summaryrefslogtreecommitdiff
path: root/venv/Lib/site-packages/astroid/brain/brain_random.py
diff options
context:
space:
mode:
Diffstat (limited to 'venv/Lib/site-packages/astroid/brain/brain_random.py')
-rw-r--r--venv/Lib/site-packages/astroid/brain/brain_random.py75
1 files changed, 0 insertions, 75 deletions
diff --git a/venv/Lib/site-packages/astroid/brain/brain_random.py b/venv/Lib/site-packages/astroid/brain/brain_random.py
deleted file mode 100644
index 5ec858a..0000000
--- a/venv/Lib/site-packages/astroid/brain/brain_random.py
+++ /dev/null
@@ -1,75 +0,0 @@
-# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
-# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
-import random
-
-import astroid
-from astroid import helpers
-from astroid import MANAGER
-
-
-ACCEPTED_ITERABLES_FOR_SAMPLE = (astroid.List, astroid.Set, astroid.Tuple)
-
-
-def _clone_node_with_lineno(node, parent, lineno):
- cls = node.__class__
- other_fields = node._other_fields
- _astroid_fields = node._astroid_fields
- init_params = {"lineno": lineno, "col_offset": node.col_offset, "parent": parent}
- postinit_params = {param: getattr(node, param) for param in _astroid_fields}
- if other_fields:
- init_params.update({param: getattr(node, param) for param in other_fields})
- new_node = cls(**init_params)
- if hasattr(node, "postinit") and _astroid_fields:
- new_node.postinit(**postinit_params)
- return new_node
-
-
-def infer_random_sample(node, context=None):
- if len(node.args) != 2:
- raise astroid.UseInferenceDefault
-
- length = node.args[1]
- if not isinstance(length, astroid.Const):
- raise astroid.UseInferenceDefault
- if not isinstance(length.value, int):
- raise astroid.UseInferenceDefault
-
- inferred_sequence = helpers.safe_infer(node.args[0], context=context)
- if not inferred_sequence:
- raise astroid.UseInferenceDefault
-
- if not isinstance(inferred_sequence, ACCEPTED_ITERABLES_FOR_SAMPLE):
- raise astroid.UseInferenceDefault
-
- if length.value > len(inferred_sequence.elts):
- # In this case, this will raise a ValueError
- raise astroid.UseInferenceDefault
-
- try:
- elts = random.sample(inferred_sequence.elts, length.value)
- except ValueError:
- raise astroid.UseInferenceDefault
-
- new_node = astroid.List(
- lineno=node.lineno, col_offset=node.col_offset, parent=node.scope()
- )
- new_elts = [
- _clone_node_with_lineno(elt, parent=new_node, lineno=new_node.lineno)
- for elt in elts
- ]
- new_node.postinit(new_elts)
- return iter((new_node,))
-
-
-def _looks_like_random_sample(node):
- func = node.func
- if isinstance(func, astroid.Attribute):
- return func.attrname == "sample"
- if isinstance(func, astroid.Name):
- return func.name == "sample"
- return False
-
-
-MANAGER.register_transform(
- astroid.Call, astroid.inference_tip(infer_random_sample), _looks_like_random_sample
-)