summaryrefslogtreecommitdiff
path: root/venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py
diff options
context:
space:
mode:
authorSann Yay Aye2020-01-30 12:57:51 +0530
committerSann Yay Aye2020-01-30 12:57:51 +0530
commit190966e010e321e4df56d40104ec80467a870e53 (patch)
treef97ac913ec59a975ad64d5a3cd61e11923d98a69 /venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py
parent7ecaa6f103b2755dc3bb3fae10a0d7ab28162596 (diff)
downloadChemical-Simulator-GUI-190966e010e321e4df56d40104ec80467a870e53.tar.gz
Chemical-Simulator-GUI-190966e010e321e4df56d40104ec80467a870e53.tar.bz2
Chemical-Simulator-GUI-190966e010e321e4df56d40104ec80467a870e53.zip
undo&redo_implementation
Diffstat (limited to 'venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py')
-rw-r--r--venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py153
1 files changed, 153 insertions, 0 deletions
diff --git a/venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py b/venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py
new file mode 100644
index 0000000..8c231a3
--- /dev/null
+++ b/venv/Lib/site-packages/astroid/brain/brain_numpy_ndarray.py
@@ -0,0 +1,153 @@
+# Copyright (c) 2015-2016, 2018 Claudiu Popa <pcmanticore@gmail.com>
+# Copyright (c) 2016 Ceridwen <ceridwenv@gmail.com>
+# Copyright (c) 2017-2018 hippo91 <guillaume.peillex@gmail.com>
+
+# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
+# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
+
+
+"""Astroid hooks for numpy ndarray class."""
+
+import functools
+import astroid
+
+
+def infer_numpy_ndarray(node, context=None):
+ ndarray = """
+ class ndarray(object):
+ def __init__(self, shape, dtype=float, buffer=None, offset=0,
+ strides=None, order=None):
+ self.T = None
+ self.base = None
+ self.ctypes = None
+ self.data = None
+ self.dtype = None
+ self.flags = None
+ self.flat = None
+ self.imag = None
+ self.itemsize = None
+ self.nbytes = None
+ self.ndim = None
+ self.real = None
+ self.shape = None
+ self.size = None
+ self.strides = None
+
+ def __abs__(self): return numpy.ndarray([0, 0])
+ def __add__(self, value): return numpy.ndarray([0, 0])
+ def __and__(self, value): return numpy.ndarray([0, 0])
+ def __array__(self, dtype=None): return numpy.ndarray([0, 0])
+ def __array_wrap__(self, obj): return numpy.ndarray([0, 0])
+ def __contains__(self, key): return True
+ def __copy__(self): return numpy.ndarray([0, 0])
+ def __deepcopy__(self, memo): return numpy.ndarray([0, 0])
+ def __divmod__(self, value): return (numpy.ndarray([0, 0]), numpy.ndarray([0, 0]))
+ def __eq__(self, value): return numpy.ndarray([0, 0])
+ def __float__(self): return 0.
+ def __floordiv__(self): return numpy.ndarray([0, 0])
+ def __ge__(self, value): return numpy.ndarray([0, 0])
+ def __getitem__(self, key): return uninferable
+ def __gt__(self, value): return numpy.ndarray([0, 0])
+ def __iadd__(self, value): return numpy.ndarray([0, 0])
+ def __iand__(self, value): return numpy.ndarray([0, 0])
+ def __ifloordiv__(self, value): return numpy.ndarray([0, 0])
+ def __ilshift__(self, value): return numpy.ndarray([0, 0])
+ def __imod__(self, value): return numpy.ndarray([0, 0])
+ def __imul__(self, value): return numpy.ndarray([0, 0])
+ def __int__(self): return 0
+ def __invert__(self): return numpy.ndarray([0, 0])
+ def __ior__(self, value): return numpy.ndarray([0, 0])
+ def __ipow__(self, value): return numpy.ndarray([0, 0])
+ def __irshift__(self, value): return numpy.ndarray([0, 0])
+ def __isub__(self, value): return numpy.ndarray([0, 0])
+ def __itruediv__(self, value): return numpy.ndarray([0, 0])
+ def __ixor__(self, value): return numpy.ndarray([0, 0])
+ def __le__(self, value): return numpy.ndarray([0, 0])
+ def __len__(self): return 1
+ def __lshift__(self, value): return numpy.ndarray([0, 0])
+ def __lt__(self, value): return numpy.ndarray([0, 0])
+ def __matmul__(self, value): return numpy.ndarray([0, 0])
+ def __mod__(self, value): return numpy.ndarray([0, 0])
+ def __mul__(self, value): return numpy.ndarray([0, 0])
+ def __ne__(self, value): return numpy.ndarray([0, 0])
+ def __neg__(self): return numpy.ndarray([0, 0])
+ def __or__(self): return numpy.ndarray([0, 0])
+ def __pos__(self): return numpy.ndarray([0, 0])
+ def __pow__(self): return numpy.ndarray([0, 0])
+ def __repr__(self): return str()
+ def __rshift__(self): return numpy.ndarray([0, 0])
+ def __setitem__(self, key, value): return uninferable
+ def __str__(self): return str()
+ def __sub__(self, value): return numpy.ndarray([0, 0])
+ def __truediv__(self, value): return numpy.ndarray([0, 0])
+ def __xor__(self, value): return numpy.ndarray([0, 0])
+ def all(self, axis=None, out=None, keepdims=False): return np.ndarray([0, 0])
+ def any(self, axis=None, out=None, keepdims=False): return np.ndarray([0, 0])
+ def argmax(self, axis=None, out=None): return np.ndarray([0, 0])
+ def argmin(self, axis=None, out=None): return np.ndarray([0, 0])
+ def argpartition(self, kth, axis=-1, kind='introselect', order=None): return np.ndarray([0, 0])
+ def argsort(self, axis=-1, kind='quicksort', order=None): return np.ndarray([0, 0])
+ def astype(self, dtype, order='K', casting='unsafe', subok=True, copy=True): return np.ndarray([0, 0])
+ def byteswap(self, inplace=False): return np.ndarray([0, 0])
+ def choose(self, choices, out=None, mode='raise'): return np.ndarray([0, 0])
+ def clip(self, min=None, max=None, out=None): return np.ndarray([0, 0])
+ def compress(self, condition, axis=None, out=None): return np.ndarray([0, 0])
+ def conj(self): return np.ndarray([0, 0])
+ def conjugate(self): return np.ndarray([0, 0])
+ def copy(self, order='C'): return np.ndarray([0, 0])
+ def cumprod(self, axis=None, dtype=None, out=None): return np.ndarray([0, 0])
+ def cumsum(self, axis=None, dtype=None, out=None): return np.ndarray([0, 0])
+ def diagonal(self, offset=0, axis1=0, axis2=1): return np.ndarray([0, 0])
+ def dot(self, b, out=None): return np.ndarray([0, 0])
+ def dump(self, file): return None
+ def dumps(self): return str()
+ def fill(self, value): return None
+ def flatten(self, order='C'): return np.ndarray([0, 0])
+ def getfield(self, dtype, offset=0): return np.ndarray([0, 0])
+ def item(self, *args): return uninferable
+ def itemset(self, *args): return None
+ def max(self, axis=None, out=None): return np.ndarray([0, 0])
+ def mean(self, axis=None, dtype=None, out=None, keepdims=False): return np.ndarray([0, 0])
+ def min(self, axis=None, out=None, keepdims=False): return np.ndarray([0, 0])
+ def newbyteorder(self, new_order='S'): return np.ndarray([0, 0])
+ def nonzero(self): return (1,)
+ def partition(self, kth, axis=-1, kind='introselect', order=None): return None
+ def prod(self, axis=None, dtype=None, out=None, keepdims=False): return np.ndarray([0, 0])
+ def ptp(self, axis=None, out=None): return np.ndarray([0, 0])
+ def put(self, indices, values, mode='raise'): return None
+ def ravel(self, order='C'): return np.ndarray([0, 0])
+ def repeat(self, repeats, axis=None): return np.ndarray([0, 0])
+ def reshape(self, shape, order='C'): return np.ndarray([0, 0])
+ def resize(self, new_shape, refcheck=True): return None
+ def round(self, decimals=0, out=None): return np.ndarray([0, 0])
+ def searchsorted(self, v, side='left', sorter=None): return np.ndarray([0, 0])
+ def setfield(self, val, dtype, offset=0): return None
+ def setflags(self, write=None, align=None, uic=None): return None
+ def sort(self, axis=-1, kind='quicksort', order=None): return None
+ def squeeze(self, axis=None): return np.ndarray([0, 0])
+ def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): return np.ndarray([0, 0])
+ def sum(self, axis=None, dtype=None, out=None, keepdims=False): return np.ndarray([0, 0])
+ def swapaxes(self, axis1, axis2): return np.ndarray([0, 0])
+ def take(self, indices, axis=None, out=None, mode='raise'): return np.ndarray([0, 0])
+ def tobytes(self, order='C'): return b''
+ def tofile(self, fid, sep="", format="%s"): return None
+ def tolist(self, ): return []
+ def tostring(self, order='C'): return b''
+ def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None): return np.ndarray([0, 0])
+ def transpose(self, *axes): return np.ndarray([0, 0])
+ def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): return np.ndarray([0, 0])
+ def view(self, dtype=None, type=None): return np.ndarray([0, 0])
+ """
+ node = astroid.extract_node(ndarray)
+ return node.infer(context=context)
+
+
+def _looks_like_numpy_ndarray(node):
+ return isinstance(node, astroid.Attribute) and node.attrname == "ndarray"
+
+
+astroid.MANAGER.register_transform(
+ astroid.Attribute,
+ astroid.inference_tip(infer_numpy_ndarray),
+ _looks_like_numpy_ndarray,
+)