1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
|
# -*- coding: utf-8 -*-
# Copyright (c) 2009-2011, 2013-2014 LOGILAB S.A. (Paris, FRANCE) <contact@logilab.fr>
# Copyright (c) 2014-2018 Claudiu Popa <pcmanticore@gmail.com>
# Copyright (c) 2014 Google, Inc.
# Copyright (c) 2014 Eevee (Alex Munroe) <amunroe@yelp.com>
# Copyright (c) 2015-2016 Ceridwen <ceridwenv@gmail.com>
# Copyright (c) 2015 Dmitry Pribysh <dmand@yandex.ru>
# Copyright (c) 2016 Derek Gustafson <degustaf@gmail.com>
# Copyright (c) 2017-2018 Ashley Whetter <ashley@awhetter.co.uk>
# Copyright (c) 2017 Łukasz Rogalski <rogalski.91@gmail.com>
# Copyright (c) 2017 rr- <rr-@sakuya.pl>
# Copyright (c) 2018 Bryce Guinta <bryce.paul.guinta@gmail.com>
# Copyright (c) 2018 Nick Drozd <nicholasdrozd@gmail.com>
# Copyright (c) 2018 HoverHell <hoverhell@gmail.com>
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
"""this module contains a set of functions to handle python protocols for nodes
where it makes sense.
"""
import collections
import operator as operator_mod
import itertools
from astroid import Store
from astroid import arguments
from astroid import bases
from astroid import context as contextmod
from astroid import exceptions
from astroid import decorators
from astroid import node_classes
from astroid import helpers
from astroid import nodes
from astroid import util
raw_building = util.lazy_import("raw_building")
objects = util.lazy_import("objects")
def _reflected_name(name):
return "__r" + name[2:]
def _augmented_name(name):
return "__i" + name[2:]
_CONTEXTLIB_MGR = "contextlib.contextmanager"
BIN_OP_METHOD = {
"+": "__add__",
"-": "__sub__",
"/": "__truediv__",
"//": "__floordiv__",
"*": "__mul__",
"**": "__pow__",
"%": "__mod__",
"&": "__and__",
"|": "__or__",
"^": "__xor__",
"<<": "__lshift__",
">>": "__rshift__",
"@": "__matmul__",
}
REFLECTED_BIN_OP_METHOD = {
key: _reflected_name(value) for (key, value) in BIN_OP_METHOD.items()
}
AUGMENTED_OP_METHOD = {
key + "=": _augmented_name(value) for (key, value) in BIN_OP_METHOD.items()
}
UNARY_OP_METHOD = {
"+": "__pos__",
"-": "__neg__",
"~": "__invert__",
"not": None, # XXX not '__nonzero__'
}
_UNARY_OPERATORS = {
"+": operator_mod.pos,
"-": operator_mod.neg,
"~": operator_mod.invert,
"not": operator_mod.not_,
}
def _infer_unary_op(obj, op):
func = _UNARY_OPERATORS[op]
value = func(obj)
return nodes.const_factory(value)
nodes.Tuple.infer_unary_op = lambda self, op: _infer_unary_op(tuple(self.elts), op)
nodes.List.infer_unary_op = lambda self, op: _infer_unary_op(self.elts, op)
nodes.Set.infer_unary_op = lambda self, op: _infer_unary_op(set(self.elts), op)
nodes.Const.infer_unary_op = lambda self, op: _infer_unary_op(self.value, op)
nodes.Dict.infer_unary_op = lambda self, op: _infer_unary_op(dict(self.items), op)
# Binary operations
BIN_OP_IMPL = {
"+": lambda a, b: a + b,
"-": lambda a, b: a - b,
"/": lambda a, b: a / b,
"//": lambda a, b: a // b,
"*": lambda a, b: a * b,
"**": lambda a, b: a ** b,
"%": lambda a, b: a % b,
"&": lambda a, b: a & b,
"|": lambda a, b: a | b,
"^": lambda a, b: a ^ b,
"<<": lambda a, b: a << b,
">>": lambda a, b: a >> b,
"@": operator_mod.matmul,
}
for _KEY, _IMPL in list(BIN_OP_IMPL.items()):
BIN_OP_IMPL[_KEY + "="] = _IMPL
@decorators.yes_if_nothing_inferred
def const_infer_binary_op(self, opnode, operator, other, context, _):
not_implemented = nodes.Const(NotImplemented)
if isinstance(other, nodes.Const):
try:
impl = BIN_OP_IMPL[operator]
try:
yield nodes.const_factory(impl(self.value, other.value))
except TypeError:
# ArithmeticError is not enough: float >> float is a TypeError
yield not_implemented
except Exception: # pylint: disable=broad-except
yield util.Uninferable
except TypeError:
yield not_implemented
elif isinstance(self.value, str) and operator == "%":
# TODO(cpopa): implement string interpolation later on.
yield util.Uninferable
else:
yield not_implemented
nodes.Const.infer_binary_op = const_infer_binary_op
def _multiply_seq_by_int(self, opnode, other, context):
node = self.__class__(parent=opnode)
filtered_elts = (
helpers.safe_infer(elt, context) or util.Uninferable
for elt in self.elts
if elt is not util.Uninferable
)
node.elts = list(filtered_elts) * other.value
return node
def _filter_uninferable_nodes(elts, context):
for elt in elts:
if elt is util.Uninferable:
yield nodes.Unknown()
else:
for inferred in elt.infer(context):
if inferred is not util.Uninferable:
yield inferred
else:
yield nodes.Unknown()
@decorators.yes_if_nothing_inferred
def tl_infer_binary_op(self, opnode, operator, other, context, method):
not_implemented = nodes.Const(NotImplemented)
if isinstance(other, self.__class__) and operator == "+":
node = self.__class__(parent=opnode)
node.elts = list(
itertools.chain(
_filter_uninferable_nodes(self.elts, context),
_filter_uninferable_nodes(other.elts, context),
)
)
yield node
elif isinstance(other, nodes.Const) and operator == "*":
if not isinstance(other.value, int):
yield not_implemented
return
yield _multiply_seq_by_int(self, opnode, other, context)
elif isinstance(other, bases.Instance) and operator == "*":
# Verify if the instance supports __index__.
as_index = helpers.class_instance_as_index(other)
if not as_index:
yield util.Uninferable
else:
yield _multiply_seq_by_int(self, opnode, as_index, context)
else:
yield not_implemented
nodes.Tuple.infer_binary_op = tl_infer_binary_op
nodes.List.infer_binary_op = tl_infer_binary_op
@decorators.yes_if_nothing_inferred
def instance_class_infer_binary_op(self, opnode, operator, other, context, method):
return method.infer_call_result(self, context)
bases.Instance.infer_binary_op = instance_class_infer_binary_op
nodes.ClassDef.infer_binary_op = instance_class_infer_binary_op
# assignment ##################################################################
"""the assigned_stmts method is responsible to return the assigned statement
(e.g. not inferred) according to the assignment type.
The `assign_path` argument is used to record the lhs path of the original node.
For instance if we want assigned statements for 'c' in 'a, (b,c)', assign_path
will be [1, 1] once arrived to the Assign node.
The `context` argument is the current inference context which should be given
to any intermediary inference necessary.
"""
def _resolve_looppart(parts, assign_path, context):
"""recursive function to resolve multiple assignments on loops"""
assign_path = assign_path[:]
index = assign_path.pop(0)
for part in parts:
if part is util.Uninferable:
continue
if not hasattr(part, "itered"):
continue
try:
itered = part.itered()
except TypeError:
continue
for stmt in itered:
index_node = nodes.Const(index)
try:
assigned = stmt.getitem(index_node, context)
except (
AttributeError,
exceptions.AstroidTypeError,
exceptions.AstroidIndexError,
):
continue
if not assign_path:
# we achieved to resolved the assignment path,
# don't infer the last part
yield assigned
elif assigned is util.Uninferable:
break
else:
# we are not yet on the last part of the path
# search on each possibly inferred value
try:
yield from _resolve_looppart(
assigned.infer(context), assign_path, context
)
except exceptions.InferenceError:
break
@decorators.raise_if_nothing_inferred
def for_assigned_stmts(self, node=None, context=None, assign_path=None):
if isinstance(self, nodes.AsyncFor) or getattr(self, "is_async", False):
# Skip inferring of async code for now
return dict(node=self, unknown=node, assign_path=assign_path, context=context)
if assign_path is None:
for lst in self.iter.infer(context):
if isinstance(lst, (nodes.Tuple, nodes.List)):
yield from lst.elts
else:
yield from _resolve_looppart(self.iter.infer(context), assign_path, context)
return dict(node=self, unknown=node, assign_path=assign_path, context=context)
nodes.For.assigned_stmts = for_assigned_stmts
nodes.Comprehension.assigned_stmts = for_assigned_stmts
def sequence_assigned_stmts(self, node=None, context=None, assign_path=None):
if assign_path is None:
assign_path = []
try:
index = self.elts.index(node)
except ValueError as exc:
raise exceptions.InferenceError(
"Tried to retrieve a node {node!r} which does not exist",
node=self,
assign_path=assign_path,
context=context,
) from exc
assign_path.insert(0, index)
return self.parent.assigned_stmts(
node=self, context=context, assign_path=assign_path
)
nodes.Tuple.assigned_stmts = sequence_assigned_stmts
nodes.List.assigned_stmts = sequence_assigned_stmts
def assend_assigned_stmts(self, node=None, context=None, assign_path=None):
return self.parent.assigned_stmts(node=self, context=context)
nodes.AssignName.assigned_stmts = assend_assigned_stmts
nodes.AssignAttr.assigned_stmts = assend_assigned_stmts
def _arguments_infer_argname(self, name, context):
# arguments information may be missing, in which case we can't do anything
# more
if not (self.args or self.vararg or self.kwarg):
yield util.Uninferable
return
# first argument of instance/class method
if self.args and getattr(self.args[0], "name", None) == name:
functype = self.parent.type
cls = self.parent.parent.scope()
is_metaclass = isinstance(cls, nodes.ClassDef) and cls.type == "metaclass"
# If this is a metaclass, then the first argument will always
# be the class, not an instance.
if is_metaclass or functype == "classmethod":
yield cls
return
if functype == "method":
yield bases.Instance(cls)
return
if context and context.callcontext:
call_site = arguments.CallSite(context.callcontext, context.extra_context)
yield from call_site.infer_argument(self.parent, name, context)
return
if name == self.vararg:
vararg = nodes.const_factory(())
vararg.parent = self
yield vararg
return
if name == self.kwarg:
kwarg = nodes.const_factory({})
kwarg.parent = self
yield kwarg
return
# if there is a default value, yield it. And then yield Uninferable to reflect
# we can't guess given argument value
try:
context = contextmod.copy_context(context)
yield from self.default_value(name).infer(context)
yield util.Uninferable
except exceptions.NoDefault:
yield util.Uninferable
def arguments_assigned_stmts(self, node=None, context=None, assign_path=None):
if context.callcontext:
# reset call context/name
callcontext = context.callcontext
context = contextmod.copy_context(context)
context.callcontext = None
args = arguments.CallSite(callcontext)
return args.infer_argument(self.parent, node.name, context)
return _arguments_infer_argname(self, node.name, context)
nodes.Arguments.assigned_stmts = arguments_assigned_stmts
@decorators.raise_if_nothing_inferred
def assign_assigned_stmts(self, node=None, context=None, assign_path=None):
if not assign_path:
yield self.value
return None
yield from _resolve_assignment_parts(
self.value.infer(context), assign_path, context
)
return dict(node=self, unknown=node, assign_path=assign_path, context=context)
def assign_annassigned_stmts(self, node=None, context=None, assign_path=None):
for inferred in assign_assigned_stmts(self, node, context, assign_path):
if inferred is None:
yield util.Uninferable
else:
yield inferred
nodes.Assign.assigned_stmts = assign_assigned_stmts
nodes.AnnAssign.assigned_stmts = assign_annassigned_stmts
nodes.AugAssign.assigned_stmts = assign_assigned_stmts
def _resolve_assignment_parts(parts, assign_path, context):
"""recursive function to resolve multiple assignments"""
assign_path = assign_path[:]
index = assign_path.pop(0)
for part in parts:
assigned = None
if isinstance(part, nodes.Dict):
# A dictionary in an iterating context
try:
assigned, _ = part.items[index]
except IndexError:
return
elif hasattr(part, "getitem"):
index_node = nodes.Const(index)
try:
assigned = part.getitem(index_node, context)
except (exceptions.AstroidTypeError, exceptions.AstroidIndexError):
return
if not assigned:
return
if not assign_path:
# we achieved to resolved the assignment path, don't infer the
# last part
yield assigned
elif assigned is util.Uninferable:
return
else:
# we are not yet on the last part of the path search on each
# possibly inferred value
try:
yield from _resolve_assignment_parts(
assigned.infer(context), assign_path, context
)
except exceptions.InferenceError:
return
@decorators.raise_if_nothing_inferred
def excepthandler_assigned_stmts(self, node=None, context=None, assign_path=None):
for assigned in node_classes.unpack_infer(self.type):
if isinstance(assigned, nodes.ClassDef):
assigned = objects.ExceptionInstance(assigned)
yield assigned
return dict(node=self, unknown=node, assign_path=assign_path, context=context)
nodes.ExceptHandler.assigned_stmts = excepthandler_assigned_stmts
def _infer_context_manager(self, mgr, context):
inferred = next(mgr.infer(context=context))
if isinstance(inferred, bases.Generator):
# Check if it is decorated with contextlib.contextmanager.
func = inferred.parent
if not func.decorators:
raise exceptions.InferenceError(
"No decorators found on inferred generator %s", node=func
)
for decorator_node in func.decorators.nodes:
decorator = next(decorator_node.infer(context))
if isinstance(decorator, nodes.FunctionDef):
if decorator.qname() == _CONTEXTLIB_MGR:
break
else:
# It doesn't interest us.
raise exceptions.InferenceError(node=func)
# Get the first yield point. If it has multiple yields,
# then a RuntimeError will be raised.
possible_yield_points = func.nodes_of_class(nodes.Yield)
# Ignore yields in nested functions
yield_point = next(
(node for node in possible_yield_points if node.scope() == func), None
)
if yield_point:
if not yield_point.value:
const = nodes.Const(None)
const.parent = yield_point
const.lineno = yield_point.lineno
yield const
else:
yield from yield_point.value.infer(context=context)
elif isinstance(inferred, bases.Instance):
try:
enter = next(inferred.igetattr("__enter__", context=context))
except (exceptions.InferenceError, exceptions.AttributeInferenceError):
raise exceptions.InferenceError(node=inferred)
if not isinstance(enter, bases.BoundMethod):
raise exceptions.InferenceError(node=enter)
yield from enter.infer_call_result(self, context)
else:
raise exceptions.InferenceError(node=mgr)
@decorators.raise_if_nothing_inferred
def with_assigned_stmts(self, node=None, context=None, assign_path=None):
"""Infer names and other nodes from a *with* statement.
This enables only inference for name binding in a *with* statement.
For instance, in the following code, inferring `func` will return
the `ContextManager` class, not whatever ``__enter__`` returns.
We are doing this intentionally, because we consider that the context
manager result is whatever __enter__ returns and what it is binded
using the ``as`` keyword.
class ContextManager(object):
def __enter__(self):
return 42
with ContextManager() as f:
pass
# ContextManager().infer() will return ContextManager
# f.infer() will return 42.
Arguments:
self: nodes.With
node: The target of the assignment, `as (a, b)` in `with foo as (a, b)`.
context: Inference context used for caching already inferred objects
assign_path:
A list of indices, where each index specifies what item to fetch from
the inference results.
"""
try:
mgr = next(mgr for (mgr, vars) in self.items if vars == node)
except StopIteration:
return None
if assign_path is None:
yield from _infer_context_manager(self, mgr, context)
else:
for result in _infer_context_manager(self, mgr, context):
# Walk the assign_path and get the item at the final index.
obj = result
for index in assign_path:
if not hasattr(obj, "elts"):
raise exceptions.InferenceError(
"Wrong type ({targets!r}) for {node!r} assignment",
node=self,
targets=node,
assign_path=assign_path,
context=context,
)
try:
obj = obj.elts[index]
except IndexError as exc:
raise exceptions.InferenceError(
"Tried to infer a nonexistent target with index {index} "
"in {node!r}.",
node=self,
targets=node,
assign_path=assign_path,
context=context,
) from exc
except TypeError as exc:
raise exceptions.InferenceError(
"Tried to unpack a non-iterable value " "in {node!r}.",
node=self,
targets=node,
assign_path=assign_path,
context=context,
) from exc
yield obj
return dict(node=self, unknown=node, assign_path=assign_path, context=context)
nodes.With.assigned_stmts = with_assigned_stmts
@decorators.raise_if_nothing_inferred
def named_expr_assigned_stmts(self, node, context=None, assign_path=None):
"""Infer names and other nodes from an assignment expression"""
if self.target == node:
yield from self.value.infer(context=context)
else:
raise exceptions.InferenceError(
"Cannot infer NamedExpr node {node!r}",
node=self,
assign_path=assign_path,
context=context,
)
nodes.NamedExpr.assigned_stmts = named_expr_assigned_stmts
@decorators.yes_if_nothing_inferred
def starred_assigned_stmts(self, node=None, context=None, assign_path=None):
"""
Arguments:
self: nodes.Starred
node: a node related to the current underlying Node.
context: Inference context used for caching already inferred objects
assign_path:
A list of indices, where each index specifies what item to fetch from
the inference results.
"""
# pylint: disable=too-many-locals,too-many-branches,too-many-statements
def _determine_starred_iteration_lookups(starred, target, lookups):
# Determine the lookups for the rhs of the iteration
itered = target.itered()
for index, element in enumerate(itered):
if (
isinstance(element, nodes.Starred)
and element.value.name == starred.value.name
):
lookups.append((index, len(itered)))
break
if isinstance(element, nodes.Tuple):
lookups.append((index, len(element.itered())))
_determine_starred_iteration_lookups(starred, element, lookups)
stmt = self.statement()
if not isinstance(stmt, (nodes.Assign, nodes.For)):
raise exceptions.InferenceError(
"Statement {stmt!r} enclosing {node!r} " "must be an Assign or For node.",
node=self,
stmt=stmt,
unknown=node,
context=context,
)
if context is None:
context = contextmod.InferenceContext()
if isinstance(stmt, nodes.Assign):
value = stmt.value
lhs = stmt.targets[0]
if sum(1 for _ in lhs.nodes_of_class(nodes.Starred)) > 1:
raise exceptions.InferenceError(
"Too many starred arguments in the " " assignment targets {lhs!r}.",
node=self,
targets=lhs,
unknown=node,
context=context,
)
try:
rhs = next(value.infer(context))
except exceptions.InferenceError:
yield util.Uninferable
return
if rhs is util.Uninferable or not hasattr(rhs, "itered"):
yield util.Uninferable
return
try:
elts = collections.deque(rhs.itered())
except TypeError:
yield util.Uninferable
return
# Unpack iteratively the values from the rhs of the assignment,
# until the find the starred node. What will remain will
# be the list of values which the Starred node will represent
# This is done in two steps, from left to right to remove
# anything before the starred node and from right to left
# to remove anything after the starred node.
for index, left_node in enumerate(lhs.elts):
if not isinstance(left_node, nodes.Starred):
if not elts:
break
elts.popleft()
continue
lhs_elts = collections.deque(reversed(lhs.elts[index:]))
for right_node in lhs_elts:
if not isinstance(right_node, nodes.Starred):
if not elts:
break
elts.pop()
continue
# We're done
packed = nodes.List(
ctx=Store, parent=self, lineno=lhs.lineno, col_offset=lhs.col_offset
)
packed.postinit(elts=elts)
yield packed
break
if isinstance(stmt, nodes.For):
try:
inferred_iterable = next(stmt.iter.infer(context=context))
except exceptions.InferenceError:
yield util.Uninferable
return
if inferred_iterable is util.Uninferable or not hasattr(
inferred_iterable, "itered"
):
yield util.Uninferable
return
try:
itered = inferred_iterable.itered()
except TypeError:
yield util.Uninferable
return
target = stmt.target
if not isinstance(target, nodes.Tuple):
raise exceptions.InferenceError(
"Could not make sense of this, the target must be a tuple",
context=context,
)
lookups = []
_determine_starred_iteration_lookups(self, target, lookups)
if not lookups:
raise exceptions.InferenceError(
"Could not make sense of this, needs at least a lookup", context=context
)
# Make the last lookup a slice, since that what we want for a Starred node
last_element_index, last_element_length = lookups[-1]
is_starred_last = last_element_index == (last_element_length - 1)
lookup_slice = slice(
last_element_index,
None if is_starred_last else (last_element_length - last_element_index),
)
lookups[-1] = lookup_slice
for element in itered:
# We probably want to infer the potential values *for each* element in an
# iterable, but we can't infer a list of all values, when only a list of
# step values are expected:
#
# for a, *b in [...]:
# b
#
# *b* should now point to just the elements at that particular iteration step,
# which astroid can't know about.
found_element = None
for lookup in lookups:
if not hasattr(element, "itered"):
break
if not isinstance(lookup, slice):
# Grab just the index, not the whole length
lookup = lookup[0]
try:
itered_inner_element = element.itered()
element = itered_inner_element[lookup]
except IndexError:
break
except TypeError:
# Most likely the itered() call failed, cannot make sense of this
yield util.Uninferable
return
else:
found_element = element
unpacked = nodes.List(
ctx=Store, parent=self, lineno=self.lineno, col_offset=self.col_offset
)
unpacked.postinit(elts=found_element or [])
yield unpacked
return
yield util.Uninferable
nodes.Starred.assigned_stmts = starred_assigned_stmts
|