diff options
author | Sann Yay Aye | 2020-01-30 12:57:51 +0530 |
---|---|---|
committer | Sann Yay Aye | 2020-01-30 12:57:51 +0530 |
commit | 190966e010e321e4df56d40104ec80467a870e53 (patch) | |
tree | f97ac913ec59a975ad64d5a3cd61e11923d98a69 /venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py | |
parent | 7ecaa6f103b2755dc3bb3fae10a0d7ab28162596 (diff) | |
download | Chemical-Simulator-GUI-190966e010e321e4df56d40104ec80467a870e53.tar.gz Chemical-Simulator-GUI-190966e010e321e4df56d40104ec80467a870e53.tar.bz2 Chemical-Simulator-GUI-190966e010e321e4df56d40104ec80467a870e53.zip |
undo&redo_implementation
Diffstat (limited to 'venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py')
-rw-r--r-- | venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py | 153 |
1 files changed, 153 insertions, 0 deletions
diff --git a/venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py b/venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py new file mode 100644 index 0000000..8c231a3 --- /dev/null +++ b/venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py @@ -0,0 +1,153 @@ +# Copyright (c) 2015-2016, 2018 Claudiu Popa <pcmanticore@gmail.com> +# Copyright (c) 2016 Ceridwen <ceridwenv@gmail.com> +# Copyright (c) 2017-2018 hippo91 <guillaume.peillex@gmail.com> + +# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html +# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER + + +"""Astroid hooks for numpy ndarray class.""" + +import functools +import astroid + + +def infer_numpy_ndarray(node, context=None): + ndarray = """ + class ndarray(object): + def __init__(self, shape, dtype=float, buffer=None, offset=0, + strides=None, order=None): + self.T = None + self.base = None + self.ctypes = None + self.data = None + self.dtype = None + self.flags = None + self.flat = None + self.imag = None + self.itemsize = None + self.nbytes = None + self.ndim = None + self.real = None + self.shape = None + self.size = None + self.strides = None + + def __abs__(self): return numpy.ndarray([0, 0]) + def __add__(self, value): return numpy.ndarray([0, 0]) + def __and__(self, value): return numpy.ndarray([0, 0]) + def __array__(self, dtype=None): return numpy.ndarray([0, 0]) + def __array_wrap__(self, obj): return numpy.ndarray([0, 0]) + def __contains__(self, key): return True + def __copy__(self): return numpy.ndarray([0, 0]) + def __deepcopy__(self, memo): return numpy.ndarray([0, 0]) + def __divmod__(self, value): return (numpy.ndarray([0, 0]), numpy.ndarray([0, 0])) + def __eq__(self, value): return numpy.ndarray([0, 0]) + def __float__(self): return 0. + def __floordiv__(self): return numpy.ndarray([0, 0]) + def __ge__(self, value): return numpy.ndarray([0, 0]) + def __getitem__(self, key): return uninferable + def __gt__(self, value): return numpy.ndarray([0, 0]) + def __iadd__(self, value): return numpy.ndarray([0, 0]) + def __iand__(self, value): return numpy.ndarray([0, 0]) + def __ifloordiv__(self, value): return numpy.ndarray([0, 0]) + def __ilshift__(self, value): return numpy.ndarray([0, 0]) + def __imod__(self, value): return numpy.ndarray([0, 0]) + def __imul__(self, value): return numpy.ndarray([0, 0]) + def __int__(self): return 0 + def __invert__(self): return numpy.ndarray([0, 0]) + def __ior__(self, value): return numpy.ndarray([0, 0]) + def __ipow__(self, value): return numpy.ndarray([0, 0]) + def __irshift__(self, value): return numpy.ndarray([0, 0]) + def __isub__(self, value): return numpy.ndarray([0, 0]) + def __itruediv__(self, value): return numpy.ndarray([0, 0]) + def __ixor__(self, value): return numpy.ndarray([0, 0]) + def __le__(self, value): return numpy.ndarray([0, 0]) + def __len__(self): return 1 + def __lshift__(self, value): return numpy.ndarray([0, 0]) + def __lt__(self, value): return numpy.ndarray([0, 0]) + def __matmul__(self, value): return numpy.ndarray([0, 0]) + def __mod__(self, value): return numpy.ndarray([0, 0]) + def __mul__(self, value): return numpy.ndarray([0, 0]) + def __ne__(self, value): return numpy.ndarray([0, 0]) + def __neg__(self): return numpy.ndarray([0, 0]) + def __or__(self): return numpy.ndarray([0, 0]) + def __pos__(self): return numpy.ndarray([0, 0]) + def __pow__(self): return numpy.ndarray([0, 0]) + def __repr__(self): return str() + def __rshift__(self): return numpy.ndarray([0, 0]) + def __setitem__(self, key, value): return uninferable + def __str__(self): return str() + def __sub__(self, value): return numpy.ndarray([0, 0]) + def __truediv__(self, value): return numpy.ndarray([0, 0]) + def __xor__(self, value): return numpy.ndarray([0, 0]) + def all(self, axis=None, out=None, keepdims=False): return np.ndarray([0, 0]) + def any(self, axis=None, out=None, keepdims=False): return np.ndarray([0, 0]) + def argmax(self, axis=None, out=None): return np.ndarray([0, 0]) + def argmin(self, axis=None, out=None): return np.ndarray([0, 0]) + def argpartition(self, kth, axis=-1, kind='introselect', order=None): return np.ndarray([0, 0]) + def argsort(self, axis=-1, kind='quicksort', order=None): return np.ndarray([0, 0]) + def astype(self, dtype, order='K', casting='unsafe', subok=True, copy=True): return np.ndarray([0, 0]) + def byteswap(self, inplace=False): return np.ndarray([0, 0]) + def choose(self, choices, out=None, mode='raise'): return np.ndarray([0, 0]) + def clip(self, min=None, max=None, out=None): return np.ndarray([0, 0]) + def compress(self, condition, axis=None, out=None): return np.ndarray([0, 0]) + def conj(self): return np.ndarray([0, 0]) + def conjugate(self): return np.ndarray([0, 0]) + def copy(self, order='C'): return np.ndarray([0, 0]) + def cumprod(self, axis=None, dtype=None, out=None): return np.ndarray([0, 0]) + def cumsum(self, axis=None, dtype=None, out=None): return np.ndarray([0, 0]) + def diagonal(self, offset=0, axis1=0, axis2=1): return np.ndarray([0, 0]) + def dot(self, b, out=None): return np.ndarray([0, 0]) + def dump(self, file): return None + def dumps(self): return str() + def fill(self, value): return None + def flatten(self, order='C'): return np.ndarray([0, 0]) + def getfield(self, dtype, offset=0): return np.ndarray([0, 0]) + def item(self, *args): return uninferable + def itemset(self, *args): return None + def max(self, axis=None, out=None): return np.ndarray([0, 0]) + def mean(self, axis=None, dtype=None, out=None, keepdims=False): return np.ndarray([0, 0]) + def min(self, axis=None, out=None, keepdims=False): return np.ndarray([0, 0]) + def newbyteorder(self, new_order='S'): return np.ndarray([0, 0]) + def nonzero(self): return (1,) + def partition(self, kth, axis=-1, kind='introselect', order=None): return None + def prod(self, axis=None, dtype=None, out=None, keepdims=False): return np.ndarray([0, 0]) + def ptp(self, axis=None, out=None): return np.ndarray([0, 0]) + def put(self, indices, values, mode='raise'): return None + def ravel(self, order='C'): return np.ndarray([0, 0]) + def repeat(self, repeats, axis=None): return np.ndarray([0, 0]) + def reshape(self, shape, order='C'): return np.ndarray([0, 0]) + def resize(self, new_shape, refcheck=True): return None + def round(self, decimals=0, out=None): return np.ndarray([0, 0]) + def searchsorted(self, v, side='left', sorter=None): return np.ndarray([0, 0]) + def setfield(self, val, dtype, offset=0): return None + def setflags(self, write=None, align=None, uic=None): return None + def sort(self, axis=-1, kind='quicksort', order=None): return None + def squeeze(self, axis=None): return np.ndarray([0, 0]) + def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): return np.ndarray([0, 0]) + def sum(self, axis=None, dtype=None, out=None, keepdims=False): return np.ndarray([0, 0]) + def swapaxes(self, axis1, axis2): return np.ndarray([0, 0]) + def take(self, indices, axis=None, out=None, mode='raise'): return np.ndarray([0, 0]) + def tobytes(self, order='C'): return b'' + def tofile(self, fid, sep="", format="%s"): return None + def tolist(self, ): return [] + def tostring(self, order='C'): return b'' + def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None): return np.ndarray([0, 0]) + def transpose(self, *axes): return np.ndarray([0, 0]) + def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): return np.ndarray([0, 0]) + def view(self, dtype=None, type=None): return np.ndarray([0, 0]) + """ + node = astroid.extract_node(ndarray) + return node.infer(context=context) + + +def _looks_like_numpy_ndarray(node): + return isinstance(node, astroid.Attribute) and node.attrname == "ndarray" + + +astroid.MANAGER.register_transform( + astroid.Attribute, + astroid.inference_tip(infer_numpy_ndarray), + _looks_like_numpy_ndarray, +) |