blob: f203c81d99bbc761f4c193c65bf22393eed0b802 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from gftrunc.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="gftrunc" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>gftrunc</refname>
<refpurpose>This function is used to truncate the higher order zeroes in the given polynomial equation</refpurpose>
</refnamediv>
<refsection>
<title>Description</title>
<para>
A is considered to be matrix that gives the coefficients of polynomial GF(p) in ascending order powers
A = [1 2 3] denotes 1 + 2 x + 3 x^2
AT=GFTRUNC(A) returns a matrix which gives the polynomial GF(p) truncating the input matrix
that is if A(i)=0, where i > d + 1, where d is the degree of the polynomial, that zero is removed
</para>
<para>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
A= [ 0 0 1 4 0 0]
c = gftrunc([0 0 1 2 3 0 0 0 4 5 0 1 0 0])
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Pola Lakshmi Priyanka, IIT Bombay</member>
</simplelist>
</refsection>
</refentry>
|