summaryrefslogtreecommitdiff
path: root/venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py
diff options
context:
space:
mode:
Diffstat (limited to 'venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py')
-rw-r--r--venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py449
1 files changed, 449 insertions, 0 deletions
diff --git a/venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py b/venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py
new file mode 100644
index 0000000..de24067
--- /dev/null
+++ b/venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py
@@ -0,0 +1,449 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) 2012-2015 LOGILAB S.A. (Paris, FRANCE) <contact@logilab.fr>
+# Copyright (c) 2013-2014 Google, Inc.
+# Copyright (c) 2014-2018 Claudiu Popa <pcmanticore@gmail.com>
+# Copyright (c) 2014 Eevee (Alex Munroe) <amunroe@yelp.com>
+# Copyright (c) 2015-2016 Ceridwen <ceridwenv@gmail.com>
+# Copyright (c) 2015 Dmitry Pribysh <dmand@yandex.ru>
+# Copyright (c) 2015 David Shea <dshea@redhat.com>
+# Copyright (c) 2015 Philip Lorenz <philip@bithub.de>
+# Copyright (c) 2016 Jakub Wilk <jwilk@jwilk.net>
+# Copyright (c) 2016 Mateusz Bysiek <mb@mbdev.pl>
+# Copyright (c) 2017 Hugo <hugovk@users.noreply.github.com>
+# Copyright (c) 2017 Ɓukasz Rogalski <rogalski.91@gmail.com>
+
+# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
+# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
+
+"""Astroid hooks for the Python standard library."""
+
+import functools
+import keyword
+from textwrap import dedent
+
+from astroid import MANAGER, UseInferenceDefault, inference_tip, InferenceError
+from astroid import arguments
+from astroid import exceptions
+from astroid import nodes
+from astroid.builder import AstroidBuilder, extract_node
+from astroid import util
+
+
+TYPING_NAMEDTUPLE_BASENAMES = {"NamedTuple", "typing.NamedTuple"}
+ENUM_BASE_NAMES = {
+ "Enum",
+ "IntEnum",
+ "enum.Enum",
+ "enum.IntEnum",
+ "IntFlag",
+ "enum.IntFlag",
+}
+
+
+def _infer_first(node, context):
+ if node is util.Uninferable:
+ raise UseInferenceDefault
+ try:
+ value = next(node.infer(context=context))
+ if value is util.Uninferable:
+ raise UseInferenceDefault()
+ else:
+ return value
+ except StopIteration:
+ raise InferenceError()
+
+
+def _find_func_form_arguments(node, context):
+ def _extract_namedtuple_arg_or_keyword(position, key_name=None):
+
+ if len(args) > position:
+ return _infer_first(args[position], context)
+ if key_name and key_name in found_keywords:
+ return _infer_first(found_keywords[key_name], context)
+
+ args = node.args
+ keywords = node.keywords
+ found_keywords = (
+ {keyword.arg: keyword.value for keyword in keywords} if keywords else {}
+ )
+
+ name = _extract_namedtuple_arg_or_keyword(position=0, key_name="typename")
+ names = _extract_namedtuple_arg_or_keyword(position=1, key_name="field_names")
+ if name and names:
+ return name.value, names
+
+ raise UseInferenceDefault()
+
+
+def infer_func_form(node, base_type, context=None, enum=False):
+ """Specific inference function for namedtuple or Python 3 enum. """
+ # node is a Call node, class name as first argument and generated class
+ # attributes as second argument
+
+ # namedtuple or enums list of attributes can be a list of strings or a
+ # whitespace-separate string
+ try:
+ name, names = _find_func_form_arguments(node, context)
+ try:
+ attributes = names.value.replace(",", " ").split()
+ except AttributeError:
+ if not enum:
+ attributes = [
+ _infer_first(const, context).value for const in names.elts
+ ]
+ else:
+ # Enums supports either iterator of (name, value) pairs
+ # or mappings.
+ if hasattr(names, "items") and isinstance(names.items, list):
+ attributes = [
+ _infer_first(const[0], context).value
+ for const in names.items
+ if isinstance(const[0], nodes.Const)
+ ]
+ elif hasattr(names, "elts"):
+ # Enums can support either ["a", "b", "c"]
+ # or [("a", 1), ("b", 2), ...], but they can't
+ # be mixed.
+ if all(isinstance(const, nodes.Tuple) for const in names.elts):
+ attributes = [
+ _infer_first(const.elts[0], context).value
+ for const in names.elts
+ if isinstance(const, nodes.Tuple)
+ ]
+ else:
+ attributes = [
+ _infer_first(const, context).value for const in names.elts
+ ]
+ else:
+ raise AttributeError
+ if not attributes:
+ raise AttributeError
+ except (AttributeError, exceptions.InferenceError):
+ raise UseInferenceDefault()
+
+ # If we can't infer the name of the class, don't crash, up to this point
+ # we know it is a namedtuple anyway.
+ name = name or "Uninferable"
+ # we want to return a Class node instance with proper attributes set
+ class_node = nodes.ClassDef(name, "docstring")
+ class_node.parent = node.parent
+ # set base class=tuple
+ class_node.bases.append(base_type)
+ # XXX add __init__(*attributes) method
+ for attr in attributes:
+ fake_node = nodes.EmptyNode()
+ fake_node.parent = class_node
+ fake_node.attrname = attr
+ class_node.instance_attrs[attr] = [fake_node]
+ return class_node, name, attributes
+
+
+def _has_namedtuple_base(node):
+ """Predicate for class inference tip
+
+ :type node: ClassDef
+ :rtype: bool
+ """
+ return set(node.basenames) & TYPING_NAMEDTUPLE_BASENAMES
+
+
+def _looks_like(node, name):
+ func = node.func
+ if isinstance(func, nodes.Attribute):
+ return func.attrname == name
+ if isinstance(func, nodes.Name):
+ return func.name == name
+ return False
+
+
+_looks_like_namedtuple = functools.partial(_looks_like, name="namedtuple")
+_looks_like_enum = functools.partial(_looks_like, name="Enum")
+_looks_like_typing_namedtuple = functools.partial(_looks_like, name="NamedTuple")
+
+
+def infer_named_tuple(node, context=None):
+ """Specific inference function for namedtuple Call node"""
+ tuple_base_name = nodes.Name(name="tuple", parent=node.root())
+ class_node, name, attributes = infer_func_form(
+ node, tuple_base_name, context=context
+ )
+ call_site = arguments.CallSite.from_call(node)
+ func = next(extract_node("import collections; collections.namedtuple").infer())
+ try:
+ rename = next(call_site.infer_argument(func, "rename", context)).bool_value()
+ except InferenceError:
+ rename = False
+
+ if rename:
+ attributes = _get_renamed_namedtuple_attributes(attributes)
+
+ replace_args = ", ".join("{arg}=None".format(arg=arg) for arg in attributes)
+ field_def = (
+ " {name} = property(lambda self: self[{index:d}], "
+ "doc='Alias for field number {index:d}')"
+ )
+ field_defs = "\n".join(
+ field_def.format(name=name, index=index)
+ for index, name in enumerate(attributes)
+ )
+ fake = AstroidBuilder(MANAGER).string_build(
+ """
+class %(name)s(tuple):
+ __slots__ = ()
+ _fields = %(fields)r
+ def _asdict(self):
+ return self.__dict__
+ @classmethod
+ def _make(cls, iterable, new=tuple.__new__, len=len):
+ return new(cls, iterable)
+ def _replace(self, %(replace_args)s):
+ return self
+ def __getnewargs__(self):
+ return tuple(self)
+%(field_defs)s
+ """
+ % {
+ "name": name,
+ "fields": attributes,
+ "field_defs": field_defs,
+ "replace_args": replace_args,
+ }
+ )
+ class_node.locals["_asdict"] = fake.body[0].locals["_asdict"]
+ class_node.locals["_make"] = fake.body[0].locals["_make"]
+ class_node.locals["_replace"] = fake.body[0].locals["_replace"]
+ class_node.locals["_fields"] = fake.body[0].locals["_fields"]
+ for attr in attributes:
+ class_node.locals[attr] = fake.body[0].locals[attr]
+ # we use UseInferenceDefault, we can't be a generator so return an iterator
+ return iter([class_node])
+
+
+def _get_renamed_namedtuple_attributes(field_names):
+ names = list(field_names)
+ seen = set()
+ for i, name in enumerate(field_names):
+ if (
+ not all(c.isalnum() or c == "_" for c in name)
+ or keyword.iskeyword(name)
+ or not name
+ or name[0].isdigit()
+ or name.startswith("_")
+ or name in seen
+ ):
+ names[i] = "_%d" % i
+ seen.add(name)
+ return tuple(names)
+
+
+def infer_enum(node, context=None):
+ """ Specific inference function for enum Call node. """
+ enum_meta = extract_node(
+ """
+ class EnumMeta(object):
+ 'docstring'
+ def __call__(self, node):
+ class EnumAttribute(object):
+ name = ''
+ value = 0
+ return EnumAttribute()
+ def __iter__(self):
+ class EnumAttribute(object):
+ name = ''
+ value = 0
+ return [EnumAttribute()]
+ def __reversed__(self):
+ class EnumAttribute(object):
+ name = ''
+ value = 0
+ return (EnumAttribute, )
+ def __next__(self):
+ return next(iter(self))
+ def __getitem__(self, attr):
+ class Value(object):
+ @property
+ def name(self):
+ return ''
+ @property
+ def value(self):
+ return attr
+
+ return Value()
+ __members__ = ['']
+ """
+ )
+ class_node = infer_func_form(node, enum_meta, context=context, enum=True)[0]
+ return iter([class_node.instantiate_class()])
+
+
+INT_FLAG_ADDITION_METHODS = """
+ def __or__(self, other):
+ return {name}(self.value | other.value)
+ def __and__(self, other):
+ return {name}(self.value & other.value)
+ def __xor__(self, other):
+ return {name}(self.value ^ other.value)
+ def __add__(self, other):
+ return {name}(self.value + other.value)
+ def __div__(self, other):
+ return {name}(self.value / other.value)
+ def __invert__(self):
+ return {name}(~self.value)
+ def __mul__(self, other):
+ return {name}(self.value * other.value)
+"""
+
+
+def infer_enum_class(node):
+ """ Specific inference for enums. """
+ for basename in node.basenames:
+ # TODO: doesn't handle subclasses yet. This implementation
+ # is a hack to support enums.
+ if basename not in ENUM_BASE_NAMES:
+ continue
+ if node.root().name == "enum":
+ # Skip if the class is directly from enum module.
+ break
+ for local, values in node.locals.items():
+ if any(not isinstance(value, nodes.AssignName) for value in values):
+ continue
+
+ targets = []
+ stmt = values[0].statement()
+ if isinstance(stmt, nodes.Assign):
+ if isinstance(stmt.targets[0], nodes.Tuple):
+ targets = stmt.targets[0].itered()
+ else:
+ targets = stmt.targets
+ elif isinstance(stmt, nodes.AnnAssign):
+ targets = [stmt.target]
+
+ inferred_return_value = None
+ if isinstance(stmt, nodes.Assign):
+ if isinstance(stmt.value, nodes.Const):
+ if isinstance(stmt.value.value, str):
+ inferred_return_value = repr(stmt.value.value)
+ else:
+ inferred_return_value = stmt.value.value
+ else:
+ inferred_return_value = stmt.value.as_string()
+
+ new_targets = []
+ for target in targets:
+ # Replace all the assignments with our mocked class.
+ classdef = dedent(
+ """
+ class {name}({types}):
+ @property
+ def value(self):
+ return {return_value}
+ @property
+ def name(self):
+ return "{name}"
+ """.format(
+ name=target.name,
+ types=", ".join(node.basenames),
+ return_value=inferred_return_value,
+ )
+ )
+ if "IntFlag" in basename:
+ # Alright, we need to add some additional methods.
+ # Unfortunately we still can't infer the resulting objects as
+ # Enum members, but once we'll be able to do that, the following
+ # should result in some nice symbolic execution
+ classdef += INT_FLAG_ADDITION_METHODS.format(name=target.name)
+
+ fake = AstroidBuilder(MANAGER).string_build(classdef)[target.name]
+ fake.parent = target.parent
+ for method in node.mymethods():
+ fake.locals[method.name] = [method]
+ new_targets.append(fake.instantiate_class())
+ node.locals[local] = new_targets
+ break
+ return node
+
+
+def infer_typing_namedtuple_class(class_node, context=None):
+ """Infer a subclass of typing.NamedTuple"""
+ # Check if it has the corresponding bases
+ annassigns_fields = [
+ annassign.target.name
+ for annassign in class_node.body
+ if isinstance(annassign, nodes.AnnAssign)
+ ]
+ code = dedent(
+ """
+ from collections import namedtuple
+ namedtuple({typename!r}, {fields!r})
+ """
+ ).format(typename=class_node.name, fields=",".join(annassigns_fields))
+ node = extract_node(code)
+ generated_class_node = next(infer_named_tuple(node, context))
+ for method in class_node.mymethods():
+ generated_class_node.locals[method.name] = [method]
+
+ for assign in class_node.body:
+ if not isinstance(assign, nodes.Assign):
+ continue
+
+ for target in assign.targets:
+ attr = target.name
+ generated_class_node.locals[attr] = class_node.locals[attr]
+
+ return iter((generated_class_node,))
+
+
+def infer_typing_namedtuple(node, context=None):
+ """Infer a typing.NamedTuple(...) call."""
+ # This is essentially a namedtuple with different arguments
+ # so we extract the args and infer a named tuple.
+ try:
+ func = next(node.func.infer())
+ except InferenceError:
+ raise UseInferenceDefault
+
+ if func.qname() != "typing.NamedTuple":
+ raise UseInferenceDefault
+
+ if len(node.args) != 2:
+ raise UseInferenceDefault
+
+ if not isinstance(node.args[1], (nodes.List, nodes.Tuple)):
+ raise UseInferenceDefault
+
+ names = []
+ for elt in node.args[1].elts:
+ if not isinstance(elt, (nodes.List, nodes.Tuple)):
+ raise UseInferenceDefault
+ if len(elt.elts) != 2:
+ raise UseInferenceDefault
+ names.append(elt.elts[0].as_string())
+
+ typename = node.args[0].as_string()
+ if names:
+ field_names = "({},)".format(",".join(names))
+ else:
+ field_names = "''"
+ node = extract_node(
+ "namedtuple({typename}, {fields})".format(typename=typename, fields=field_names)
+ )
+ return infer_named_tuple(node, context)
+
+
+MANAGER.register_transform(
+ nodes.Call, inference_tip(infer_named_tuple), _looks_like_namedtuple
+)
+MANAGER.register_transform(nodes.Call, inference_tip(infer_enum), _looks_like_enum)
+MANAGER.register_transform(
+ nodes.ClassDef,
+ infer_enum_class,
+ predicate=lambda cls: any(
+ basename for basename in cls.basenames if basename in ENUM_BASE_NAMES
+ ),
+)
+MANAGER.register_transform(
+ nodes.ClassDef, inference_tip(infer_typing_namedtuple_class), _has_namedtuple_base
+)
+MANAGER.register_transform(
+ nodes.Call, inference_tip(infer_typing_namedtuple), _looks_like_typing_namedtuple
+)