diff options
author | Harpreet | 2016-08-09 13:05:52 +0530 |
---|---|---|
committer | Harpreet | 2016-08-09 13:05:52 +0530 |
commit | d8fca69f239a275f5ffdbd870508c86b6e69c678 (patch) | |
tree | 8e102f22a671d2b837c2a030911e6870e790fd41 /build/cpp/sci_minconTMINLP.cpp | |
parent | 9fd2976931c088dc523974afb901e96bad20f73c (diff) | |
parent | de5fe502b7240a48f9d46b9e210060de5c2b185e (diff) | |
download | FOSSEE-Optim-toolbox-development-d8fca69f239a275f5ffdbd870508c86b6e69c678.tar.gz FOSSEE-Optim-toolbox-development-d8fca69f239a275f5ffdbd870508c86b6e69c678.tar.bz2 FOSSEE-Optim-toolbox-development-d8fca69f239a275f5ffdbd870508c86b6e69c678.zip |
Initial upload
Diffstat (limited to 'build/cpp/sci_minconTMINLP.cpp')
-rw-r--r-- | build/cpp/sci_minconTMINLP.cpp | 139 |
1 files changed, 76 insertions, 63 deletions
diff --git a/build/cpp/sci_minconTMINLP.cpp b/build/cpp/sci_minconTMINLP.cpp index ac688d4..7885083 100644 --- a/build/cpp/sci_minconTMINLP.cpp +++ b/build/cpp/sci_minconTMINLP.cpp @@ -27,7 +27,7 @@ extern "C" using namespace Ipopt; using namespace Bonmin; -#define DEBUG 0 +//#define DEBUG 0 minconTMINLP::~minconTMINLP() { @@ -37,6 +37,9 @@ minconTMINLP::~minconTMINLP() // Set the type of every variable - CONTINUOUS or INTEGER bool minconTMINLP::get_variables_types(Index n, VariableType* var_types) { + #ifdef DEBUG + sciprint("Code is in get_variables_types\n"); + #endif n = numVars_; for(int i=0; i < n; i++) var_types[i] = CONTINUOUS; @@ -48,6 +51,9 @@ bool minconTMINLP::get_variables_types(Index n, VariableType* var_types) // The linearity of the variables - LINEAR or NON_LINEAR bool minconTMINLP::get_variables_linearity(Index n, Ipopt::TNLP::LinearityType* var_types) { + #ifdef DEBUG + sciprint("Code is in get_variables_linearity\n"); + #endif for(int i=0;i<n;i++) { var_types[i] = Ipopt::TNLP::NON_LINEAR; @@ -57,6 +63,10 @@ bool minconTMINLP::get_variables_linearity(Index n, Ipopt::TNLP::LinearityType* // The linearity of the constraints - LINEAR or NON_LINEAR bool minconTMINLP::get_constraints_linearity(Index m, Ipopt::TNLP::LinearityType* const_types) { + + #ifdef DEBUG + sciprint("Code is in get_constraints_linearity\n"); + #endif for(int i=0;i<numLC_;i++) { const_types[i] = Ipopt::TNLP::LINEAR; @@ -71,6 +81,9 @@ bool minconTMINLP::get_constraints_linearity(Index m, Ipopt::TNLP::LinearityType //get NLP info such as number of variables,constraints,no.of elements in jacobian and hessian to allocate memory bool minconTMINLP::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g, Index& nnz_h_lag, TNLP::IndexStyleEnum& index_style) { + #ifdef DEBUG + sciprint("Code is in get_nlp_info\n"); + #endif n=numVars_; // Number of variables m=numCons_; // Number of constraints nnz_jac_g = n*m; // No. of elements in Jacobian of constraints @@ -99,6 +112,57 @@ bool minconTMINLP::get_bounds_info(Index n, Number* x_l, Number* x_u, Index m, N return true; } +// This method sets initial values for required vectors . For now we are assuming 0 to all values. +bool minconTMINLP::get_starting_point(Index n, bool init_x, Number* x,bool init_z, Number* z_L, Number* z_U,Index m, bool init_lambda,Number* lambda) +{ + assert(init_x == true); + assert(init_z == false); + assert(init_lambda == false); + if (init_x == true) + { //we need to set initial values for vector x + for (Index var=0;var<n;var++) + {x[var]=x0_[var];}//initialize with 0. + } + return true; +} + +//get value of objective function at vector x +bool minconTMINLP::eval_f(Index n, const Number* x, bool new_x, Number& obj_value) +{ + #ifdef DEBUG + sciprint("Code is eval_f\n"); + #endif + char name[20]="_f"; + Number *obj; + if (getFunctionFromScilab(n,name,x, 7, 1,2,&obj)) + { + return false; + } + obj_value = *obj; + return true; +} + +//get value of gradient of objective function at vector x. +bool minconTMINLP::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f) +{ + #ifdef DEBUG + sciprint("Code is in eval_grad_f\n"); + #endif + char name[20]="_gradf"; + Number *resg; + if (getFunctionFromScilab(n,name,x, 7, 1,2,&resg)) + { + return false; + } + + Index i; + for(i=0;i<numVars_;i++) + { + grad_f[i]=resg[i]; + } + return true; +} + // return the value of the constraints: g(x) bool minconTMINLP::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g) { @@ -145,7 +209,7 @@ bool minconTMINLP::eval_jac_g(Index n, const Number* x, bool new_x,Index m, Inde else { unsigned int i,j,idx=0; - for(int i=0;i<m;i++) + for(i=0;i<m;i++) for(j=0;j<n;j++) { iRow[idx]=i; @@ -182,58 +246,6 @@ bool minconTMINLP::eval_jac_g(Index n, const Number* x, bool new_x,Index m, Inde return true; } -//get value of objective function at vector x -bool minconTMINLP::eval_f(Index n, const Number* x, bool new_x, Number& obj_value) -{ - #ifdef DEBUG - sciprint("Code is eval_f\n"); - #endif - char name[20]="_f"; - Number *obj; - if (getFunctionFromScilab(n,name,x, 7, 1,2,&obj)) - { - return false; - } - obj_value = *obj; - return true; -} - -//get value of gradient of objective function at vector x. -bool minconTMINLP::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f) -{ - #ifdef DEBUG - sciprint("Code is in eval_grad_f\n"); - #endif - char name[20]="_gradf"; - Number *resg; - if (getFunctionFromScilab(n,name,x, 7, 1,2,&resg)) - { - return false; - } - - Index i; - for(i=0;i<numVars_;i++) - { - grad_f[i]=resg[i]; - } - - return true; -} - -// This method sets initial values for required vectors . For now we are assuming 0 to all values. -bool minconTMINLP::get_starting_point(Index n, bool init_x, Number* x,bool init_z, Number* z_L, Number* z_U,Index m, bool init_lambda,Number* lambda) -{ - assert(init_x == true); - assert(init_z == false); - assert(init_lambda == false); - if (init_x == true) - { //we need to set initial values for vector x - for (Index var=0;var<n;var++) - {x[var]=x0_[var];}//initialize with 0. - } - return true; -} - /* * Return either the sparsity structure of the Hessian of the Lagrangian, * or the values of the Hessian of the Lagrangian for the given values for @@ -251,26 +263,27 @@ bool minconTMINLP::eval_h(Index n, const Number* x, bool new_x,Number obj_factor Index idx=0; for (Index row = 0; row < numVars_; row++) { - for (Index col = 0; col <= row; col++) - { iRow[idx] = row; + for (Index col = 0; col < numVars_; col++) + { + iRow[idx] = row; jCol[idx] = col; idx++; } } - } + } else { char name[20]="_gradhess"; - Number *resh; - if (getHessFromScilab(n,m,name,x, &obj_factor, lambda, 7, 3,2,&resh)) + Number *resCh; + if (getHessFromScilab(n,m,name,x, &obj_factor, lambda, 7, 3,2,&resCh)) { return false; } Index index=0; for (Index row=0;row < numVars_ ;++row) { - for (Index col=0; col <= row; ++col) + for (Index col=0; col < numVars_; ++col) { - values[index++]=(resh[numVars_*row+col]); + values[index++]=resCh[numVars_*row+col]; } } } @@ -281,18 +294,18 @@ void minconTMINLP::finalize_solution(SolverReturn status,Index n, const Number* { #ifdef DEBUG sciprint("Code is in finalize_solution\n"); + sciprint("%d",status); #endif finalObjVal_ = obj_value; status_ = status; if(status==0 ||status== 3) { - finalX_ = (double*)malloc(sizeof(double) * numVars_ * 1); + finalX_ = (double*)malloc(sizeof(double) * numVars_*1); for (Index i=0; i<numVars_; i++) { finalX_[i] = x[i]; } } - } const double * minconTMINLP::getX() |