blob: 59850c7429cb5079bcb231e429697dfd24c25f90 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from gfcosets.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="gfcosets" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>gfcosets</refname>
<refpurpose>This function produces cyclotomic cosets for a Galois field GF(P)</refpurpose>
</refnamediv>
<refsection>
<title>Description</title>
<para>
GFCS = GFCOSETS(M) produces cyclotomic cosets mod(2^M - 1). Each row of the
output GFCS contains one cyclotomic coset.
</para>
<para>
GFCS = GFCOSETS(M, P) produces cyclotomic cosets mod(P^M - 1), where
P is a prime number.
</para>
<para>
Because the length of the cosets varies in the complete set, %nan is used to
fill out the extra space in order to make all variables have the same
length in the output matrix GFCS.
</para>
<para>
</para>
<para>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
c = gfcosets(2,3)
disp(c)
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Pola Lakshmi Priyanka, IIT Bombay</member>
</simplelist>
</refsection>
</refentry>
|