summaryrefslogtreecommitdiff
path: root/venv/Lib/site-packages/astroid/brain/brain_functools.py
diff options
context:
space:
mode:
Diffstat (limited to 'venv/Lib/site-packages/astroid/brain/brain_functools.py')
-rw-r--r--venv/Lib/site-packages/astroid/brain/brain_functools.py158
1 files changed, 0 insertions, 158 deletions
diff --git a/venv/Lib/site-packages/astroid/brain/brain_functools.py b/venv/Lib/site-packages/astroid/brain/brain_functools.py
deleted file mode 100644
index 8b594ef..0000000
--- a/venv/Lib/site-packages/astroid/brain/brain_functools.py
+++ /dev/null
@@ -1,158 +0,0 @@
-# Copyright (c) 2016, 2018 Claudiu Popa <pcmanticore@gmail.com>
-# Copyright (c) 2018 Bryce Guinta <bryce.paul.guinta@gmail.com>
-
-"""Astroid hooks for understanding functools library module."""
-from functools import partial
-from itertools import chain
-
-import astroid
-from astroid import arguments
-from astroid import BoundMethod
-from astroid import extract_node
-from astroid import helpers
-from astroid.interpreter import objectmodel
-from astroid import MANAGER
-from astroid import objects
-
-
-LRU_CACHE = "functools.lru_cache"
-
-
-class LruWrappedModel(objectmodel.FunctionModel):
- """Special attribute model for functions decorated with functools.lru_cache.
-
- The said decorators patches at decoration time some functions onto
- the decorated function.
- """
-
- @property
- def attr___wrapped__(self):
- return self._instance
-
- @property
- def attr_cache_info(self):
- cache_info = extract_node(
- """
- from functools import _CacheInfo
- _CacheInfo(0, 0, 0, 0)
- """
- )
-
- class CacheInfoBoundMethod(BoundMethod):
- def infer_call_result(self, caller, context=None):
- yield helpers.safe_infer(cache_info)
-
- return CacheInfoBoundMethod(proxy=self._instance, bound=self._instance)
-
- @property
- def attr_cache_clear(self):
- node = extract_node("""def cache_clear(self): pass""")
- return BoundMethod(proxy=node, bound=self._instance.parent.scope())
-
-
-def _transform_lru_cache(node, context=None):
- # TODO: this is not ideal, since the node should be immutable,
- # but due to https://github.com/PyCQA/astroid/issues/354,
- # there's not much we can do now.
- # Replacing the node would work partially, because,
- # in pylint, the old node would still be available, leading
- # to spurious false positives.
- node.special_attributes = LruWrappedModel()(node)
- return
-
-
-def _functools_partial_inference(node, context=None):
- call = arguments.CallSite.from_call(node)
- number_of_positional = len(call.positional_arguments)
- if number_of_positional < 1:
- raise astroid.UseInferenceDefault(
- "functools.partial takes at least one argument"
- )
- if number_of_positional == 1 and not call.keyword_arguments:
- raise astroid.UseInferenceDefault(
- "functools.partial needs at least to have some filled arguments"
- )
-
- partial_function = call.positional_arguments[0]
- try:
- inferred_wrapped_function = next(partial_function.infer(context=context))
- except astroid.InferenceError as exc:
- raise astroid.UseInferenceDefault from exc
- if inferred_wrapped_function is astroid.Uninferable:
- raise astroid.UseInferenceDefault("Cannot infer the wrapped function")
- if not isinstance(inferred_wrapped_function, astroid.FunctionDef):
- raise astroid.UseInferenceDefault("The wrapped function is not a function")
-
- # Determine if the passed keywords into the callsite are supported
- # by the wrapped function.
- function_parameters = chain(
- inferred_wrapped_function.args.args or (),
- inferred_wrapped_function.args.posonlyargs or (),
- inferred_wrapped_function.args.kwonlyargs or (),
- )
- parameter_names = set(
- param.name
- for param in function_parameters
- if isinstance(param, astroid.AssignName)
- )
- if set(call.keyword_arguments) - parameter_names:
- raise astroid.UseInferenceDefault(
- "wrapped function received unknown parameters"
- )
-
- partial_function = objects.PartialFunction(
- call,
- name=inferred_wrapped_function.name,
- doc=inferred_wrapped_function.doc,
- lineno=inferred_wrapped_function.lineno,
- col_offset=inferred_wrapped_function.col_offset,
- parent=inferred_wrapped_function.parent,
- )
- partial_function.postinit(
- args=inferred_wrapped_function.args,
- body=inferred_wrapped_function.body,
- decorators=inferred_wrapped_function.decorators,
- returns=inferred_wrapped_function.returns,
- type_comment_returns=inferred_wrapped_function.type_comment_returns,
- type_comment_args=inferred_wrapped_function.type_comment_args,
- )
- return iter((partial_function,))
-
-
-def _looks_like_lru_cache(node):
- """Check if the given function node is decorated with lru_cache."""
- if not node.decorators:
- return False
- for decorator in node.decorators.nodes:
- if not isinstance(decorator, astroid.Call):
- continue
- if _looks_like_functools_member(decorator, "lru_cache"):
- return True
- return False
-
-
-def _looks_like_functools_member(node, member):
- """Check if the given Call node is a functools.partial call"""
- if isinstance(node.func, astroid.Name):
- return node.func.name == member
- elif isinstance(node.func, astroid.Attribute):
- return (
- node.func.attrname == member
- and isinstance(node.func.expr, astroid.Name)
- and node.func.expr.name == "functools"
- )
-
-
-_looks_like_partial = partial(_looks_like_functools_member, member="partial")
-
-
-MANAGER.register_transform(
- astroid.FunctionDef, _transform_lru_cache, _looks_like_lru_cache
-)
-
-
-MANAGER.register_transform(
- astroid.Call,
- astroid.inference_tip(_functools_partial_inference),
- _looks_like_partial,
-)