summaryrefslogtreecommitdiff
path: root/help/en_US/gfrepcov.xml
diff options
context:
space:
mode:
authorrupak2020-01-21 19:05:09 +0530
committerrupak2020-01-21 19:05:09 +0530
commitd2f4d30ebcad7430e4f0495cae5c2b3a16be73ce (patch)
tree8987d169ad87e930f137122a450c02dc5d13dcc5 /help/en_US/gfrepcov.xml
parent36aca8aaaee5cf8cb5452268fd07c0b558b000a3 (diff)
downloadFOSSEE-Communication-Systems-Toolbox-d2f4d30ebcad7430e4f0495cae5c2b3a16be73ce.tar.gz
FOSSEE-Communication-Systems-Toolbox-d2f4d30ebcad7430e4f0495cae5c2b3a16be73ce.tar.bz2
FOSSEE-Communication-Systems-Toolbox-d2f4d30ebcad7430e4f0495cae5c2b3a16be73ce.zip
added help filesHEADmaster
Diffstat (limited to 'help/en_US/gfrepcov.xml')
-rw-r--r--help/en_US/gfrepcov.xml55
1 files changed, 55 insertions, 0 deletions
diff --git a/help/en_US/gfrepcov.xml b/help/en_US/gfrepcov.xml
new file mode 100644
index 0000000..01d6c12
--- /dev/null
+++ b/help/en_US/gfrepcov.xml
@@ -0,0 +1,55 @@
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!--
+ *
+ * This help file was generated from gfrepcov.sci using help_from_sci().
+ *
+ -->
+
+<refentry version="5.0-subset Scilab" xml:id="gfrepcov" xml:lang="en"
+ xmlns="http://docbook.org/ns/docbook"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns:ns3="http://www.w3.org/1999/xhtml"
+ xmlns:mml="http://www.w3.org/1998/Math/MathML"
+ xmlns:scilab="http://www.scilab.org"
+ xmlns:db="http://docbook.org/ns/docbook">
+
+ <refnamediv>
+ <refname>gfrepcov</refname>
+ <refpurpose>This function represents a binary polynomial in standard ascending order format.</refpurpose>
+ </refnamediv>
+
+
+<refsection>
+ <title>Description</title>
+ <para>
+Q = GFREPCOV(P) converts vector (P) to standard ascending
+order format vector (Q), which is a vector that lists the coefficients in
+order of ascending exponents, if P represents a binary polynomial
+as a vector of exponents with non-zero coefficients.
+ </para>
+ <para>
+</para>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+The matrix below represents the binary polynomial $1 + s + s^2 + s^4$
+Implies output vector should be [1 1 1 0 1]
+A=[0 1 2 4 ]
+B=gfrepcov(A)
+disp(B)
+
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Authors</title>
+ <simplelist type="vert">
+ <member>Pola Lakshmi Priyanka, IIT Bombay</member>
+ </simplelist>
+</refsection>
+</refentry>