diff options
author | Harpreet | 2016-08-04 15:25:44 +0530 |
---|---|---|
committer | Harpreet | 2016-08-04 15:25:44 +0530 |
commit | 9fd2976931c088dc523974afb901e96bad20f73c (patch) | |
tree | 22502de6e6988d5cd595290d11266f8432ad825b /build/Bonmin/include/coin/BonAmplTMINLP.hpp | |
download | FOSSEE-Optim-toolbox-development-9fd2976931c088dc523974afb901e96bad20f73c.tar.gz FOSSEE-Optim-toolbox-development-9fd2976931c088dc523974afb901e96bad20f73c.tar.bz2 FOSSEE-Optim-toolbox-development-9fd2976931c088dc523974afb901e96bad20f73c.zip |
initial add
Diffstat (limited to 'build/Bonmin/include/coin/BonAmplTMINLP.hpp')
-rw-r--r-- | build/Bonmin/include/coin/BonAmplTMINLP.hpp | 332 |
1 files changed, 332 insertions, 0 deletions
diff --git a/build/Bonmin/include/coin/BonAmplTMINLP.hpp b/build/Bonmin/include/coin/BonAmplTMINLP.hpp new file mode 100644 index 0000000..0a566a2 --- /dev/null +++ b/build/Bonmin/include/coin/BonAmplTMINLP.hpp @@ -0,0 +1,332 @@ +// (C) Copyright International Business Machines Corporation and +// Carnegie Mellon University 2004, 2007 +// +// All Rights Reserved. +// This code is published under the Eclipse Public License. +// +// Authors : +// Carl D. Laird, Carnegie Mellon University, +// Andreas Waechter, International Business Machines Corporation +// Pierre Bonami, Carnegie Mellon University, +// +// Date : 12/01/2004 + +#ifndef __IPAMPLTMINLP_HPP__ +#define __IPAMPLTMINLP_HPP__ + +#include "BonTMINLP.hpp" +#include "IpSmartPtr.hpp" +#include "CoinPackedMatrix.hpp" +#include "OsiCuts.hpp" +#include "BonRegisteredOptions.hpp" +#include "BonTypes.hpp" + +/* non Ipopt forward declaration */ +struct ASL_pfgh; +struct SufDecl; +struct SufDesc; + + +// Declarations, so that we don't have to include the Ipopt AMPL headers +namespace Ipopt +{ + class AmplSuffixHandler; + class AmplOptionsList; + class AmplTNLP; +} + +namespace Bonmin +{ + + /** Ampl MINLP Interface. + * Ampl MINLP Interface, implemented as a TMINLP. + * This interface creates a AmplTNLP and also retrieves + * the information about the binary and integer variables + */ + class AmplTMINLP : public TMINLP + { + public: + /**@name Constructors/Destructors */ + //@{ + /** Constructor */ + AmplTMINLP(const Ipopt::SmartPtr<const Ipopt::Journalist>& jnlst, + const Ipopt::SmartPtr<Bonmin::RegisteredOptions> roptions, + const Ipopt::SmartPtr<Ipopt::OptionsList> options, + char**& argv, + Ipopt::AmplSuffixHandler* suffix_handler = NULL, + const std::string& appName = "bonmin", + std::string* nl_file_content = NULL); + + virtual void Initialize(const Ipopt::SmartPtr<const Ipopt::Journalist>& jnlst, + const Ipopt::SmartPtr<Bonmin::RegisteredOptions> roptions, + const Ipopt::SmartPtr<Ipopt::OptionsList> options, + char**& argv, + Ipopt::AmplSuffixHandler* suffix_handler =NULL, + const std::string& appName = "bonmin", + std::string* nl_file_content = NULL); + + /** read the branching priorities from ampl suffixes.*/ + void read_priorities(); + + /** read the sos constraints from ampl suffixes */ + void read_sos(); + + /** Read suffixes which indicate which constraints are convex.*/ + void read_convexities(); + + /** Read suffixes used to apply perspective in OA to some of the constraints.*/ + void read_onoff(); + + /** Read suffixes on objective functions for upper bounding*/ + void read_obj_suffixes(); + + /** Default constructor.*/ + AmplTMINLP(); + + virtual AmplTMINLP * createEmpty() + { + AmplTMINLP * tminlp = new AmplTMINLP; + return tminlp; + } + + /** destructor */ + virtual ~AmplTMINLP(); + //@} + + /** Return the ampl solver object (ASL*) */ + const ASL_pfgh* AmplSolverObject() const; + + + /**@name methods to gather information about the NLP. These + * methods are overloaded from TMINLP. See TMINLP for their more + * detailed documentation. */ + //@{ + /** returns dimensions of the nlp. Overloaded from TMINLP */ + virtual bool get_nlp_info(Ipopt::Index& n, Ipopt::Index& m, Ipopt::Index& nnz_jac_g, + Ipopt::Index& nnz_h_lag, + Ipopt::TNLP::IndexStyleEnum& index_style); + + /** returns the vector of variable types */ + virtual bool get_variables_types(Ipopt::Index n, VariableType* var_types); + + /** return the variables linearity (linear or not)*/ + virtual bool get_variables_linearity(Ipopt::Index n, Ipopt::TNLP::LinearityType * var_types); + + /** Returns the constraint linearity. + * array should be alocated with length at least n.*/ + virtual bool get_constraints_linearity(Ipopt::Index m, + Ipopt::TNLP::LinearityType* const_types); + + /** returns bounds of the nlp. Overloaded from TMINLP */ + virtual bool get_bounds_info(Ipopt::Index n, Ipopt::Number* x_l, Ipopt::Number* x_u, + Ipopt::Index m, Ipopt::Number* g_l, Ipopt::Number* g_u); + + /** provides a starting point for the nlp variables. Overloaded + from TMINLP */ + virtual bool get_starting_point(Ipopt::Index n, bool init_x, Ipopt::Number* x, + bool init_z, Ipopt::Number* z_L, Ipopt::Number* z_U, + Ipopt::Index m, bool init_lambda, Ipopt::Number* lambda); + + /** evaluates the objective value for the nlp. Overloaded from TMINLP */ + virtual bool eval_f(Ipopt::Index n, const Ipopt::Number* x, bool new_x, + Ipopt::Number& obj_value); + + /** evaluates the gradient of the objective for the + nlp. Overloaded from TMINLP */ + virtual bool eval_grad_f(Ipopt::Index n, const Ipopt::Number* x, bool new_x, + Ipopt::Number* grad_f); + + /** evaluates the constraint residuals for the nlp. Overloaded from TMINLP */ + virtual bool eval_g(Ipopt::Index n, const Ipopt::Number* x, bool new_x, + Ipopt::Index m, Ipopt::Number* g); + + /** specifies the jacobian structure (if values is NULL) and + * evaluates the jacobian values (if values is not NULL) for the + * nlp. Overloaded from TMINLP */ + virtual bool eval_jac_g(Ipopt::Index n, const Ipopt::Number* x, bool new_x, + Ipopt::Index m, Ipopt::Index nele_jac, Ipopt::Index* iRow, + Ipopt::Index *jCol, Ipopt::Number* values); + + /** specifies the structure of the hessian of the lagrangian (if + * values is NULL) and evaluates the values (if values is not + * NULL). Overloaded from TMINLP */ + virtual bool eval_h(Ipopt::Index n, const Ipopt::Number* x, bool new_x, + Ipopt::Number obj_factor, Ipopt::Index m, const Ipopt::Number* lambda, + bool new_lambda, Ipopt::Index nele_hess, Ipopt::Index* iRow, + Ipopt::Index* jCol, Ipopt::Number* values); + + /** compute the value of a single constraint */ + virtual bool eval_gi(Ipopt::Index n, const Ipopt::Number* x, bool new_x, + Ipopt::Index i, Ipopt::Number& gi); + /** compute the structure or values of the gradient for one + constraint */ + virtual bool eval_grad_gi(Ipopt::Index n, const Ipopt::Number* x, bool new_x, + Ipopt::Index i, Ipopt::Index& nele_grad_gi, Ipopt::Index* jCol, + Ipopt::Number* values); + //@} + + /** @name Solution Methods */ + //@{ + /** Called after optimizing to return results to ampl. + * Status code is put into solve_result_num according to the table below. + * <table> + * <tr> <td> <b> <center> Code </center> </b> </td> <td> <b> <center> Status </center> </b> </td> </tr> + * <tr> <td> 3 </td> <td> Integer optimal </td> </tr> + * <tr> <td> 220 </td> <td> problem is proven infeasible. </td> </tr> + * <tr> <td> 421 </td> <td> limit reached or user interrupt with integer feasible solution found. </td> </tr> + * <tr> <td> 410 </td> <td> limit reached or user interrupt without any integer feasible solution. </td> </tr> + * <tr> <td> 500 </td> <td> error. </td> </tr> + * <caption> Status codes for optimization. </caption> + * </table> + * */ + virtual void finalize_solution(TMINLP::SolverReturn status, + Ipopt::Index n, const Ipopt::Number* x, Ipopt::Number obj_value); + + /** Write the solution using ampl's write_sol (called by finalize_solution).*/ + void write_solution(const std::string & message, const Ipopt::Number *x_sol); + //@} + + //@} + + + virtual const BranchingInfo * branchingInfo() const + { + return &branch_; + } + + virtual const SosInfo * sosConstraints() const + { + return &sos_; + } + + virtual const PerturbInfo* perturbInfo() const + { + return &perturb_info_; + } + + /** @name User callbacks */ + //@{ + /** Additional application specific options.*/ + virtual void fillApplicationOptions(Ipopt::AmplOptionsList* amplOptList) + {} + //@} + + + /** This methods gives the linear part of the objective function */ + virtual void getLinearPartOfObjective(double * obj); + + + /** Do we have an alternate objective for upper bounding?*/ + virtual bool hasUpperBoundingObjective() + { + return upperBoundingObj_ != -1; + } + + /** This method to returns the value of an alternative objective function for + upper bounding (if one has been declared by using the prefix UBObj).*/ + virtual bool eval_upper_bound_f(Ipopt::Index n, const Ipopt::Number* x, + Ipopt::Number& obj_value); + + /** Get accest to constraint convexities.*/ + virtual bool get_constraint_convexities(int m, TMINLP::Convexity * constraints_convexities)const + { + if (constraintsConvexities_ != NULL) { + CoinCopyN(constraintsConvexities_, m, constraints_convexities); + } + else { + CoinFillN(constraints_convexities, m, TMINLP::Convex); + } + return true; + } + /** Get dimension information on nonconvex constraints.*/ + virtual bool get_number_nonconvex(int & number_non_conv, int & number_concave) const + { + number_non_conv = numberNonConvex_; + number_concave = numberSimpleConcave_; + return true; + } + /** Get array describing the constraints marked nonconvex in the model.*/ + virtual bool get_constraint_convexities(int number_non_conv, MarkedNonConvex * non_convexes) const + { + assert(number_non_conv == numberNonConvex_); + CoinCopyN( nonConvexConstraintsAndRelaxations_, number_non_conv, non_convexes); + return true; + } + /** Fill array containing indices of simple concave constraints.*/ + virtual bool get_simple_concave_constraints(int number_concave, SimpleConcaveConstraint * simple_concave) const + { + assert(number_concave == numberSimpleConcave_); + CoinCopyN(simpleConcaves_, numberSimpleConcave_, simple_concave); + return true; + } + + /** Say if problem has a linear objective (for OA) */ + virtual bool hasLinearObjective() + { + return hasLinearObjective_; + } + + /** Access array describing onoff constraint.*/ + virtual const int * get_const_xtra_id() const{ + return c_extra_id_(); + } + private: + /**@name Default Compiler Generated Methods + * (Hidden to avoid implicit creation/calling). + * These methods are not implemented and + * we do not want the compiler to implement + * them for us, so we declare them private + * and do not define them. This ensures that + * they will not be implicitly created/called. */ + //@{ + + /** Copy Constructor */ + AmplTMINLP(const AmplTMINLP&); + + /** Overloaded Equals Operator */ + void operator=(const AmplTMINLP&); + //@} + /** Name of application.*/ + std::string appName_; + + /** Index of the objective to use for upper bounding*/ + int upperBoundingObj_; + /** pointer to the internal AmplTNLP */ + Ipopt::AmplTNLP* ampl_tnlp_; + /** Journalist */ + Ipopt::SmartPtr<const Ipopt::Journalist> jnlst_; + + /** Storage of branching priorities information.*/ + BranchingInfo branch_; + /** Storage of sos constraints */ + SosInfo sos_; + /** Storage for perturbation radii */ + PerturbInfo perturb_info_; + /** Store a suffix handler.*/ + Ipopt::SmartPtr<Ipopt::AmplSuffixHandler> suffix_handler_; + + /** Store constraints types.*/ + TMINLP::Convexity * constraintsConvexities_; + + /** Store onoff information.*/ + vector<int> c_extra_id_; + + /** Ipopt::Number of nonConvex constraints.*/ + int numberNonConvex_; + /** Store marked non-convex constraints and their relaxations.*/ + MarkedNonConvex * nonConvexConstraintsAndRelaxations_; + /** Ipopt::Number of simpleConcave constraints.*/ + int numberSimpleConcave_; + /** Store simple concave constraints descriptions.*/ + SimpleConcaveConstraint * simpleConcaves_; + + /** Flag to indicate if objective function is linear */ + bool hasLinearObjective_; + + /** Flag to say if AMPL solution file should be written.*/ + int writeAmplSolFile_; + }; +} // namespace Ipopt + +#endif + |