diff options
author | Harpreet | 2016-09-03 00:34:27 +0530 |
---|---|---|
committer | Harpreet | 2016-09-03 00:34:27 +0530 |
commit | 4b64cf486f5c999fd8167758cae27839f3b50848 (patch) | |
tree | d9d06639fb7fa61aef59be0363655e4747105ec7 /newstructure/thirdparty/linux/include/coin/ClpSimplexDual.hpp | |
parent | d19794fb80a271a4c885ed90f97cfc12baa012f2 (diff) | |
download | FOSSEE-Optim-toolbox-development-4b64cf486f5c999fd8167758cae27839f3b50848.tar.gz FOSSEE-Optim-toolbox-development-4b64cf486f5c999fd8167758cae27839f3b50848.tar.bz2 FOSSEE-Optim-toolbox-development-4b64cf486f5c999fd8167758cae27839f3b50848.zip |
Structure updated and intqpipopt files added
Diffstat (limited to 'newstructure/thirdparty/linux/include/coin/ClpSimplexDual.hpp')
-rw-r--r-- | newstructure/thirdparty/linux/include/coin/ClpSimplexDual.hpp | 300 |
1 files changed, 300 insertions, 0 deletions
diff --git a/newstructure/thirdparty/linux/include/coin/ClpSimplexDual.hpp b/newstructure/thirdparty/linux/include/coin/ClpSimplexDual.hpp new file mode 100644 index 0000000..77cc577 --- /dev/null +++ b/newstructure/thirdparty/linux/include/coin/ClpSimplexDual.hpp @@ -0,0 +1,300 @@ +/* $Id: ClpSimplexDual.hpp 1761 2011-07-06 16:06:24Z forrest $ */ +// Copyright (C) 2002, International Business Machines +// Corporation and others. All Rights Reserved. +// This code is licensed under the terms of the Eclipse Public License (EPL). +/* + Authors + + John Forrest + + */ +#ifndef ClpSimplexDual_H +#define ClpSimplexDual_H + +#include "ClpSimplex.hpp" + +/** This solves LPs using the dual simplex method + + It inherits from ClpSimplex. It has no data of its own and + is never created - only cast from a ClpSimplex object at algorithm time. + +*/ + +class ClpSimplexDual : public ClpSimplex { + +public: + + /**@name Description of algorithm */ + //@{ + /** Dual algorithm + + Method + + It tries to be a single phase approach with a weight of 1.0 being + given to getting optimal and a weight of updatedDualBound_ being + given to getting dual feasible. In this version I have used the + idea that this weight can be thought of as a fake bound. If the + distance between the lower and upper bounds on a variable is less + than the feasibility weight then we are always better off flipping + to other bound to make dual feasible. If the distance is greater + then we make up a fake bound updatedDualBound_ away from one bound. + If we end up optimal or primal infeasible, we check to see if + bounds okay. If so we have finished, if not we increase updatedDualBound_ + and continue (after checking if unbounded). I am undecided about + free variables - there is coding but I am not sure about it. At + present I put them in basis anyway. + + The code is designed to take advantage of sparsity so arrays are + seldom zeroed out from scratch or gone over in their entirety. + The only exception is a full scan to find outgoing variable for + Dantzig row choice. For steepest edge we keep an updated list + of infeasibilities (actually squares). + On easy problems we don't need full scan - just + pick first reasonable. + + One problem is how to tackle degeneracy and accuracy. At present + I am using the modification of costs which I put in OSL and some + of what I think is the dual analog of Gill et al. + I am still not sure of the exact details. + + The flow of dual is three while loops as follows: + + while (not finished) { + + while (not clean solution) { + + Factorize and/or clean up solution by flipping variables so + dual feasible. If looks finished check fake dual bounds. + Repeat until status is iterating (-1) or finished (0,1,2) + + } + + while (status==-1) { + + Iterate until no pivot in or out or time to re-factorize. + + Flow is: + + choose pivot row (outgoing variable). if none then + we are primal feasible so looks as if done but we need to + break and check bounds etc. + + Get pivot row in tableau + + Choose incoming column. If we don't find one then we look + primal infeasible so break and check bounds etc. (Also the + pivot tolerance is larger after any iterations so that may be + reason) + + If we do find incoming column, we may have to adjust costs to + keep going forwards (anti-degeneracy). Check pivot will be stable + and if unstable throw away iteration and break to re-factorize. + If minor error re-factorize after iteration. + + Update everything (this may involve flipping variables to stay + dual feasible. + + } + + } + + TODO's (or maybe not) + + At present we never check we are going forwards. I overdid that in + OSL so will try and make a last resort. + + Needs partial scan pivot out option. + + May need other anti-degeneracy measures, especially if we try and use + loose tolerances as a way to solve in fewer iterations. + + I like idea of dynamic scaling. This gives opportunity to decouple + different implications of scaling for accuracy, iteration count and + feasibility tolerance. + + for use of exotic parameter startFinishoptions see Clpsimplex.hpp + */ + + int dual(int ifValuesPass, int startFinishOptions = 0); + /** For strong branching. On input lower and upper are new bounds + while on output they are change in objective function values + (>1.0e50 infeasible). + Return code is 0 if nothing interesting, -1 if infeasible both + ways and +1 if infeasible one way (check values to see which one(s)) + Solutions are filled in as well - even down, odd up - also + status and number of iterations + */ + int strongBranching(int numberVariables, const int * variables, + double * newLower, double * newUpper, + double ** outputSolution, + int * outputStatus, int * outputIterations, + bool stopOnFirstInfeasible = true, + bool alwaysFinish = false, + int startFinishOptions = 0); + /// This does first part of StrongBranching + ClpFactorization * setupForStrongBranching(char * arrays, int numberRows, + int numberColumns, bool solveLp = false); + /// This cleans up after strong branching + void cleanupAfterStrongBranching(ClpFactorization * factorization); + //@} + + /**@name Functions used in dual */ + //@{ + /** This has the flow between re-factorizations + Broken out for clarity and will be used by strong branching + + Reasons to come out: + -1 iterations etc + -2 inaccuracy + -3 slight inaccuracy (and done iterations) + +0 looks optimal (might be unbounded - but we will investigate) + +1 looks infeasible + +3 max iterations + + If givenPi not NULL then in values pass + */ + int whileIterating(double * & givenPi, int ifValuesPass); + /** The duals are updated by the given arrays. + Returns number of infeasibilities. + After rowArray and columnArray will just have those which + have been flipped. + Variables may be flipped between bounds to stay dual feasible. + The output vector has movement of primal + solution (row length array) */ + int updateDualsInDual(CoinIndexedVector * rowArray, + CoinIndexedVector * columnArray, + CoinIndexedVector * outputArray, + double theta, + double & objectiveChange, + bool fullRecompute); + /** The duals are updated by the given arrays. + This is in values pass - so no changes to primal is made + */ + void updateDualsInValuesPass(CoinIndexedVector * rowArray, + CoinIndexedVector * columnArray, + double theta); + /** While updateDualsInDual sees what effect is of flip + this does actual flipping. + */ + void flipBounds(CoinIndexedVector * rowArray, + CoinIndexedVector * columnArray); + /** + Row array has row part of pivot row + Column array has column part. + This chooses pivot column. + Spare arrays are used to save pivots which will go infeasible + We will check for basic so spare array will never overflow. + If necessary will modify costs + For speed, we may need to go to a bucket approach when many + variables are being flipped. + Returns best possible pivot value + */ + double dualColumn(CoinIndexedVector * rowArray, + CoinIndexedVector * columnArray, + CoinIndexedVector * spareArray, + CoinIndexedVector * spareArray2, + double accpetablePivot, + CoinBigIndex * dubiousWeights); + /// Does first bit of dualColumn + int dualColumn0(const CoinIndexedVector * rowArray, + const CoinIndexedVector * columnArray, + CoinIndexedVector * spareArray, + double acceptablePivot, + double & upperReturn, double &bestReturn, double & badFree); + /** + Row array has row part of pivot row + Column array has column part. + This sees what is best thing to do in dual values pass + if sequenceIn==sequenceOut can change dual on chosen row and leave variable in basis + */ + void checkPossibleValuesMove(CoinIndexedVector * rowArray, + CoinIndexedVector * columnArray, + double acceptablePivot); + /** + Row array has row part of pivot row + Column array has column part. + This sees what is best thing to do in branch and bound cleanup + If sequenceIn_ < 0 then can't do anything + */ + void checkPossibleCleanup(CoinIndexedVector * rowArray, + CoinIndexedVector * columnArray, + double acceptablePivot); + /** + This sees if we can move duals in dual values pass. + This is done before any pivoting + */ + void doEasyOnesInValuesPass(double * givenReducedCosts); + /** + Chooses dual pivot row + Would be faster with separate region to scan + and will have this (with square of infeasibility) when steepest + For easy problems we can just choose one of the first rows we look at + + If alreadyChosen >=0 then in values pass and that row has been + selected + */ + void dualRow(int alreadyChosen); + /** Checks if any fake bounds active - if so returns number and modifies + updatedDualBound_ and everything. + Free variables will be left as free + Returns number of bounds changed if >=0 + Returns -1 if not initialize and no effect + Fills in changeVector which can be used to see if unbounded + and cost of change vector + If 2 sets to original (just changed) + */ + int changeBounds(int initialize, CoinIndexedVector * outputArray, + double & changeCost); + /** As changeBounds but just changes new bounds for a single variable. + Returns true if change */ + bool changeBound( int iSequence); + /// Restores bound to original bound + void originalBound(int iSequence); + /** Checks if tentative optimal actually means unbounded in dual + Returns -3 if not, 2 if is unbounded */ + int checkUnbounded(CoinIndexedVector * ray, CoinIndexedVector * spare, + double changeCost); + /** Refactorizes if necessary + Checks if finished. Updates status. + lastCleaned refers to iteration at which some objective/feasibility + cleaning too place. + + type - 0 initial so set up save arrays etc + - 1 normal -if good update save + - 2 restoring from saved + */ + void statusOfProblemInDual(int & lastCleaned, int type, + double * givenDjs, ClpDataSave & saveData, + int ifValuesPass); + /** Perturbs problem (method depends on perturbation()) + returns nonzero if should go to dual */ + int perturb(); + /** Fast iterations. Misses out a lot of initialization. + Normally stops on maximum iterations, first re-factorization + or tentative optimum. If looks interesting then continues as + normal. Returns 0 if finished properly, 1 otherwise. + */ + int fastDual(bool alwaysFinish = false); + /** Checks number of variables at fake bounds. This is used by fastDual + so can exit gracefully before end */ + int numberAtFakeBound(); + + /** Pivot in a variable and choose an outgoing one. Assumes dual + feasible - will not go through a reduced cost. Returns step length in theta + Return codes as before but -1 means no acceptable pivot + */ + int pivotResultPart1(); + /** Get next free , -1 if none */ + int nextSuperBasic(); + /** Startup part of dual (may be extended to other algorithms) + returns 0 if good, 1 if bad */ + int startupSolve(int ifValuesPass, double * saveDuals, int startFinishOptions); + void finishSolve(int startFinishOptions); + void gutsOfDual(int ifValuesPass, double * & saveDuals, int initialStatus, + ClpDataSave & saveData); + //int dual2(int ifValuesPass,int startFinishOptions=0); + void resetFakeBounds(int type); + + //@} +}; +#endif |