension = "mps",
double objSense=0.0) const;
/** Write the problem into an mps file of the given filename,
names may be null. formatType is
0 - normal
1 - extra accuracy
2 - IEEE hex (later)
Returns non-zero on I/O error
*/
virtual int writeMpsNative(const char *filename,
const char ** rowNames, const char ** columnNames,
int formatType=0,int numberAcross=2,
double objSense=0.0) const ;
/// Read file in LP format (with names)
virtual int readLp(const char *filename, const double epsilon = 1e-5);
/** Write the problem into an Lp file of the given filename.
If objSense is non zero then -1.0 forces the code to write a
maximization objective and +1.0 to write a minimization one.
If 0.0 then solver can do what it wants.
This version calls writeLpNative with names */
virtual void writeLp(const char *filename,
const char *extension = "lp",
double epsilon = 1e-5,
int numberAcross = 10,
int decimals = 5,
double objSense = 0.0,
bool useRowNames = true) const;
/** Write the problem into the file pointed to by the parameter fp.
Other parameters are similar to
those of writeLp() with first parameter filename.
*/
virtual void writeLp(FILE *fp,
double epsilon = 1e-5,
int numberAcross = 10,
int decimals = 5,
double objSense = 0.0,
bool useRowNames = true) const;
/**
I (JJF) am getting annoyed because I can't just replace a matrix.
The default behavior of this is do nothing so only use where that would not matter
e.g. strengthening a matrix for MIP
*/
virtual void replaceMatrixOptional(const CoinPackedMatrix & matrix);
/// And if it does matter (not used at present)
virtual void replaceMatrix(const CoinPackedMatrix & matrix) ;
//@}
/**@name Message handling (extra for Clp messages).
Normally I presume you would want the same language.
If not then you could use underlying model pointer */
//@{
/** Pass in a message handler
It is the client's responsibility to destroy a message handler installed
by this routine; it will not be destroyed when the solver interface is
destroyed.
*/
virtual void passInMessageHandler(CoinMessageHandler * handler);
/// Set language
void newLanguage(CoinMessages::Language language);
void setLanguage(CoinMessages::Language language)
{newLanguage(language);}
/// Set log level (will also set underlying solver's log level)
void setLogLevel(int value);
/// Create C++ lines to get to current state
void generateCpp( FILE * fp);
//@}
//---------------------------------------------------------------------------
/**@name Clp specific public interfaces */
//@{
/// Get pointer to Clp model
ClpSimplex * getModelPtr() const ;
/// Set pointer to Clp model and return old
inline ClpSimplex * swapModelPtr(ClpSimplex * newModel)
{ ClpSimplex * model = modelPtr_; modelPtr_=newModel;return model;}
/// Get special options
inline unsigned int specialOptions() const
{ return specialOptions_;}
void setSpecialOptions(unsigned int value);
/// Last algorithm used , 1 = primal, 2 = dual other unknown
inline int lastAlgorithm() const
{ return lastAlgorithm_;}
/// Set last algorithm used , 1 = primal, 2 = dual other unknown
inline void setLastAlgorithm(int value)
{ lastAlgorithm_ = value;}
/// Get scaling action option
inline int cleanupScaling() const
{ return cleanupScaling_;}
/** Set Scaling option
When scaling is on it is possible that the scaled problem
is feasible but the unscaled is not. Clp returns a secondary
status code to that effect. This option allows for a cleanup.
If you use it I would suggest 1.
This only affects actions when scaled optimal
0 - no action
1 - clean up using dual if primal infeasibility
2 - clean up using dual if dual infeasibility
3 - clean up using dual if primal or dual infeasibility
11,12,13 - as 1,2,3 but use primal
*/
inline void setCleanupScaling(int value)
{ cleanupScaling_=value;}
/** Get smallest allowed element in cut.
If smaller than this then ignored */
inline double smallestElementInCut() const
{ return smallestElementInCut_;}
/** Set smallest allowed element in cut.
If smaller than this then ignored */
inline void setSmallestElementInCut(double value)
{ smallestElementInCut_=value;}
/** Get smallest change in cut.
If (upper-lower)*element < this then element is
taken out and cut relaxed.
(upper-lower) is taken to be at least 1.0 and
this is assumed >= smallestElementInCut_
*/
inline double smallestChangeInCut() const
{ return smallestChangeInCut_;}
/** Set smallest change in cut.
If (upper-lower)*element < this then element is
taken out and cut relaxed.
(upper-lower) is taken to be at least 1.0 and
this is assumed >= smallestElementInCut_
*/
inline void setSmallestChangeInCut(double value)
{ smallestChangeInCut_=value;}
/// Pass in initial solve options
inline void setSolveOptions(const ClpSolve & options)
{ solveOptions_ = options;}
/** Tighten bounds - lightweight or very lightweight
0 - normal, 1 lightweight but just integers, 2 lightweight and all
*/
virtual int tightenBounds(int lightweight=0);
/// See if any integer variables make infeasible other way
int infeasibleOtherWay(char * whichWay);
/// Return number of entries in L part of current factorization
virtual CoinBigIndex getSizeL() const;
/// Return number of entries in U part of current factorization
virtual CoinBigIndex getSizeU() const;
/// Get disaster handler
const OsiClpDisasterHandler * disasterHandler() const
{ return disasterHandler_;}
/// Pass in disaster handler
void passInDisasterHandler(OsiClpDisasterHandler * handler);
/// Get fake objective
ClpLinearObjective * fakeObjective() const
{ return fakeObjective_;}
/// Set fake objective (and take ownership)
void setFakeObjective(ClpLinearObjective * fakeObjective);
/// Set fake objective
void setFakeObjective(double * fakeObjective);
/*! \brief Set up solver for repeated use by Osi interface.
The normal usage does things like keeping factorization around so can be
used. Will also do things like keep scaling and row copy of matrix if
matrix does not change.
\p senseOfAdventure:
- 0 - safe stuff as above
- 1 - will take more risks - if it does not work then bug which will be
fixed
- 2 - don't bother doing most extreme termination checks e.g. don't bother
re-factorizing if less than 20 iterations.
- 3 - Actually safer than 1 (mainly just keeps factorization)
\p printOut
- -1 always skip round common messages instead of doing some work
- 0 skip if normal defaults
- 1 leaves
*/
void setupForRepeatedUse(int senseOfAdventure=0, int printOut=0);
/// Synchronize model (really if no cuts in tree)
virtual void synchronizeModel();
/*! \brief Set special options in underlying clp solver.
Safe as const because #modelPtr_ is mutable.
*/
void setSpecialOptionsMutable(unsigned int value) const;
//@}
//---------------------------------------------------------------------------
/**@name Constructors and destructors */
//@{
/// Default Constructor
OsiClpSolverInterface ();
/// Clone
virtual OsiSolverInterface * clone(bool copyData = true) const;
/// Copy constructor
OsiClpSolverInterface (const OsiClpSolverInterface &);
/// Borrow constructor - only delete one copy
OsiClpSolverInterface (ClpSimplex * rhs, bool reallyOwn=false);
/// Releases so won't error
void releaseClp();
/// Assignment operator
OsiClpSolverInterface & operator=(const OsiClpSolverInterface& rhs);
/// Destructor
virtual ~OsiClpSolverInterface ();
/// Resets as if default constructor
virtual void reset();
//@}
//---------------------------------------------------------------------------
protected:
///@name Protected methods
//@{
/** Apply a row cut (append to constraint matrix). */
virtual void applyRowCut(const OsiRowCut& rc);
/** Apply a column cut (adjust one or more bounds). */
virtual void applyColCut(const OsiColCut& cc);
//@}
//---------------------------------------------------------------------------
protected:
/**@name Protected methods */
//@{
/// The real work of a copy constructor (used by copy and assignment)
void gutsOfDestructor();
/// Deletes all mutable stuff
void freeCachedResults() const;
/// Deletes all mutable stuff for row ranges etc
void freeCachedResults0() const;
/// Deletes all mutable stuff for matrix etc
void freeCachedResults1() const;
/// A method that fills up the rowsense_, rhs_ and rowrange_ arrays
void extractSenseRhsRange() const;
///
void fillParamMaps();
/** Warm start
NOTE artificials are treated as +1 elements so for <= rhs
artificial will be at lower bound if constraint is tight
This means that Clpsimplex flips artificials as it works
in terms of row activities
*/
CoinWarmStartBasis getBasis(ClpSimplex * model) const;
/** Sets up working basis as a copy of input
NOTE artificials are treated as +1 elements so for <= rhs
artificial will be at lower bound if constraint is tight
This means that Clpsimplex flips artificials as it works
in terms of row activities
*/
void setBasis( const CoinWarmStartBasis & basis, ClpSimplex * model);
/// Crunch down problem a bit
void crunch();
/// Extend scale factors
void redoScaleFactors(int numberRows,const CoinBigIndex * starts,
const int * indices, const double * elements);
public:
/** Sets up working basis as a copy of input and puts in as basis
*/
void setBasis( const CoinWarmStartBasis & basis);
/// Just puts current basis_ into ClpSimplex model
inline void setBasis( )
{ setBasis(basis_,modelPtr_);}
/// Warm start difference from basis_ to statusArray
CoinWarmStartDiff * getBasisDiff(const unsigned char * statusArray) const ;
/// Warm start from statusArray
CoinWarmStartBasis * getBasis(const unsigned char * statusArray) const ;
/// Delete all scale factor stuff and reset option
void deleteScaleFactors();
/// If doing fast hot start then ranges are computed
inline const double * upRange() const
{ return rowActivity_;}
inline const double * downRange() const
{ return columnActivity_;}
/// Pass in range array
inline void passInRanges(int * array)
{ whichRange_=array;}
/// Pass in sos stuff from AMPl
void setSOSData(int numberSOS,const char * type,
const int * start,const int * indices, const double * weights=NULL);
/// Compute largest amount any at continuous away from bound
void computeLargestAway();
/// Get largest amount continuous away from bound
inline double largestAway() const
{ return largestAway_;}
/// Set largest amount continuous away from bound
inline void setLargestAway(double value)
{ largestAway_ = value;}
/// Sort of lexicographic resolve
void lexSolve();
//@}
protected:
/**@name Protected member data */
//@{
/// Clp model represented by this class instance
mutable ClpSimplex * modelPtr_;
//@}
/**@name Cached information derived from the OSL model */
//@{
/// Pointer to dense vector of row sense indicators
mutable char *rowsense_;
/// Pointer to dense vector of row right-hand side values
mutable double *rhs_;
/** Pointer to dense vector of slack upper bounds for range
constraints (undefined for non-range rows)
*/
mutable double *rowrange_;
/** A pointer to the warmstart information to be used in the hotstarts.
This is NOT efficient and more thought should be given to it... */
mutable CoinWarmStartBasis* ws_;
/** also save row and column information for hot starts
only used in hotstarts so can be casual */
mutable double * rowActivity_;
mutable double * columnActivity_;
/// Stuff for fast dual
ClpNodeStuff stuff_;
/// Number of SOS sets
int numberSOS_;
/// SOS set info
CoinSet * setInfo_;
/// Alternate model (hot starts) - but also could be permanent and used for crunch
ClpSimplex * smallModel_;
/// factorization for hot starts
ClpFactorization * factorization_;
/** Smallest allowed element in cut.
If smaller than this then ignored */
double smallestElementInCut_;
/** Smallest change in cut.
If (upper-lower)*element < this then element is
taken out and cut relaxed. */
double smallestChangeInCut_;
/// Largest amount continuous away from bound
double largestAway_;
/// Arrays for hot starts
char * spareArrays_;
/** Warmstart information to be used in resolves. */
CoinWarmStartBasis basis_;
/** The original iteration limit before hotstarts started. */
int itlimOrig_;
/*! \brief Last algorithm used
Coded as
- 0 invalid
- 1 primal
- 2 dual
- -911 disaster in the algorithm that was attempted
- 999 current solution no longer optimal due to change in problem or
basis
*/
mutable int lastAlgorithm_;
/// To say if destructor should delete underlying model
bool notOwned_;
/// Pointer to row-wise copy of problem matrix coefficients.
mutable CoinPackedMatrix *matrixByRow_;
/// Pointer to row-wise copy of continuous problem matrix coefficients.
CoinPackedMatrix *matrixByRowAtContinuous_;
/// Pointer to integer information
char * integerInformation_;
/** Pointer to variables for which we want range information
The number is in [0]
memory is not owned by OsiClp
*/
int * whichRange_;
//std::map<OsiIntParam, ClpIntParam> intParamMap_;
//std::map<OsiDblParam, ClpDblParam> dblParamMap_;
//std::map<OsiStrParam, ClpStrParam> strParamMap_;
/*! \brief Faking min to get proper dual solution signs in simplex API */
mutable bool fakeMinInSimplex_ ;
/*! \brief Linear objective
Normally a pointer to the linear coefficient array in the clp objective.
An independent copy when #fakeMinInSimplex_ is true, because we need
something permanent to point to when #getObjCoefficients is called.
*/
mutable double *linearObjective_;
/// To save data in OsiSimplex stuff
mutable ClpDataSave saveData_;
/// Options for initialSolve
ClpSolve solveOptions_;
/** Scaling option
When scaling is on it is possible that the scaled problem
is feasible but the unscaled is not. Clp returns a secondary
status code to that effect. This option allows for a cleanup.
If you use it I would suggest 1.
This only affects actions when scaled optimal
0 - no action
1 - clean up using dual if primal infeasibility
2 - clean up using dual if dual infeasibility
3 - clean up using dual if primal or dual infeasibility
11,12,13 - as 1,2,3 but use primal
*/
int cleanupScaling_;
/** Special options
0x80000000 off
0 simple stuff for branch and bound
1 try and keep work regions as much as possible
2 do not use any perturbation
4 allow exit before re-factorization
8 try and re-use factorization if no cuts
16 use standard strong branching rather than clp's
32 Just go to first factorization in fast dual
64 try and tighten bounds in crunch
128 Model will only change in column bounds
256 Clean up model before hot start
512 Give user direct access to Clp regions in getBInvARow etc (i.e.,
do not unscale, and do not return result in getBInv parameters;
you have to know where to look for the answer)
1024 Don't "borrow" model in initialSolve
2048 Don't crunch
4096 quick check for optimality
Bits above 8192 give where called from in Cbc
At present 0 is normal, 1 doing fast hotstarts, 2 is can do quick check
65536 Keep simple i.e. no crunch etc
131072 Try and keep scaling factors around
262144 Don't try and tighten bounds (funny global cuts)
524288 Fake objective and 0-1
1048576 Don't recompute ray after crunch
2097152
*/
mutable unsigned int specialOptions_;
/// Copy of model when option 131072 set
ClpSimplex * baseModel_;
/// Number of rows when last "scaled"
int lastNumberRows_;
/// Continuous model
ClpSimplex * continuousModel_;
/// Possible disaster handler
OsiClpDisasterHandler * disasterHandler_ ;
/// Fake objective
ClpLinearObjective * fakeObjective_;
/// Row scale factors (has inverse at end)
CoinDoubleArrayWithLength rowScale_;
/// Column scale factors (has inverse at end)
CoinDoubleArrayWithLength columnScale_;
//@}
};
class OsiClpDisasterHandler : public ClpDisasterHandler {
public:
/**@name Virtual methods that the derived classe should provide.
*/
//@{
/// Into simplex
virtual void intoSimplex();
/// Checks if disaster
virtual bool check() const ;
/// saves information for next attempt
virtual void saveInfo();
/// Type of disaster 0 can fix, 1 abort
virtual int typeOfDisaster();
//@}
/**@name Constructors, destructor */
//@{
/** Default constructor. */
OsiClpDisasterHandler(OsiClpSolverInterface * model = NULL);
/** Destructor */
virtual ~OsiClpDisasterHandler();
// Copy
OsiClpDisasterHandler(const OsiClpDisasterHandler&);
// Assignment
OsiClpDisasterHandler& operator=(const OsiClpDisasterHandler&);
/// Clone
virtual ClpDisasterHandler * clone() const;
//@}
/**@name Sets/gets */
//@{
/** set model. */
void setOsiModel(OsiClpSolverInterface * model);
/// Get model
inline OsiClpSolverInterface * osiModel() const
{ return osiModel_;}
/// Set where from
inline void setWhereFrom(int value)
{ whereFrom_=value;}
/// Get where from
inline int whereFrom() const
{ return whereFrom_;}
/// Set phase
inline void setPhase(int value)
{ phase_=value;}
/// Get phase
inline int phase() const
{ return phase_;}
/// are we in trouble
bool inTrouble() const;
//@}
protected:
/**@name Data members
The data members are protected to allow access for derived classes. */
//@{
/// Pointer to model
OsiClpSolverInterface * osiModel_;
/** Where from
0 dual (resolve)
1 crunch
2 primal (resolve)
4 dual (initialSolve)
6 primal (initialSolve)
*/
int whereFrom_;
/** phase
0 initial
1 trying continuing with back in and maybe different perturb
2 trying continuing with back in and different scaling
3 trying dual from all slack
4 trying primal from previous stored basis
*/
int phase_;
/// Are we in trouble
bool inTrouble_;
//@}
};
// So unit test can find out if NDEBUG set
bool OsiClpHasNDEBUG();
//#############################################################################
/** A function that tests the methods in the OsiClpSolverInterface class. */
void OsiClpSolverInterfaceUnitTest(const std::string & mpsDir, const std::string & netlibDir);
#endif
|