summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorprashantsinalkar2019-04-12 14:34:04 +0530
committerprashantsinalkar2019-04-12 14:34:04 +0530
commit80e2d559fc7185e63fb24f9ca58fa09782478f37 (patch)
treea8d93b368329c480ca6e7ef0174f1ed5e62c637d
parent584da40d620d29604faac899449feb01a956ec56 (diff)
downloadScilab-TBC-Uploads-1-80e2d559fc7185e63fb24f9ca58fa09782478f37.tar.gz
Scilab-TBC-Uploads-1-80e2d559fc7185e63fb24f9ca58fa09782478f37.tar.bz2
Scilab-TBC-Uploads-1-80e2d559fc7185e63fb24f9ca58fa09782478f37.zip
initial commit / add all books
-rw-r--r--3918/CH10/EX10.2/Ex10_2.sce12
-rw-r--r--3918/CH10/EX10.3/Ex10_3.sce39
-rw-r--r--3918/CH10/EX10.4/Ex10_4.sce36
-rw-r--r--3918/CH10/EX10.5/Ex10_5.sce16
-rw-r--r--3918/CH12/EX12.1/Ex12_1.sce13
-rw-r--r--3918/CH12/EX12.2/Ex12_2.sce15
-rw-r--r--3918/CH12/EX12.3/Ex12_3.sce17
-rw-r--r--3918/CH17/EX17.1/Ex17_1.sce32
-rw-r--r--3918/CH18/EX18.1/Ex18_1.sce13
-rw-r--r--3918/CH18/EX18.2/Ex18_2.sce31
-rw-r--r--3918/CH18/EX18.4/Ex18_4.sce18
-rw-r--r--3918/CH18/EX18.5/Ex18_5.sce17
-rw-r--r--3918/CH18/EX18.6/Ex18_6.sce21
-rw-r--r--3918/CH18/EX18.7/Ex18_7.sce20
-rw-r--r--3918/CH19/EX19.3/Ex19_3.sce18
-rw-r--r--3918/CH19/EX19.4/Ex19_4.sce23
-rw-r--r--3918/CH19/EX19.5/Ex19_5.sce27
-rw-r--r--3918/CH19/EX19.6/Ex19_6.sce13
-rw-r--r--3918/CH19/EX19.7/Ex19_7.sce29
-rw-r--r--3918/CH2/EX2.1/Ex2_1.sce21
-rw-r--r--3918/CH2/EX2.2/Ex2_2.sce13
-rw-r--r--3918/CH2/EX2.3/Ex2_3.sce14
-rw-r--r--3918/CH20/EX20.1/Ex20_1.sce56
-rw-r--r--3918/CH20/EX20.3/Ex20_3.sce16
-rw-r--r--3918/CH20/EX20.4/Ex20_4.sce14
-rw-r--r--3918/CH20/EX20.5/Ex20_5.sce52
-rw-r--r--3918/CH20/EX20.7/Ex20_7.sce29
-rw-r--r--3918/CH21/EX21.1/Ex21_1.sce28
-rw-r--r--3918/CH21/EX21.2/Ex21_2.sce12
-rw-r--r--3918/CH21/EX21.3/Ex21_3.sce17
-rw-r--r--3918/CH21/EX21.4/Ex21_4.sce27
-rw-r--r--3918/CH22/EX22.1/Ex22_1.sce38
-rw-r--r--3918/CH22/EX22.2/Ex22_2.sce42
-rw-r--r--3918/CH22/EX22.3/Ex22_3.sce27
-rw-r--r--3918/CH22/EX22.4/Ex22_4.sce32
-rw-r--r--3918/CH22/EX22.5/Ex22_5.sce34
-rw-r--r--3918/CH22/EX22.6/Ex22_6.sce22
-rw-r--r--3918/CH22/EX22.7/Ex22_7.sce44
-rw-r--r--3918/CH23/EX23.1/Ex23_1.sce29
-rw-r--r--3918/CH23/EX23.2/Ex23_2.sce37
-rw-r--r--3918/CH23/EX23.5/Ex23_5.sce22
-rw-r--r--3918/CH24/EX24.2/Ex24_2.sce32
-rw-r--r--3918/CH24/EX24.3/Ex24_3.sce16
-rw-r--r--3918/CH25/EX25.3/Ex25_3.sce40
-rw-r--r--3918/CH25/EX25.4/Ex25_4.sce27
-rw-r--r--3918/CH26/EX26.1/Ex26_1.sce21
-rw-r--r--3918/CH26/EX26.2/Ex26_2.sce18
-rw-r--r--3918/CH26/EX26.3/Ex26_3.sce29
-rw-r--r--3918/CH29/EX29.1/Ex29_1.sce21
-rw-r--r--3918/CH29/EX29.2/Ex29_2.sce19
-rw-r--r--3918/CH30/EX30.2/Ex30_2.sce39
-rw-r--r--3918/CH30/EX30.3/Ex30_3.sce30
-rw-r--r--3918/CH33/EX33.2/Ex33_2.sce32
-rw-r--r--3918/CH33/EX33.3/Ex33_3.sce37
-rw-r--r--3918/CH33/EX33.4/Ex33_4.sce18
-rw-r--r--3918/CH35/EX35.1/Ex35_1.sce14
-rw-r--r--3918/CH35/EX35.2/Ex35_2.sce17
-rw-r--r--3918/CH36/EX36.1/Ex36_1.sce32
-rw-r--r--3918/CH36/EX36.3/Ex36_3.sce31
-rw-r--r--3918/CH36/EX36.4/Ex36_4.sce23
-rw-r--r--3918/CH37/EX37.2/Ex37_2.sce23
-rw-r--r--3918/CH38/EX38.1/Ex38_1.sce39
-rw-r--r--3918/CH4/EX4.1/Ex4_1.sce27
-rw-r--r--3918/CH4/EX4.2/Ex4_2.sce27
-rw-r--r--3918/CH4/EX4.3/Ex4_3.sce38
-rw-r--r--3918/CH4/EX4.4/Ex4_4.sce37
-rw-r--r--3918/CH40/EX40.2/Ex40_2.sce12
-rw-r--r--3918/CH40/EX40.3/Ex40_3.sce14
-rw-r--r--3918/CH41/EX41.1/Ex41_1.sce13
-rw-r--r--3918/CH41/EX41.2/Ex41_2.sce16
-rw-r--r--3918/CH41/EX41.3/Ex41_3.sce32
-rw-r--r--3918/CH41/EX41.4/Ex41_4.sce26
-rw-r--r--3918/CH41/EX41.5/Ex41_5.sce24
-rw-r--r--3918/CH42/EX42.6/Ex42_6.sce26
-rw-r--r--3918/CH42/EX42.7/Ex42_7.sce29
-rw-r--r--3918/CH42/EX42.8/Ex42_8.sce27
-rw-r--r--3918/CH6/EX6.1/Ex6_1.sce16
-rw-r--r--3918/CH6/EX6.2/Ex6_2.sce18
-rw-r--r--3918/CH7/EX7.1/Ex7_1.sce28
-rw-r--r--3918/CH7/EX7.2/Ex7_2.sce44
80 files changed, 2048 insertions, 0 deletions
diff --git a/3918/CH10/EX10.2/Ex10_2.sce b/3918/CH10/EX10.2/Ex10_2.sce
new file mode 100644
index 000000000..7d684490b
--- /dev/null
+++ b/3918/CH10/EX10.2/Ex10_2.sce
@@ -0,0 +1,12 @@
+//Example 10_2
+clc;
+clear;
+close;
+
+//Given data :
+T90=0.848;// Time Factor Corresponding to 90% consolidation
+t90=16;// Time in years
+T=24/1000;// Sample thickness in m
+H=T/2;// Drainage path in m
+cv=T90*H*H/t90;// Coefficient of Consolidation of the soil in m^2/min
+disp(cv,"Coefficient of Consolidation of the soil in m^2/min");
diff --git a/3918/CH10/EX10.3/Ex10_3.sce b/3918/CH10/EX10.3/Ex10_3.sce
new file mode 100644
index 000000000..e1232c21c
--- /dev/null
+++ b/3918/CH10/EX10.3/Ex10_3.sce
@@ -0,0 +1,39 @@
+//Example 10_3
+clc;
+clear;
+close;
+
+//Given data :
+tc=12;// Thickness of clay layer in m
+ts=5;// Thickness of dense sand layer in m
+tf=5;// Height of fill in m
+gc=16;// Unit weight of clay layer in kN/m^3
+gs=20;// Unit weight of dense sand layer in kN/m^3
+gf=18;// Unit weight of fill in kN/m^3
+D=6;// Thickness in m
+
+// Sub-layer 1
+D1=3;// Depth to middle of sub-layer 1 in m
+Is1=(gs*ts)+(D*D1);// Inital sigma-dash at middle of sub-layer 1 in kN/m^2
+e01=1.74;// e0 at middle of sub-layer 1 (From Fig. 10.8)
+Ds1=gf*tf;// Difference between final sigma-dash and initial sigma-dash in kN/m^2
+Fs1=Is1+Ds1;// Final sigma-dash at middle of sub-layer 1 in kN/m^2
+av1=9/10000;// in m^/kN
+mv1=av1/(1+e01);// Coefficient of volume compressibility of sub-layer 1
+S1=mv1*D*Ds1;// Settlement of sub-layer 1 in m
+disp(S1,"Settlement of sub-layer 1 in m");
+
+// Sub-layer 2
+D2=9;// Depth to middle of sub-layer 2 in m
+Is2=(gs*ts)+(D*D2);// Inital sigma-dash at middle of sub-layer 2 in kN/m^2
+e02=1.70;// e0 at middle of sub-layer 2 (From Fig. 10.8)
+Ds2=gf*tf;// Difference between final sigma-dash and initial sigma-dash in kN/m^2
+Fs2=Is2+Ds2;// Final sigma-dash at middle of sub-layer 2 in kN/m^2
+av2=8/10000;// in m^/kN
+mv2=av2/(1+e02);// Coefficient of volume compressibility of sub-layer 2
+S2=mv2*D*Ds2;// Settlement of sub-layer 2 in m
+disp(S2,"Settlement of sub-layer 2 in m");
+
+TS=S1+S2;// Total settlement of sub-layers in m
+disp(TS,"Total settlement of sub-layers in m");
+// The answers vary due to round off error
diff --git a/3918/CH10/EX10.4/Ex10_4.sce b/3918/CH10/EX10.4/Ex10_4.sce
new file mode 100644
index 000000000..58771e7d4
--- /dev/null
+++ b/3918/CH10/EX10.4/Ex10_4.sce
@@ -0,0 +1,36 @@
+//Example 10_4
+clc;
+clear;
+close;
+
+//Given data :
+tc=12;// Thickness of clay layer in m
+ts=5;// Thickness of dense sand layer in m
+tf=5;// Height of fill in m
+gc=16;// Unit weight of clay layer in kN/m^3
+gs=20;// Unit weight of dense sand layer in kN/m^3
+gf=18;// Unit weight of fill in kN/m^3
+D=6;// Thickness in m
+Cc=0.3;// Compression Index
+
+// Sub-layer 1
+D1=3;// Depth to middle of sub-layer 1 in m
+Is1=(gs*ts)+(D*D1);// Inital sigma-dash at middle of sub-layer 1 in kN/m^2
+e01=1.74;// e0 at middle of sub-layer 1 (From Fig. 10.8)
+Ds1=gf*tf;// Difference between final sigma-dash and initial sigma-dash in kN/m^2
+Fs1=Is1+Ds1;// Final sigma-dash at middle of sub-layer 1 in kN/m^2
+S1=(Cc*log10(Fs1/Is1)*D)/(1+e01);// // Settlement of sub-layer 1 in m
+disp(S1,"Settlement of sub-layer 1 in m");
+
+// Sub-layer 2
+D2=9;// Depth to middle of sub-layer 2 in m
+Is2=(gs*ts)+(D*D2);// Inital sigma-dash at middle of sub-layer 2 in kN/m^2
+e02=1.70;// e0 at middle of sub-layer 2 (From Fig. 10.8)
+Ds2=gf*tf;// Difference between final sigma-dash and initial sigma-dash in kN/m^2
+Fs2=Is2+Ds2;// Final sigma-dash at middle of sub-layer 2 in kN/m^2
+S2=(Cc*log10(Fs2/Is2)*D)/(1+e02);// // Settlement of sub-layer 2 in m
+disp(S2,"Settlement of sub-layer 2 in m");
+
+TS=S1+S2;// Total settlement of sub-layers in m
+disp(TS,"Total settlement of sub-layers in m");
+// The answers vary due to round off error
diff --git a/3918/CH10/EX10.5/Ex10_5.sce b/3918/CH10/EX10.5/Ex10_5.sce
new file mode 100644
index 000000000..6d495993d
--- /dev/null
+++ b/3918/CH10/EX10.5/Ex10_5.sce
@@ -0,0 +1,16 @@
+//Example 10_5
+clc;
+clear;
+close;
+
+//Given data :
+C=2/1000000;// Coefficient of Consolidation in m^2/min
+ts=1;// Thickness of sand layer in m
+H=6;// Thicknes of clay layer in m
+T50=0.197;// Time Factor Corresponding to 50% consolidation
+T90=0.848;// Time Factor Corresponding to 90% consolidation
+t50=T50*H*H/(C*60*24*30*12);// Time taken for 50% consolidation to take place in years
+t90=T90*H*H/(C*60*24*30*12);// Time taken for 90% consolidation to take place in years
+disp(t50,"Time taken for 50% consolidation to take place in years");
+disp(t90,"Time taken for 90% consolidation to take place in years");
+// The answers vary due to round off error
diff --git a/3918/CH12/EX12.1/Ex12_1.sce b/3918/CH12/EX12.1/Ex12_1.sce
new file mode 100644
index 000000000..628671eb2
--- /dev/null
+++ b/3918/CH12/EX12.1/Ex12_1.sce
@@ -0,0 +1,13 @@
+//Example 12_1
+clc;
+clear;
+close;
+
+//Given data :
+// With reference to Fig 12.14
+a=100;// (pi1 - pi3)f/2 in kN/m^2
+angle=30;// angle in degree
+towff=150*tand(angle);// towff in kN/m^2
+err=(a-towff)/towff*100;// Error in percentage
+disp(err,"Error in percentage");
+// The answers vary due to round off error
diff --git a/3918/CH12/EX12.2/Ex12_2.sce b/3918/CH12/EX12.2/Ex12_2.sce
new file mode 100644
index 000000000..74cf1792f
--- /dev/null
+++ b/3918/CH12/EX12.2/Ex12_2.sce
@@ -0,0 +1,15 @@
+//Example 12_2
+clc;
+clear;
+close;
+
+//Given data :
+// With reference to Fig 12.15
+ecs=100;// Effective Confining Stress in kN/m^2
+Af=1;// Assumption
+angle=30;// Angle in degree
+Sd=ecs*(sind(angle)/(1-sind(angle)));// Shear strength under drained condition in kN/m^2
+Su=ecs*(sind(angle)/(1-(1-(2*Af))*sind(angle)));// Shear strength under undrained condition in kN/m^2
+disp(Sd,"Shear strength under drained condition in kN/m^2");
+disp(Su,"Shear strength under undrained condition in kN/m^2");
+// The answers vary due to round off error
diff --git a/3918/CH12/EX12.3/Ex12_3.sce b/3918/CH12/EX12.3/Ex12_3.sce
new file mode 100644
index 000000000..552fff685
--- /dev/null
+++ b/3918/CH12/EX12.3/Ex12_3.sce
@@ -0,0 +1,17 @@
+//Example 12_3
+clc;
+clear;
+close;
+
+//Given data :
+// With reference to Fig 12.16
+ecs=100;// Effective Confining Stress in kN/m^2
+Af=-0.5;// Assumption
+cdash=50;// cdash in kN/m^2
+angle=25;// Angle in degree
+Sd=(ecs+(cdash*cotd(angle)))*(sind(angle)/(1-sind(angle)));// Shear strength under drained condition in kN/m^2
+Su=(ecs+(cdash*cotd(angle)))*(sind(angle)/(1-(1-(2*Af))*sind(angle)));// Shear strength under undrained condition in kN/m^2
+disp(Sd,"Shear strength under drained condition in kN/m^2");
+disp(Su,"Shear strength under undrained condition in kN/m^2");
+// The answers vary due to round off error
+// The answer provided in the textbook is wrong
diff --git a/3918/CH17/EX17.1/Ex17_1.sce b/3918/CH17/EX17.1/Ex17_1.sce
new file mode 100644
index 000000000..b7f5f6a14
--- /dev/null
+++ b/3918/CH17/EX17.1/Ex17_1.sce
@@ -0,0 +1,32 @@
+//Example 17_1
+clc;
+clear;
+close;
+
+//Given data :
+disp("a)");
+uw=20;// Unit weight of sand in kN/m^3
+d=2;// Depth in m
+pi=uw*d;// Magnitude of pi at 2 m depth in kN/m^2
+u=10*(d-1);// Magnitude of u at 2 m depth in kN/m^2
+pidash=pi-u;// magnitude of pidash at 2 m depth in kN/m2
+CN=1.4;// Value of CN from Fig 17.14
+N=5;// Observed value of N
+Ndash=CN*N;// value of Ndash
+// 7<15 therefore no dilatency correction needs to be applied
+Ndashdash=Ndash;// Correct value of N
+disp(Ndashdash,"Correct value of N is");
+
+disp("b)");
+uw=20;// Unit weight of sand in kN/m^3
+d=15;// Depth in m
+pi=uw*d;// Magnitude of pi at 15 m depth in kN/m^2
+u=10*(d-1);// Magnitude of u at 15 m depth in kN/m^2
+pidash=pi-u;// magnitude of pidash at 15 m depth in kN/m2
+CN=0.82;// Value of CN from Fig 17.14
+N=21;// Observed value of N
+Ndash=CN*N;// value of Ndash
+// 17>15 therefore dilatency correction needs to be applied
+Ndashdash=15+((Ndash-15)/2);// Correct value of N
+disp(Ndashdash,"Correct value of N is");
+// The answers vary due to round off error
diff --git a/3918/CH18/EX18.1/Ex18_1.sce b/3918/CH18/EX18.1/Ex18_1.sce
new file mode 100644
index 000000000..63505a637
--- /dev/null
+++ b/3918/CH18/EX18.1/Ex18_1.sce
@@ -0,0 +1,13 @@
+//Example 18_1
+clc;
+clear;
+close;
+
+//Given data :
+k=1/100000000;// Permeability in m/sec
+L=10;// Thickness of clay layer in m
+A=1;// Lake bed area in m^2
+DH=10;// Difference in height in m
+Q=k*(DH/L)*A*60*60;// Discharge in m^3/hr
+disp(Q,"Discharge in m^3/hr");
+// The answers vary due to round off error
diff --git a/3918/CH18/EX18.2/Ex18_2.sce b/3918/CH18/EX18.2/Ex18_2.sce
new file mode 100644
index 000000000..f6db2b7e2
--- /dev/null
+++ b/3918/CH18/EX18.2/Ex18_2.sce
@@ -0,0 +1,31 @@
+//Example 18_2
+clc;
+clear;
+close;
+
+//Given data :
+// Clay
+k=1/1000000000;// Permeability in m/sec
+L=0.5;// Thickness of clay layer in m
+A=100;// Lake bed area in mm^2
+DH=1;// Difference in height in m
+Q1=k*(DH/L)*A*1000*60*60;// Discharge in clay in mm^3
+disp(Q1,"Discharge in clay in mm^3");
+
+// Silt
+k=1/1000000;// Permeability in m/sec
+L=0.5;// Thickness of clay layer in m
+A=100;// Lake bed area in mm^2
+DH=1;// Difference in height in m
+Q2=k*(DH/L)*A*1000*60*60;// Discharge in silt in mm^3
+disp(Q2,"Discharge in silt in mm^3");
+
+// Sand
+k=1/10000;// Permeability in m/sec
+L=0.5;// Thickness of clay layer in m
+A=100;// Lake bed area in mm^2
+DH=1;// Difference in height in m
+Q3=k*(DH/L)*A*1000*60*60;// Discharge in sand in mm^3
+disp(Q3,"Discharge in sand in mm^3");
+TF=Q1+Q2+Q3;// Total flow in mm^3
+disp(TF,"Total flow in mm^3");
diff --git a/3918/CH18/EX18.4/Ex18_4.sce b/3918/CH18/EX18.4/Ex18_4.sce
new file mode 100644
index 000000000..37ef711ad
--- /dev/null
+++ b/3918/CH18/EX18.4/Ex18_4.sce
@@ -0,0 +1,18 @@
+//Example 18_4
+clc;
+clear;
+close;
+
+//Given data :
+k=1/100000;// Permeability in m/sec
+nf=3;//
+nd=10.5;//
+H1=5.5;// Height 1 in m
+H2=0.25;// Height 2 in m
+DH=H1-H2;// Difference in height in m
+Q=k*DH*(nf/nd);// Discharge in mm^3/sec
+disp(Q,"Discharge in mm^3/sec");
+Lgh=0.55;// Length in m
+EG=(DH/(nd*Lgh));// Exit gradient along GH
+disp(EG,"Exit gradient along GH is");
+// The answers vary due to round off error
diff --git a/3918/CH18/EX18.5/Ex18_5.sce b/3918/CH18/EX18.5/Ex18_5.sce
new file mode 100644
index 000000000..307082c99
--- /dev/null
+++ b/3918/CH18/EX18.5/Ex18_5.sce
@@ -0,0 +1,17 @@
+//Example 18_5
+clc;
+clear;
+close;
+
+//Given data :
+k=1/10000000;// Permeability in m/sec
+nf=3;//
+nd=12;//
+H1=26;// Height 1 in m
+H2=2;// Height 2 in m
+DH=H1-H2;// Difference in height in m
+Q=k*DH*(nf/nd);// Discharge in mm^3/sec
+disp(Q,"Discharge in mm^3/sec");
+EG=1.5;// Exit gradient at the filter drain
+disp("The exit gradient is more than 1.0. But this is no cause for concern because the direction of flow is downward");
+// The answers vary due to round off error
diff --git a/3918/CH18/EX18.6/Ex18_6.sce b/3918/CH18/EX18.6/Ex18_6.sce
new file mode 100644
index 000000000..236d35a84
--- /dev/null
+++ b/3918/CH18/EX18.6/Ex18_6.sce
@@ -0,0 +1,21 @@
+//Example 18_6
+clc;
+clear;
+close;
+
+//Given data :
+Ta=12;// Thickeness of aquifier in m
+Tg=2;// Thickness of ground water table in m
+H=Ta-Tg;// Height between aquifier and ground water table in m
+R=200;// Radius of influence in m
+hA=5;// Height at point A in m
+k=2/100000;// Permeability of soil in m/sec
+// 1 m below excavation level at 6 m below ground surface)
+xL=8;// Distance from point A to each well in m
+xM=8;// Distance from point A to each well in m
+xN=8;// Distance from point A to each well in m
+xO=8;// Distance from point A to each well in m
+N=4;// Total number of wells
+Q=(((H^2)-(hA^2))*3.14*k)/(4*log(R/xL));// Discharge of water from each well in m^3/s
+disp(Q,"Discharge of water from each well in m^3/s");
+// The answers vary due to round off error
diff --git a/3918/CH18/EX18.7/Ex18_7.sce b/3918/CH18/EX18.7/Ex18_7.sce
new file mode 100644
index 000000000..28f4d9bbb
--- /dev/null
+++ b/3918/CH18/EX18.7/Ex18_7.sce
@@ -0,0 +1,20 @@
+//Example 18_7
+clc;
+clear;
+close;
+
+//Given data :
+Q=36.6/100000;// Discharge in m^3/sec
+Ta=12;// Thickeness of aquifier in m
+Tg=2;// Thickness of ground water table in m
+H=Ta-Tg;// Height between aquifier and ground water table in m
+R=200;// Radius of influence in m
+rw=0.150/2;// Radius of each well in m
+k=2/100000;// Permeability of soil in m/sec
+// 1 m below excavation level at 6 m below ground surface)
+xM=10;// Distance from well L to well M in m
+xN=16;// Distance from well L to well N in m
+xO=10;// Distance from well L to well O in m
+hw=sqrt((H^2)-((Q/(3.14*k))*(log(R/rw)+log(R/xM)+log(R/xN)+log(R/xO))));// Water level in each well in m
+disp(hw,"Water level in each well in m");
+// The answers vary due to round off error
diff --git a/3918/CH19/EX19.3/Ex19_3.sce b/3918/CH19/EX19.3/Ex19_3.sce
new file mode 100644
index 000000000..91a7b33c2
--- /dev/null
+++ b/3918/CH19/EX19.3/Ex19_3.sce
@@ -0,0 +1,18 @@
+//Example 19_3
+clc;
+clear;
+close;
+
+//Given data :
+// The clay is overconsolidated
+// Assume lambda from Table 19.3
+
+// assumption 1
+lambda=0.5;
+cs=100*lambda;// Corrected settlement for 0.5 lambda value in mm
+disp(cs,"Corrected settlement for 0.5 lambda value in mm");
+
+// assumption 2
+lambda=0.6;
+cs=100*lambda;// Corrected settlement for 0.6 lambda value in mm
+disp(cs,"Corrected settlement for 0.6 lambda value in mm");
diff --git a/3918/CH19/EX19.4/Ex19_4.sce b/3918/CH19/EX19.4/Ex19_4.sce
new file mode 100644
index 000000000..6acbf0c00
--- /dev/null
+++ b/3918/CH19/EX19.4/Ex19_4.sce
@@ -0,0 +1,23 @@
+//Example 19_4
+clc;
+clear;
+close;
+
+//Given data :
+E=5;// Undrained modulus of clay in N/mm^2
+mu=0.5;
+B=2;
+q=150;
+ce=1.36;// L/B = 1.5 at centre is 1.36
+co=0.68;// L/B = 1.5 at centre is 0.68
+rhoece=q*B*(1-(mu^2))*(ce/E);// Elastic settlement at centre in mm
+disp(rhoece,"Elastic settlement at centre in mm");
+rhoeco=q*B*(1-(mu^2))*(co/E);// Elastic settlement at corner in mm
+disp(rhoeco,"Elastic settlement at corner in mm");
+AVG=(rhoece+rhoeco)/2;// Average elastic settlement in mm
+disp(AVG,"Average elastic settlement in mm");
+// Consolidated settlement range is 566 mm to 629 mm
+CS=600;// Consolidated settlement in mm
+P=(AVG)*100/CS;
+disp(P,"Elastic settlement is less than consolidated settlement in % by");
+// The answers vary due to round off error
diff --git a/3918/CH19/EX19.5/Ex19_5.sce b/3918/CH19/EX19.5/Ex19_5.sce
new file mode 100644
index 000000000..613b03479
--- /dev/null
+++ b/3918/CH19/EX19.5/Ex19_5.sce
@@ -0,0 +1,27 @@
+//Example 19_5
+clc;
+clear;
+close;
+
+//Given data :
+Su=150;// Average undrained strength in kN/m^2
+E=300*Su/1000;//Undrained modulus of soil in N/mm^2
+disp("(i)");
+B=5;
+q=100;
+mu=0.35;
+ce=1.12;// L/B = 1.5 at centre is 1.12
+rhoece=q*B*(1-(mu^2))*(ce/E);// Elastic settlement at centre in mm
+disp(rhoece," Elastic settlement at centre in mm");
+// The answers vary due to round off error
+
+disp("(ii)");
+E1=30;// Undrained modulus of sand in N/mm^2
+h1=10;// Depth1 in m
+E2=60;// Undrained modulus of sand in N/mm^2
+h2=15;// Depth2 in m
+Eavg=((E1*h1)+(E2*h2))/(h1+h2)*1000;// Average Undrained modulus in kN/m^2
+mu=.3;
+rhoece=q*B*(1-(mu^2))*(ce/E);// Elastic settlement at centre in mm
+disp(rhoece," Elastic settlement at centre in mm");
+// The answers vary due to round off error
diff --git a/3918/CH19/EX19.6/Ex19_6.sce b/3918/CH19/EX19.6/Ex19_6.sce
new file mode 100644
index 000000000..accdbaa40
--- /dev/null
+++ b/3918/CH19/EX19.6/Ex19_6.sce
@@ -0,0 +1,13 @@
+//Example 19_6
+clc;
+clear;
+close;
+
+//Given data :
+AS=0.8*60;// Average settlement in mm
+DF=0.87;// Depth Factor
+CS=600*DF;// Consolidation Settlement corrected for depth in mm
+disp(CS,"Consolidation Settlement corrected for depth in mm");
+ES=AS*DF;// Elastic Settlement corrected for both rigidity and depth in mm
+disp(ES,"Elastic Settlement corrected for both rigidity and depth in mm");
+// The answers vary due to round off error
diff --git a/3918/CH19/EX19.7/Ex19_7.sce b/3918/CH19/EX19.7/Ex19_7.sce
new file mode 100644
index 000000000..30a257663
--- /dev/null
+++ b/3918/CH19/EX19.7/Ex19_7.sce
@@ -0,0 +1,29 @@
+//Example 19_7
+clc;
+clear;
+close;
+
+//Given data :
+E=60;//Undrained modulus of soil in N/mm^2
+disp("(a)");
+B=20;
+q=150;
+mu=0.3;
+I=0.38;// Influence factor
+rhoece=q*B*(1-(mu^2))*(I/E);// Elastic settlement at centre in mm
+disp(rhoece," Elastic settlement at centre in mm");
+RF=0.8;// Rigidity Factor
+a=1;
+crhoece=rhoece*RF*a;// Corrected Elastic settlement at centre in mm
+disp(crhoece," Corrected Elastic settlement at centre in mm");
+// The answers vary due to round off error
+
+disp("(b)");
+I=1.12;// Influence factor
+rhoece=q*B*(1-(mu^2))*(I/E);// Elastic settlement at centre in mm
+disp(rhoece," Elastic settlement at centre in mm");
+RF=0.8;// Rigidity Factor
+a=1;
+crhoece=rhoece*RF*a;// Corrected Elastic settlement at centre in mm
+disp(crhoece," Corrected Elastic settlement at centre in mm");
+// The answer provided in the textbook is wrong
diff --git a/3918/CH2/EX2.1/Ex2_1.sce b/3918/CH2/EX2.1/Ex2_1.sce
new file mode 100644
index 000000000..171b206f4
--- /dev/null
+++ b/3918/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,21 @@
+//Example 2_1
+clc;
+clear;
+close;
+
+//Given data :
+d=38;// Diameter of soil sample in mm
+h=76;// Height of soil sample in mm
+ww=1.15;// Wet weight of soil sample in N
+dw=0.5;// Dry weight of soil sample in N
+G=2.7/100000;// Specific gravity of soil sample in
+W=ww-dw;// void weight in N
+w=(W/dw)*100;// Water content in percentage
+disp(w,"Water content in percentage is");
+V=86200;// Volume in mm^3
+Vs=W/G;// Volume of solids on mm^3
+Vv=67.7*1000;// Volume of voids in mm^3
+Vw=65*1000;// Volume of water in mm^3
+S=(Vw/Vv)*100;// Degree of saturation in percentage
+disp(S,"Degree of saturation in percentage is");
+// The answers vary due to round off error
diff --git a/3918/CH2/EX2.2/Ex2_2.sce b/3918/CH2/EX2.2/Ex2_2.sce
new file mode 100644
index 000000000..7affe61d3
--- /dev/null
+++ b/3918/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,13 @@
+//Example 2_2
+clc;
+clear;
+close;
+
+//Given data :
+Vv=67.7*1000;// Volume of voids in mm^3
+Vs=18.5*1000;// Volume of solids in mm63
+e=Vv/Vs;// Void ratio (no unit)
+disp(e,"Void ratio is");
+n=e/(1+e);// Porosity
+disp(n,"Porosity is");
+// The answers vary due to round off error
diff --git a/3918/CH2/EX2.3/Ex2_3.sce b/3918/CH2/EX2.3/Ex2_3.sce
new file mode 100644
index 000000000..2b0dfb975
--- /dev/null
+++ b/3918/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,14 @@
+//Example 2_3
+clc;
+clear;
+close;
+
+//Given data :
+W=1.15/1000;// Wet weight in kN
+V=86.2/1000000;// Volume in m^3
+gammat=W/V;// Total unit weight in kN/m^3
+disp(gammat,"Total unit weight in kN/m^3 is");
+Ws=0.5/1000;// Dry weight in kN
+gammad=Ws/V;// Dry unit weight in kN/m^3
+disp(gammad,"Dry unit weight in kN/m^3 is");
+// The answers vary due to round off error
diff --git a/3918/CH20/EX20.1/Ex20_1.sce b/3918/CH20/EX20.1/Ex20_1.sce
new file mode 100644
index 000000000..0442a6c84
--- /dev/null
+++ b/3918/CH20/EX20.1/Ex20_1.sce
@@ -0,0 +1,56 @@
+//Example 20_1
+clc;
+clear;
+close;
+
+//Given data :
+disp("a)- Very deep water table");
+B=2;// Width of foundation in m
+Df=1;// Depth of foundation in m
+gammat=18;// Unit weight of soil in kN/m^2
+teta=35;// Angle in degree
+Nq=41;// Bearing capacity factor
+Ng=42;// Bearing capacity factor
+qult=(Df*gammat*Nq)+(0.5*gammat*B*Ng);// Ultimate bearing capacity for footing in sand in kN/m^2
+disp(qult," Ultimate bearing capacity for footing in sand in kN/m^2");
+
+disp("b)- Very deep water table");
+B=2;// Width of foundation in m
+Df=2;// Depth of foundation in m
+gammat=18;// Unit weight of soil in kN/m^2
+teta=35;// Angle in degree
+Nq=41;// Bearing capacity factor
+Ng=42;// Bearing capacity factor
+qult=(Df*gammat*Nq)+(0.5*gammat*B*Ng);// Ultimate bearing capacity for footing in sand in kN/m^2
+disp(qult," Ultimate bearing capacity for footing in sand in kN/m^2");
+
+disp("c)- Very deep water table");
+B=4;// Width of foundation in m
+Df=1;// Depth of foundation in m
+gammat=18;// Unit weight of soil in kN/m^2
+teta=35;// Angle in degree
+Nq=41;// Bearing capacity factor
+Ng=42;// Bearing capacity factor
+qult=(Df*gammat*Nq)+(0.5*gammat*B*Ng);// Ultimate bearing capacity for footing in sand in kN/m^2
+disp(qult," Ultimate bearing capacity for footing in sand in kN/m^2");
+
+disp("d)- Ground surface water table");
+B=2;// Width of foundation in m
+Df=1;// Depth of foundation in m
+gammat=18;// Unit weight of soil in kN/m^2
+teta=35;// Angle in degree
+Nq=41;// Bearing capacity factor
+Ng=42;// Bearing capacity factor
+qult=(Df*gammat*Nq)+(0.5*gammat*B*Ng);// Ultimate bearing capacity for footing in sand in kN/m^2
+disp(qult," Ultimate bearing capacity for footing in sand in kN/m^2");
+// The answer provided in the textbook is wrong
+
+disp("e)- Very deep water table");
+B=2;// Width of foundation in m
+Df=1;// Depth of foundation in m
+gammat=20;// Unit weight of soil in kN/m^2
+teta=37.5;// Angle in degree
+Nq=61;// Bearing capacity factor
+Ng=86;// Bearing capacity factor
+qult=(Df*gammat*Nq)+(0.5*gammat*B*Ng);// Ultimate bearing capacity for footing in sand in kN/m^2
+disp(qult," Ultimate bearing capacity for footing in sand in kN/m^2");
diff --git a/3918/CH20/EX20.3/Ex20_3.sce b/3918/CH20/EX20.3/Ex20_3.sce
new file mode 100644
index 000000000..7be9f8e69
--- /dev/null
+++ b/3918/CH20/EX20.3/Ex20_3.sce
@@ -0,0 +1,16 @@
+//Example 20_3
+clc;
+clear;
+close;
+
+//Given data :
+a=2;// Side of footing in m
+UL=600;// Ultimate vertical load of footing in kN
+M1=90;// Ultimate moment of footing in one direction in kNm
+M2=60;// Ultimate moment of footing in other direction in kNm
+e1=M1/UL;// Eccentricity in the direction 90kNM acts in m
+L=a+(a*e1);// Dimension of footing increased in the direction of 90kNm moment in m
+disp(L,"Dimension of footing increased in the direction of 90kNm moment in m");
+e2=M2/UL;// Eccentricity in the direction 90kNM acts in m
+L=a+(a*e2);// Dimension of footing increased in the direction of 60kNm moment in m
+disp(L,"Dimension of footing increased in the direction of 60kNm moment in m");
diff --git a/3918/CH20/EX20.4/Ex20_4.sce b/3918/CH20/EX20.4/Ex20_4.sce
new file mode 100644
index 000000000..0e632dd11
--- /dev/null
+++ b/3918/CH20/EX20.4/Ex20_4.sce
@@ -0,0 +1,14 @@
+//Example 20_4
+clc;
+clear;
+close;
+
+//Given data :
+B=2;// Width of foundation in m
+Df=1.5;// Depth of foundation in m
+Rw=1;
+Rwdash=1;
+Ndashdash=14;
+qult=(1/62)*((2*Ndashdash*Ndashdash*B*Rwdash)+(6*(100+(Ndashdash^2))*Df*Rw));// Ultimate bearing capacity in kN/m^2
+disp(qult,"Ultimate bearing capacity in kN/m^2");
+// The answers vary due to round off error
diff --git a/3918/CH20/EX20.5/Ex20_5.sce b/3918/CH20/EX20.5/Ex20_5.sce
new file mode 100644
index 000000000..3a00dc65b
--- /dev/null
+++ b/3918/CH20/EX20.5/Ex20_5.sce
@@ -0,0 +1,52 @@
+//Example 20_5
+clc;
+clear;
+close;
+
+//Given data :
+gt1=20;// Unit weight of top layer in kN/m^3
+t1=12;// Thickness of top layer in m
+teta1=30;// Angle of top layer in degree
+gt2=22;// Unit weight of bottom layer in kN/m^3
+t2=20;// Thickness of bottom layer in m
+teta2=35;// Angle of bottom layer in degree
+K=1;// Coefficient of earth pressure
+Nq1=20;
+Nq2=50;
+
+disp("For depth 10 m");
+svdash=(gt1-10)*10;// Vertical effective stress in kN/m2
+a=tand(teta1);
+qb=svdash*Nq1;// Unit End Bearing in kN/m^2
+disp(qb," Unit End Bearing in kN/m^2");
+fs=K*svdash*a;// Unit Skin Friction in kN/m^2
+disp(fs," Unit Skin Friction in kN/m^2");
+// The answers vary due to round off error
+
+disp("For depth 15 m");
+svdash=((gt1-10)*t1)+((gt2-10)*(15-t1));// Vertical effective stress in kN/m2
+a=tand(teta2);
+qb=svdash*Nq2;// Unit End Bearing in kN/m^2
+disp(qb," Unit End Bearing in kN/m^2");
+fs=K*svdash*a;// Unit Skin Friction in kN/m^2
+// This value is more than the limiting value which is 100 kN/m^2, hence fs=100 kN/m^2
+fs=100;// Unit Skin Friction in kN/m^2
+disp(fs," Unit Skin Friction in kN/m^2");
+
+disp("For depth 20 m");
+svdash=((gt1-10)*t1)+((gt2-10)*(20-t1));// Vertical effective stress in kN/m2
+a=tand(teta2);
+qb=svdash*Nq2;// Unit End Bearing in kN/m^2
+// This value is more than the limiting value which is 10000 kN/m^2, hence qb=10000 kN/m^2
+qb=10000;// Unit End Bearing in kN/m^2
+disp(qb," Unit End Bearing in kN/m^2");
+// fs is alredy at limiting value. i.e==> fs=100 kN/m^2
+fs=100;// Unit Skin Friction in kN/m^2
+disp(fs," Unit Skin Friction in kN/m^2");
+
+disp("For depth 25 m");
+// qb and fs both are at limiting values
+qb=10000;// Unit End Bearing in kN/m^2
+disp(qb," Unit End Bearing in kN/m^2");
+fs=100;// Unit Skin Friction in kN/m^2
+disp(fs," Unit Skin Friction in kN/m^2");
diff --git a/3918/CH20/EX20.7/Ex20_7.sce b/3918/CH20/EX20.7/Ex20_7.sce
new file mode 100644
index 000000000..b0648500a
--- /dev/null
+++ b/3918/CH20/EX20.7/Ex20_7.sce
@@ -0,0 +1,29 @@
+//Example 20_7
+clc;
+clear;
+close;
+
+//Given data :
+D=300;// Diameter of pile in mm
+
+disp("i)");
+d=10/100*D;// 10% of pile diamater in mm
+x1=27;// Settlement in mm
+x2=34;// Settlement in mm
+y1=140;// Load in kN
+y2=160;// Load in kN
+l=((d-x1)*(y2-y1)/(x2-x1))+y1;// Load at 30mm pile diamater settlement in kN
+l=l/2;// Half the load at 30mm pile diamater settlement in kN
+disp(l,"Half the load at 30mm pile diamater settlement in kN");
+// The answers vary due to round off error
+
+disp("ii)");
+d=12;// pile diamater in mm
+x1=10;// Settlement in mm
+x2=13;// Settlement in mm
+y1=60;// Load in kN
+y2=80;// Load in kN
+l=((d-x1)*(y2-y1)/(x2-x1))+y1;// Load at 30mm pile diamater settlement in kN
+l=l*2/3;// Two-third of the load at 12mm pile diamater settlement in kN
+disp(l,"Two-third of the load at 12mm pile diamater settlement in kN");
+// The answers vary due to round off error
diff --git a/3918/CH21/EX21.1/Ex21_1.sce b/3918/CH21/EX21.1/Ex21_1.sce
new file mode 100644
index 000000000..3cbb4f8d6
--- /dev/null
+++ b/3918/CH21/EX21.1/Ex21_1.sce
@@ -0,0 +1,28 @@
+//Example 21_1
+clc;
+clear;
+close;
+
+//Given data :
+d1=4;// Depth of layer A in m
+d2=6;// Depth of layer B in m
+c=30;// Average Su
+gt1=19;// Unit weight of layer A in kN/m^3
+gt2=20;// Unit weight of layer B in kN/m^3
+Su1=30;// Undrained shear strength of layer A in kN/m^2
+Su2=50;// Undrained shear strength of layer B in kN/m^2
+i=20;// Slope in degree
+
+disp("Layer A");
+ZA=c/(gt1*cosd(i)*sind(i));// Depth to failure plane in m
+disp(ZA," Depth to failure plane in m");
+// The answers vary due to round off error
+
+disp("layer B");
+Z=4;// Depth in m
+GA=gt1*Z*cosd(i)*sind(i);// Driving stress produced by layer A in kN/m^2
+Cleft=Su2-GA;// Strength left in soil of layer B to resist the driving stress generated by layer B in kN/m^2
+ZB=Cleft/(gt2*cosd(i)*sind(i));// Depth to failure plane in m
+disp(round(ZB)," Depth to failure plane in m");
+d=d2-ZB;
+disp(round(d),"Failure at layer B will occur on plane located above the rock surface in m");
diff --git a/3918/CH21/EX21.2/Ex21_2.sce b/3918/CH21/EX21.2/Ex21_2.sce
new file mode 100644
index 000000000..a020c4855
--- /dev/null
+++ b/3918/CH21/EX21.2/Ex21_2.sce
@@ -0,0 +1,12 @@
+//Example 21_2
+clc;
+clear;
+close;
+
+//Given data :
+gt=19;// Unit weight of sand in kN/m^3
+teta=30;// slope in degree
+gw=10;// Unit weight of water in kN/m^3
+i=atand(tand(teta)*((gt-gw)/gt));// Slope in degree
+disp(i,"The slope will be stable in degree");
+// The answers vary due to round off error
diff --git a/3918/CH21/EX21.3/Ex21_3.sce b/3918/CH21/EX21.3/Ex21_3.sce
new file mode 100644
index 000000000..416dfd8c0
--- /dev/null
+++ b/3918/CH21/EX21.3/Ex21_3.sce
@@ -0,0 +1,17 @@
+//Example 21_3
+clc;
+clear;
+close;
+
+//Given data :
+Su=40;// Undrained shear strength of clay in kN/m^2
+gt=20;// Unit weight of clay in kN/m^3
+betaa=30;// Inclined angle in degree
+H=10;// Elevation difference in m
+D=2;
+Ns=0.172;// Stability number (From table 21.1)
+Cr=gt*H*Ns;// Amount of c required to maintain stable slope kN/m^2
+C=40;// Cohesion intercept in kN/m^2
+SF=C/Cr;// Safety Factor of a finite slope in clay
+disp(SF,"Safety Factor of a finite slope in clay");
+// The answers vary due to round off error
diff --git a/3918/CH21/EX21.4/Ex21_4.sce b/3918/CH21/EX21.4/Ex21_4.sce
new file mode 100644
index 000000000..82e62d9e3
--- /dev/null
+++ b/3918/CH21/EX21.4/Ex21_4.sce
@@ -0,0 +1,27 @@
+//Example 21_4
+clc;
+clear;
+close;
+
+//Given data :
+teta=30;// Slope in degree
+c=0;// Cohesion intercept in kN/m^2
+T1=-2;// Wsin(alpha) of slice no. 1
+T2=-1;// Wsin(alpha) of slice no. 1
+T3=0;// Wsin(alpha) of slice no. 1
+T4=2;// Wsin(alpha) of slice no. 1
+T5=3;// Wsin(alpha) of slice no. 1
+T6=4;// Wsin(alpha) of slice no. 1
+T7=3;// Wsin(alpha) of slice no. 1
+T=T1+T2+T3+T4+T5+T6+T7;// Total Wsin(alpha) of slice no. 1 to 7
+P1=2;// Wsin(alpha) of slice no. 1
+P2=3;// Wsin(alpha) of slice no. 1
+P3=5;// Wsin(alpha) of slice no. 1
+P4=4;// Wsin(alpha) of slice no. 1
+P5=5;// Wsin(alpha) of slice no. 1
+P6=2;// Wsin(alpha) of slice no. 1
+P7=1;// Wsin(alpha) of slice no. 1
+P=P1+P2+P3+P4+P5+P6+P7;// Total Wsin(alpha) of slice no. 1 to 7
+SF=(P*tand(teta))/T;// Safety Factor of the slope
+disp(SF,"Safety Factor of the slope");
+// The answers vary due to round off error
diff --git a/3918/CH22/EX22.1/Ex22_1.sce b/3918/CH22/EX22.1/Ex22_1.sce
new file mode 100644
index 000000000..70bcea92d
--- /dev/null
+++ b/3918/CH22/EX22.1/Ex22_1.sce
@@ -0,0 +1,38 @@
+//Example 22_1
+clc;
+clear;
+close;
+
+//Given data :
+H=6;// Vertical height of wall in m
+
+disp("(a)");
+teta1=30;// Slope in degree
+c=0;// Cohesion intercept in kN/m^2
+g=18;// Unit weight of sand in kN/m^3
+Ka=(1-sind(teta1))/(1+sind(teta1));// Coefficient of Active Earth Pressure
+// At top of the wall
+sigmav1=0;// Vertical stress in kN/m^2
+sigmah1=Ka*sigmav1;// Horizontal stress in kN/m^2
+// At base of the wall
+sigmav2=g*H;// Vertical stress in kN/m^2
+sigmah2=Ka*sigmav2;// Horizontal stress in kN/m^2
+printf(" The active pressure increases linearly from %d to %d kN/m^2\n",sigmah1,sigmah2);
+Pa=0.5*Ka*g*H*H;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa," Total lateral pressure per metre run of the wall in kN/m");
+
+disp("(b)");
+teta2=40;// Slope in degree
+c=0;// Cohesion intercept in kN/m^2
+g=20;// Unit weight of sand in kN/m^3
+Ka=(1-sind(teta2))/(1+sind(teta2));// Coefficient of Active Earth Pressure
+// At top of the wall
+sigmav1=0;// Vertical stress in kN/m^2
+sigmah1=Ka*sigmav1;// Horizontal stress in kN/m^2
+// At base of the wall
+sigmav2=g*H;// Vertical stress in kN/m^2
+sigmah2=Ka*sigmav2;// Horizontal stress in kN/m^2
+printf(" The active pressure increases linearly from %d to %0.2f kN/m^2\n",sigmah1,sigmah2);
+Pa=0.5*Ka*g*H*H;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa," Total lateral pressure per metre run of the wall in kN/m");
+// The answers vary due to round off error
diff --git a/3918/CH22/EX22.2/Ex22_2.sce b/3918/CH22/EX22.2/Ex22_2.sce
new file mode 100644
index 000000000..57678093a
--- /dev/null
+++ b/3918/CH22/EX22.2/Ex22_2.sce
@@ -0,0 +1,42 @@
+//Example 22_2
+clc;
+clear;
+close;
+
+//Given data :
+teta1=30;// Slope in degree
+c=0;// Cohesion intercept in kN/m^2
+g1=18;// Unit weight of sand in kN/m^3
+g2=21;// Unit weight of sand in kN/m^3
+gw=10;// Unit weight of water in kN/m^3
+Ka=(1-sind(teta1))/(1+sind(teta1));// Coefficient of Active Earth Pressure
+// At top of wall
+H1=0; // Depth in m
+sigmav1=g1*H1;// Vertical stress in kN/m^2
+sigmah1=Ka*sigmav1;// Horizontal stress in kN/m^2
+disp(sigmah1,"Active pressure at top of wall in kN/m^2");
+// At 2 m below top of wall
+H2=2;// Depth in m
+sigmav2=g1*H2;// Vertical stress in kN/m^2
+sigmah2=Ka*sigmav2;// Horizontal stress in kN/m^2
+disp(sigmah2,"Active pressure at 2 m below top of wall in kN/m^2");
+// At 6 m below top of wall
+H3=6;// Depth in m
+sigmav3=sigmav2+(g2*(H3-H2))-(gw*(H3-H2));// Vertical stress in kN/m^2
+sigmah3=Ka*sigmav3;// Horizontal stress in kN/m^2
+disp(sigmah3,"Active pressure at 6 m below top of wall in kN/m^2");
+Pa1=0.5*H2*sigmah2;// Lateral pressure per metre run of the wall in kN/m
+disp(Pa1," Lateral pressure Pa1 per metre run of the wall in kN/m");
+Pa2=0.5*(H2+H3)*sigmah2;// Lateral pressure per metre run of the wall in kN/m
+disp(Pa2," Lateral pressure Pa2 per metre run of the wall in kN/m");
+Pa3=0.5*(H3-H2)*(sigmah3-sigmah2);// Lateral pressure per metre run of the wall in kN/m
+disp(Pa3," Lateral pressure Pa3 per metre run of the wall in kN/m");
+// The answers vary due to round off error
+Pw=0.5*(H3-H2)*(gw*(H3-H2));// Lateral pressure per metre run of the wall in kN/m
+disp(Pw," Lateral pressure Pw per metre run of the wall in kN/m");
+TP=Pa1+Pa2+Pa3+Pw;// Total lateral pressure per metre run of the wall in kN/m
+disp(TP," Total lateral pressure per metre run of the wall in kN/m");
+// The answers vary due to round off error
+z=(((4+(2/3))*Pa1)+(2*Pa2)+(4/3*Pa3)+(4/3*Pw))/TP;// Point of application of Total lateral pressure in m
+disp(z,"Point of application of Total lateral pressure in m");
+// The answers vary due to round off error
diff --git a/3918/CH22/EX22.3/Ex22_3.sce b/3918/CH22/EX22.3/Ex22_3.sce
new file mode 100644
index 000000000..95cdce4f1
--- /dev/null
+++ b/3918/CH22/EX22.3/Ex22_3.sce
@@ -0,0 +1,27 @@
+//Example 22_3
+clc;
+clear;
+close;
+
+//Given data :
+H=6;// Vertical height of wall in m
+teta1=30;// Slope in degree
+gt=18;// Unit weight of sand in kN/m^3
+disp("(i)");
+a=90;// Alpha in degree
+b=0;// Beta in degree
+g=0;// Gamma in degree
+Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure
+disp(Ka," Coefficient of Active Earth Pressure");
+Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa," Total lateral pressure per metre run of the wall in kN/m");
+
+disp("(ii)");
+a=90;// Alpha in degree
+b=15;// Beta in degree
+g=0;// Gamma in degree
+Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure
+disp(Ka," Coefficient of Active Earth Pressure");
+Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa," Total lateral pressure per metre run of the wall in kN/m");
+// The answers vary due to round off error
diff --git a/3918/CH22/EX22.4/Ex22_4.sce b/3918/CH22/EX22.4/Ex22_4.sce
new file mode 100644
index 000000000..fa9743394
--- /dev/null
+++ b/3918/CH22/EX22.4/Ex22_4.sce
@@ -0,0 +1,32 @@
+//Example 22_4
+clc;
+clear;
+close;
+
+//Given data :
+H=6;// Vertical height of wall in m
+teta1=30;// Slope in degree
+gt=18;// Unit weight of sand in kN/m^3
+disp("(i)");
+a=90;// Alpha in degree
+b=0;// Beta in degree
+g=0;// Gamma in degree
+Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure
+disp(Ka," Coefficient of Active Earth Pressure");
+Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa," Total lateral pressure per metre run of the wall in kN/m");
+
+disp("(ii)");
+a=90;// Alpha in degree
+b=0;// Beta in degree
+g=20;// Gamma in degree
+Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure
+disp(Ka," Coefficient of Active Earth Pressure");
+Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa," Total lateral pressure per metre run of the wall in kN/m");
+// The answers vary due to round off error
+Pah=Pa*cosd(g);// Total horizontal lateral pressure per metre run of the wall in kN/m
+disp(Pah,"Total horizontal lateral pressure per metre run of the wall in kN/m");
+Pav=Pa*sind(g);// Total vertical lateral pressure per metre run of the wall in kN/m
+disp(Pav,"Total vertical lateral pressure per metre run of the wall in kN/m");
+// The answers vary due to round off error
diff --git a/3918/CH22/EX22.5/Ex22_5.sce b/3918/CH22/EX22.5/Ex22_5.sce
new file mode 100644
index 000000000..6996f48f1
--- /dev/null
+++ b/3918/CH22/EX22.5/Ex22_5.sce
@@ -0,0 +1,34 @@
+//Example 22_5
+clc;
+clear;
+close;
+
+//Given data :
+H=6;// Vertical height of wall in m
+teta1=30;// Slope in degree
+gt=18;// Unit weight of sand in kN/m^3
+disp("(i)");
+a=90;// Alpha in degree
+b=0;// Beta in degree
+g=0;// Gamma in degree
+Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure
+disp(Ka," Coefficient of Active Earth Pressure");
+Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa," Total lateral pressure per metre run of the wall in kN/m");
+
+disp("(ii)");
+a=110;// Alpha in degree
+b=0;// Beta in degree
+g=00;// Gamma in degree
+Ka=((sind(a-teta1)/sind(a))/(sqrt(sind(a+g))+sqrt(sind(teta1+g)*sind(teta1-b)/sind(a-b))))^2;// Coefficient of Active Earth Pressure
+disp(Ka," Coefficient of Active Earth Pressure");
+Pa=0.5*Ka*gt*H*H;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa," Total lateral pressure per metre run of the wall in kN/m");
+// The answers vary due to round off error
+teta2=20;// Angle in degree
+Pah=Pa*cosd(teta2);// Total horizontal lateral pressure per metre run of the wall in kN/m
+disp(Pah,"Total horizontal lateral pressure per metre run of the wall in kN/m");
+Pav=Pa*sind(teta2);// Total vertical lateral pressure per metre run of the wall in kN/m
+// The answers vary due to round off error
+disp(Pav,"Total vertical lateral pressure per metre run of the wall in kN/m");
+// The answer provided in the textbook is wrong
diff --git a/3918/CH22/EX22.6/Ex22_6.sce b/3918/CH22/EX22.6/Ex22_6.sce
new file mode 100644
index 000000000..ba4d0b235
--- /dev/null
+++ b/3918/CH22/EX22.6/Ex22_6.sce
@@ -0,0 +1,22 @@
+//Example 22_6
+clc;
+clear;
+close;
+
+//Given data :
+H=6;// Vertical height of wall in m
+q=12;// Uniform surcharge in kN/m^2
+teta1=30;// Slope in degree
+g=18;// Unit weight of sand in kN/m^3
+Ka=(1-sind(teta1))/(1+sind(teta1));// Coefficient of Active Earth Pressure
+Pa=0.5*Ka*g*H*H;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa,"Lateral pressure per metre run of the wall in kN/m");
+AP=Ka*q;// Additional Active Pressure on account of surcharge acting along entire height of wall in kN/m^2
+disp(AP,"Additional Active Pressure on account of surcharge acting along entire height of wall in kN/m^2");
+Pa1=AP*H;// Additional lateral pressure on account of surcharge per metre run of the wall in kN/m
+disp(Pa1,"Additional lateral pressure on account of surcharge per metre run of the wall in kN/m");
+TP=Pa+Pa1;// Total lateral pressure per metre run of the wall in kN/m
+disp(TP,"Total lateral pressure per metre run of the wall in kN/m");
+z=((Pa*2)+(Pa1*3))/TP;// Point of application of Total Lateral pressure in m
+disp(z,"Point of application of Total Lateral pressure in m");
+// The answers vary due to round off error
diff --git a/3918/CH22/EX22.7/Ex22_7.sce b/3918/CH22/EX22.7/Ex22_7.sce
new file mode 100644
index 000000000..c366075c1
--- /dev/null
+++ b/3918/CH22/EX22.7/Ex22_7.sce
@@ -0,0 +1,44 @@
+//Example 22_7
+clc;
+clear;
+close;
+
+//Given data :
+disp("i)For the short term");
+c=50;// in kN/m^2
+teta=0;// Slope in degree
+H=6;// Vertical height of wall in m
+g=18;// Unit weight of soil in kN/m^3
+// At top of the wall
+sigmav1=0;// Vertical stress in kN/m^2
+sigmaa1=sigmav1-(2*c);// Active pressure in kN/m^2
+// At base of the wall
+sigmav2=g*H;// Vertical stress in kN/m^2
+sigmaa2=sigmav2-(2*c);// Active pressure in kN/m^2
+z=2*c/g;// Point at which active earth pressure is zero in m
+Pa=0.5*(H-z)*sigmaa2;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa," Total lateral pressure per metre run of the wall in kN/m");
+Z=(H-z)/3;// Point of application of Lateral pressure on the wall above the base in m
+disp(Z," Point of application of Lateral pressure on the wall above the base in m");
+// The answers vary due to round off error
+
+
+disp("ii)For the long term");
+c=5;// in kN/m^2
+teta=20;// Slope in degree
+H=6;// Vertical height of wall in m
+g=18;// Unit weight of soil in kN/m^3
+Ka=(1-sind(teta))/(1+sind(teta));// Coefficient of Active Earth Pressure
+// At top of the wall
+sigmav1=0;// Vertical stress in kN/m^2
+sigmaa1=(sigmav1*Ka)-(2*c*sqrt(Ka));// Active pressure in kN/m^2
+// At base of the wall
+sigmav2=g*H;// Vertical stress in kN/m^2
+sigmaa2=(sigmav2*Ka)-(2*c*sqrt(Ka));// Active pressure in kN/m^2
+disp(sigmaa2);
+z=(2*c*sqrt(Ka))/(g*Ka);// Point at which active earth pressure is zero in m
+Pa=0.5*(H-z)*sigmaa2;// Total lateral pressure per metre run of the wall in kN/m
+disp(Pa," Total lateral pressure per metre run of the wall in kN/m");
+Z=(H-z)/3;// Point of application of Lateral pressure on the wall above the base in m
+disp(Z," Point of application of Lateral pressure on the wall above the base in m");
+// The answers vary due to round off error
diff --git a/3918/CH23/EX23.1/Ex23_1.sce b/3918/CH23/EX23.1/Ex23_1.sce
new file mode 100644
index 000000000..bfc2eb7bf
--- /dev/null
+++ b/3918/CH23/EX23.1/Ex23_1.sce
@@ -0,0 +1,29 @@
+//Example 23_1
+clc;
+clear;
+close;
+
+//Given data :
+Sa=20;// Estimated settlement of structure A(sand) in mm
+Sb=36;// Estimated settlement of structure B(clay) in mm
+
+//Structure A
+la=6000;// Column spacing in structure A in m
+pa=80/100;// Percentage
+DSa=pa*Sa;// Differential settlement of structure A in mm
+ADa=DSa/la;// Angular distortion of structure A
+
+//Structure B
+lb=9000;// Column spacing in structure B in mm
+pb=50/100;// Percentage
+DSb=pb*Sb;// Differential settlement of structure B in mm
+ADb=DSb/lb;// Angular distortion of structure B
+
+if ADa>ADb then
+ disp("Structure A experiences the higher angular distortion");
+elseif ADb>ADa then
+ disp("Structure B experiences the higher angular distortion");
+else
+ disp("Both Structures A and B have same angular distortion");
+end
+
diff --git a/3918/CH23/EX23.2/Ex23_2.sce b/3918/CH23/EX23.2/Ex23_2.sce
new file mode 100644
index 000000000..2eac870b6
--- /dev/null
+++ b/3918/CH23/EX23.2/Ex23_2.sce
@@ -0,0 +1,37 @@
+//Example 23_2
+clc;
+clear;
+close;
+
+//Given data :
+disp("a)");
+Su1=15;// Average Undrained shear strength at 1 m depth in kN/m^2
+Su5=35;// Average Undrained shear strength at 5 m depth in kN/m^2
+Sud=0.5*(Su1+Su5);// Design Undrained shear strength in kN/m^2
+disp(Sud," Design Undrained shear strength in kN/m^2");
+
+disp("b)");
+// Sub-zone 1:
+disp("Sub-zone 1:");
+Su0=10;// Average Undrained shear strength at 0 m depth in kN/m^2
+Su5=35;// Average Undrained shear strength at 5 m depth in kN/m^2
+Sud=0.5*(Su0+Su5);// Design Undrained shear strength in kN/m^2
+disp(Sud," Design Undrained shear strength in kN/m^2");
+// Sub-zone 2:
+disp("Sub-zone 2:");
+Su5=35;// Average Undrained shear strength at 5 m depth in kN/m^2
+Su10=60;// Average Undrained shear strength at 10 m depth in kN/m^2
+Sud=0.5*(Su5+Su10);// Design Undrained shear strength in kN/m^2
+disp(Sud," Design Undrained shear strength in kN/m^2");
+// Sub-zone 3:
+disp("Sub-zone 3:");
+Su10=60;// Average Undrained shear strength at 10 m depth in kN/m^2
+Su15=85;// Average Undrained shear strength at 15 m depth in kN/m^2
+Sud=0.5*(Su10+Su15);// Design Undrained shear strength in kN/m^2
+disp(Sud," Design Undrained shear strength in kN/m^2");
+// Sub-zone 4:
+disp("Sub-zone 4:");
+Su15=85;// Average Undrained shear strength at 15 m depth in kN/m^2
+Su20=91;// Average Undrained shear strength at 20 m depth in kN/m^2
+Sud=0.5*(Su15+Su20);// Design Undrained shear strength in kN/m^2
+disp(Sud," Design Undrained shear strength in kN/m^2");
diff --git a/3918/CH23/EX23.5/Ex23_5.sce b/3918/CH23/EX23.5/Ex23_5.sce
new file mode 100644
index 000000000..e85ff6612
--- /dev/null
+++ b/3918/CH23/EX23.5/Ex23_5.sce
@@ -0,0 +1,22 @@
+//Example 23_5
+clc;
+clear;
+close;
+
+//Given data :
+Ca=250;// Safe capacity of pile A in kN
+Cb=400;// Safe capacity of pile B in kN
+Lc=1200;// Corner column load in kN
+Li=4000;// Interior column load in kN
+
+disp("If pile A is chosen");
+Nc=Lc/Ca;// Number of piles required for corner columns
+disp(round(Nc)," Number of piles required for corner columns");
+Ni=Li/Ca;// Number of piles required for corner columns
+disp(Ni," Number of piles required for interior columns");
+
+disp("If pile B is chosen");
+Nc=Lc/Cb;// Number of piles required for corner columns
+disp(Nc," Number of piles required for corner columns");
+Ni=Li/Cb;// Number of piles required for corner columns
+disp(Ni," Number of piles required for interior columns");
diff --git a/3918/CH24/EX24.2/Ex24_2.sce b/3918/CH24/EX24.2/Ex24_2.sce
new file mode 100644
index 000000000..28e3a519e
--- /dev/null
+++ b/3918/CH24/EX24.2/Ex24_2.sce
@@ -0,0 +1,32 @@
+//Example 24_2
+clc;
+clear;
+close;
+
+//Given data :
+D15p=0.001;// D15 protected soil in mm
+D85p=0.006;// D85 protected soil in mm
+
+// Soil A:
+D15f=0.0025;// D15 filter for soil A in mm
+a1=D15f/D15p;
+b1=D15f/D85p;
+
+// Soil B:
+D15f=0.006;// D15 filter for soil A in mm
+a2=D15f/D15p;
+b2=D15f/D85p;
+
+// Soil C:
+D15f=0.036;// D15 filter for soil A in mm
+a3=D15f/D15p;
+b3=D15f/D85p;
+
+if((a1>=5)&&(b1<=5)) then
+ disp("Soil A meets all the three criteria and can therefore be used for transition filter");
+ elseif((a2>=5)&&(b2<=5)) then
+ disp("Soil B meets all the three criteria and can therefore be used for transition filter");
+ else((a1>=5)&&(b1<=5))
+ disp("Soil C meets all the three criteria and can therefore be used for transition filter");
+end
+
diff --git a/3918/CH24/EX24.3/Ex24_3.sce b/3918/CH24/EX24.3/Ex24_3.sce
new file mode 100644
index 000000000..b4cbc9619
--- /dev/null
+++ b/3918/CH24/EX24.3/Ex24_3.sce
@@ -0,0 +1,16 @@
+//Example 24_3
+clc;
+clear;
+close;
+
+//Given data :
+gd=16;// Unit dry weight of soil in kN/m^3
+gs=19;// Unit saturated weight of soil in kN/m^3
+gw=10;// Unit weigh of water in kN/m^3
+b=atand(1/2);// Beta for downstream slope in degree
+teta=35;// Slope in degree
+SFB=tand(teta)/tand(b);// Safety Factor for soil section B
+disp(SFB,"Safety Factor for soil section B");
+SFA=((gs-gw)/gs)*(tand(teta)/tand(b));// Safety Factor for soil section A
+disp(SFA,"Safety Factor for soil section A");
+// The answers vary due to round off error
diff --git a/3918/CH25/EX25.3/Ex25_3.sce b/3918/CH25/EX25.3/Ex25_3.sce
new file mode 100644
index 000000000..6adf5b9bd
--- /dev/null
+++ b/3918/CH25/EX25.3/Ex25_3.sce
@@ -0,0 +1,40 @@
+//Example 25_3
+clc;
+clear;
+close;
+
+//Given data :
+H1=4.5;// Height of wall above ground level in m
+H2=4.5;// Height of wall below ground level in m
+// Above ground level
+Ka1=0.33;// Coefficient of Active Earth Pressure above ground level
+g1=18;// Unit weight of soil above ground level in kN/m^3
+c1=0;
+teta1=30;// Slope above ground level in degree
+
+// Below ground level
+Ka2=0.27;// Coefficient of Active Earth Pressure below ground level
+Kp2=3.68;// Coefficient of Passsive Earth Pressure below ground level
+g2=20;// Unit weight of soil below ground level in kN/m^3
+c2=0;
+teta2=35;// Slope below ground level in degree
+
+sigmaa1=Ka1*g1*H1;// Active pressure above ground level in kN/m^2
+sigmaa2=(Ka2*g1*H1)+(g2*H2);// Active pressure below ground level in kN/m^2
+sigmap=Kp2*g2*H2;// Passive pressure below ground level in kN/m^2
+Pa1=0.5*sigmaa1*H1;// Lateral pressure per metre run of the wall in kN/m
+Pa2=sigmaa1*H2;// Lateral pressure per metre run of the wall in kN/m
+Pa21=0.5*(sigmaa2-sigmaa1);// Lateral pressure per metre run of the wall in kN/m
+Pp=0.5*sigmap*H2;// Lateral pressure per metre run of the wall in kN/m
+Mo=(Pa1*(H1+(H1/3)))+(Pa2*H2/2)+(Pa21*H2/3);// Overturning Moment in kNm/m
+Mr=Pp*H2/3;// Resisting Momemnt kNm/m
+SF=Mr/Mo;// Safety Factor
+if(SF>1.5) then
+ disp(SF,"Safety Factor is");
+else
+ disp("Safety factor is 1.50");
+end
+// The answers vary due to round off error
+
+
+
diff --git a/3918/CH25/EX25.4/Ex25_4.sce b/3918/CH25/EX25.4/Ex25_4.sce
new file mode 100644
index 000000000..683264bce
--- /dev/null
+++ b/3918/CH25/EX25.4/Ex25_4.sce
@@ -0,0 +1,27 @@
+//Example 25_4
+clc;
+clear;
+close;
+
+//Given data :
+g=18;// Unit weight of soil in kN/m^3
+teta=30;// Slope in degree
+c=0;
+H=5;// Height in m
+Ka=(1-sind(teta))/(1+sind(teta));// Coefficient of Active Earth Pressure
+// At top of wall
+H1=0; // Depth in m
+sigmav1=g*H1;// Vertical stress in kN/m^2
+sigmaa1=Ka*sigmav1;// Active pressure in kN/m^2
+// At 6 m below top of wall
+H2=H;// Height in m
+sigmav2=g*H2;// Vertical stress in kN/m^2
+sigmaa2=Ka*sigmav2;// Horizontal stress in kN/m^2
+Pa=0.5*H*sigmaa2;// Lateral pressure per metre run of the wall in kN/m
+disp(Pa,"Lateral pressure resisted by retaining wall per metre run of the wall in kN/m");
+Sigmaat=0.65*Ka*g*H;// Active pressure at top of excavation in kN/m^2
+Sigmaab=0.65*Ka*g*H;// Active pressure at bottom of excavation in kN/m^2
+Pa=H*Sigmaat;// Lateral pressure per metre run of the wall in kN/m
+disp(Pa,"Lateral pressure at braced excavation per metre run of the wall in kN/m");
+disp("The wall of the braced excavation and the struts resist a total force of 97.5kN/m which is higher than the 75kN/m resisted by the retaining wall.");
+disp("The earth pressure at the base of the retaining wall is higher than the braced excavation.");
diff --git a/3918/CH26/EX26.1/Ex26_1.sce b/3918/CH26/EX26.1/Ex26_1.sce
new file mode 100644
index 000000000..2a5f471cf
--- /dev/null
+++ b/3918/CH26/EX26.1/Ex26_1.sce
@@ -0,0 +1,21 @@
+//Example 26_1
+clc;
+clear;
+close;
+
+//Given data :
+BC=3;// Blade capacity in m^3
+sf=25/100;// Swelling factor
+d=50;// Horizontal layer distance in m
+fs=2*1000;// Dozer's forward speed in m/hr
+rs=5*1000;// Dozer's return speed in m/hr
+tf=0.4;// Time for shifting gears in minutes
+tp=d/fs*60;// Time for cutting and pushing at forward speed in minutes
+tr=d/rs*60;// Time for returining at return speed in minutes
+V=BC/(1+sf);// Volume stripped per cycle in m^3
+tc=tp+tr+tf;// Cycle time in minutes
+k=0.8;// Efficiency factor(assumption)
+T=k*60/tc;// Trips per hour
+O=V*T;// Output per hour in m^3/hr
+disp(O,"Output per hour in m^3/hr");
+// The answers vary due to round off error
diff --git a/3918/CH26/EX26.2/Ex26_2.sce b/3918/CH26/EX26.2/Ex26_2.sce
new file mode 100644
index 000000000..0b3558137
--- /dev/null
+++ b/3918/CH26/EX26.2/Ex26_2.sce
@@ -0,0 +1,18 @@
+//Example 26_2
+clc;
+clear;
+close;
+
+//Given data :
+BC=1.5;// Bucket capacity in m^3
+tc=30;// Cycle time in seconds
+sf=20/100;// Swell factor of soil
+V=9;// Volume of Dumper in m^3
+t=120;// Time delay in seconds
+Q=0.8*BC/(1+sf)*(3600/tc);// Volume stripped per cycle in m^3
+N=V/BC;// Number of cycles to load a dumper
+at=t/N;// Average delay per cycle in seconds
+tc=tc+at;// Cycle time including delay in seconds
+O=0.8*BC/(1+sf)*3600/tc;// Output with spotting delay in m^3/hr
+PO=((Q-O)/Q)*100;// Percentage decrease in output in percent
+disp(PO,"Percentage decrease in output in percent");
diff --git a/3918/CH26/EX26.3/Ex26_3.sce b/3918/CH26/EX26.3/Ex26_3.sce
new file mode 100644
index 000000000..da82a30f1
--- /dev/null
+++ b/3918/CH26/EX26.3/Ex26_3.sce
@@ -0,0 +1,29 @@
+//Example 26_3
+clc;
+clear;
+close;
+
+//Given data :
+disp("a)");
+w=8;// Width in m
+h=3;// Height in m
+l=2500;// Length in m
+v=2000;// velocity of roller in m/hr
+s=1.5/1;// Side slope
+V=0.5*h*(w+(w+(2*h*s)))*l;// Volume of earth work in m^3
+rw=1.8;// Roller width in m
+t=0.45;// Compacted layer thickness in m
+n=6;// Number of passes
+O1=0.8*rw*v*t/n;// Output of 1 roller in m^3/hr
+T=8*30;// Number of hours roller will work in hours
+O1m=O1*T;// Output of one roller per month
+N=V/O1m;// Number of rollers required
+// One extra roller to take care of the breakdown
+disp(round(N)+1," Hence minimum number of rollers required will be");
+
+disp("b)");
+// If each roller will remain idle for 40% time, then the output of the roller per month will be 60% of full output
+O1m=0.6*O1m;// Output of one roller per month
+N=V/O1m;// Number of rollers required
+// One extra roller to take care of the breakdown
+disp(round(N)+1," Hence minimum number of rollers required will be");
diff --git a/3918/CH29/EX29.1/Ex29_1.sce b/3918/CH29/EX29.1/Ex29_1.sce
new file mode 100644
index 000000000..3054bc859
--- /dev/null
+++ b/3918/CH29/EX29.1/Ex29_1.sce
@@ -0,0 +1,21 @@
+//Example 29_1
+clc;
+clear;
+close;
+
+//Given data :
+d=3.5;// Depth of soil in m
+l=1;// Length of soil in m
+w=1;// Breath of soil in m
+V=d*l*w;// Volume in m^3
+C1=30;// Cost for excavation per m^3 in Rs.
+C2=45;// Cost for relaying soil per m^3 with compaction in Rs.
+C=V*(C1+C2);// Cost of excavation and relaying of soil per m^2 in Rs.
+disp(C,"Cost of excavation and relaying of soil per m^2 in Rs.");
+Cc=350;// Cost of compaction per m^2 in Rs.
+disp(Cc,"Cost of compaction per m^2 in Rs.");
+if(C<Cc) then
+ disp("Excavation and relaying method is econimical");
+else
+ disp("Impact compaction method is economical");
+end
diff --git a/3918/CH29/EX29.2/Ex29_2.sce b/3918/CH29/EX29.2/Ex29_2.sce
new file mode 100644
index 000000000..ce481c427
--- /dev/null
+++ b/3918/CH29/EX29.2/Ex29_2.sce
@@ -0,0 +1,19 @@
+//Example 29_2
+clc;
+clear;
+close;
+
+//Given data :
+D1=14;// Initial dry density of soil in kN/m^3
+D2=16;// Final dry density of soil in kN/m^3
+d=10;// Depth of soil in m
+l=1;// Length of soil in m
+w=1;// Breath of soil in m
+D=D2-D1;// Required increase in dry density of soil on kN/m^3
+Em=D*d*l*w;// Extra material required per square metre of plan area for a depth of 10m in kN
+Vm=Em/D2;// Volume of material required per square metre in m^3
+C=300;// Material cost per m^2 in Rs.
+Cm=C*Vm;// Cost of material required per square metre in Rs.
+Cp=Cm;// Cost of construction of pile in Rs.
+TC=Cm+Cp;// Total cost of treatment per square metre of plan area in Rs.
+disp(TC,"Total cost of treatment per square metre of plan area in Rs.");
diff --git a/3918/CH30/EX30.2/Ex30_2.sce b/3918/CH30/EX30.2/Ex30_2.sce
new file mode 100644
index 000000000..c05fd35ed
--- /dev/null
+++ b/3918/CH30/EX30.2/Ex30_2.sce
@@ -0,0 +1,39 @@
+//Example 30_2
+clc;
+clear;
+close;
+
+//Given data :
+PC=200*(10^7);// Project cost in Rs.
+P=75/100;// Interest percentage
+LA=P*PC;//Loan Amount in Rs.
+I=(8/100)*(1/12)*LA;// Interest per month on loan in Rs.
+
+disp("a)");
+T1=1.5;// Time for construction in months(45 days)
+EC1=2.75;// Execution Cost in Crore
+I1=I/(10^7)*T1;// Interest on Loan Cost in Crore
+TC1=EC1+I1;// Total cost in Crore( Execution Cost + Interest Cost)
+disp(TC1," Total cost in Crore( Execution Cost + Interest Cost)");
+
+disp("b)");
+T2=3;// Time for construction in months(90 days)
+EC2=2;// Execution Cost in Crore
+I2=I/(10^7)*T2;// Interest on Loan Cost in Crore
+TC2=EC2+I2;// Total cost in Crore( Execution Cost + Interest Cost)
+disp(TC2," Total cost in Crore( Execution Cost + Interest Cost)");
+
+disp("c)");
+T3=6;// Time for construction in months(180 days)
+EC3=1.6;// Execution Cost in Crore
+I3=I/(10^7)*T3;// Interest on Loan Cost in Crore
+TC3=EC3+I3;// Total cost in Crore( Execution Cost + Interest Cost)
+disp(TC3," Total cost in Crore( Execution Cost + Interest Cost)");
+
+if((TC1<TC2)&&(TC1<TC3)) then
+ disp("Option a) is adopted");
+ elseif((TC2<TC1)&&(TC2<TC3)) then
+ disp("Option b) is adopted");
+ elseif((TC3<TC1)&&(TC3<TC2)) then
+ disp("Option c) is adopted");
+end
diff --git a/3918/CH30/EX30.3/Ex30_3.sce b/3918/CH30/EX30.3/Ex30_3.sce
new file mode 100644
index 000000000..708387616
--- /dev/null
+++ b/3918/CH30/EX30.3/Ex30_3.sce
@@ -0,0 +1,30 @@
+//Example 30_3
+clc;
+clear;
+close;
+
+//Given data :
+T=10;// Thickness of clay in m
+Cc=0.7;
+Cvz=0.6;// in m^2/yr
+Cvr=1.2;// in m^2/yr
+
+disp("a)");
+T90=0.848;// Time factor From figure 9.7
+H=5;// Drainage path in m
+t90=T90*H*H/Cvz;// Time for 90% consolidation of soft clay without sandwicks in years
+disp(t90," Time for 90% consolidation of soft clay without sandwicks in years");
+// The answers vary due to round off error
+
+disp("b)");
+S=1;
+R=1.06*S/2;// Radius in m
+r0=(100/2)/1000;// Radius of sandwick in m
+r=R/r0;
+// From Table 30.4
+// R/r0=10 & T90=0.455
+r=10;
+T90=0.455;// Time factor
+t90=T90*(2*R*2*R)/Cvr;// Time for 90% consolidation of soft clay with sandwicks in years
+disp(t90," Time for 90% consolidation of soft clay with sandwicks in years");
+// The answers vary due to round off error
diff --git a/3918/CH33/EX33.2/Ex33_2.sce b/3918/CH33/EX33.2/Ex33_2.sce
new file mode 100644
index 000000000..33a2b4e41
--- /dev/null
+++ b/3918/CH33/EX33.2/Ex33_2.sce
@@ -0,0 +1,32 @@
+//Example 33_2
+clc;
+clear;
+close;
+
+//Given data :
+// Check for adequacy of water flow across the plane of the geotextile
+disp("Check for adequacy of water flow across the plane of the geotextile");
+t=10/1000;// Thickness of geotextile in m
+pg=0.05;// Allowable permitivity of geotextile in sec^-1
+ks=5/(10^8);// k value of soil in m/sec
+kg=pg*t;// k value of geotextile in m/sec
+FS=kg/ks;// Factor of Safety
+disp(FS,"Factor of Safety is");
+if(FS>10) then
+ disp("Factor of Safety is greater than 10,hence OK");
+else
+ disp("Factor of Safety is lesser than 10,hence adopt it as 10");
+end
+
+// Check for retention of soil
+D85=0.03;// D85 value in mm
+O95=0.04;// O95 value in mm
+SF=2.5*D85/O95;// Safety facor
+disp(SF,"Safety Factor is");
+if(SF>1) then
+ disp("Safety Factor is greater than 1,hence OK");
+else
+ disp("Safety Factor is lesser than 1,hence adopt it as 1");
+end
+disp("Thus geotextile is suitable as filter");
+// The answers vary due to round off error \ No newline at end of file
diff --git a/3918/CH33/EX33.3/Ex33_3.sce b/3918/CH33/EX33.3/Ex33_3.sce
new file mode 100644
index 000000000..e059d9839
--- /dev/null
+++ b/3918/CH33/EX33.3/Ex33_3.sce
@@ -0,0 +1,37 @@
+//Example 33_3
+clc;
+clear;
+close;
+
+//Given data :
+k=1/100000;// k value of soil in m/sec
+H=7;// Height in m
+nf=6;// Number of flow paths
+nd=7;// Number of equipotential drops
+w=1;
+Q=k*H*nf/nd*w;// Maximum flow rate into the drain in m^3/sec
+i=1;// Hydraulic gradient within the drain
+tetar=Q/(i*w);// Required transmissivity in m^2/sec
+
+// Case A: nonwoven geotextile
+disp("Case A: nonwoven geotextile");
+tetaa=2.5/100000;// Allowable transmissivity of geotextile in m^2/sec
+SF=tetaa/tetar;// Safety Factor for geotextile
+disp(SF," Safety Factor for geotextile is");
+if(SF>5) then
+ disp(" Safety Factor is greater than 5,hence OK");
+else
+ disp(" Safety Factor is lesser than 5,hence not OK");
+end
+
+// Case B: geonet
+disp("Case B: geonet");
+tetaa=1.2/1000;// Allowable transmissivity of geonet in m^2/sec
+SF=tetaa/tetar;// Safety Factor for geonet
+disp(SF," Safety Factor for geonet is");
+if(SF>5) then
+ disp(" Safety Factor is greater than 5,hence OK");
+else
+ disp(" Safety Factor is lesser than 5,hence not OK");
+end
+// The answers vary due to round off error
diff --git a/3918/CH33/EX33.4/Ex33_4.sce b/3918/CH33/EX33.4/Ex33_4.sce
new file mode 100644
index 000000000..710cc44e8
--- /dev/null
+++ b/3918/CH33/EX33.4/Ex33_4.sce
@@ -0,0 +1,18 @@
+//Example 33_4
+clc;
+clear;
+close;
+
+//Given data :
+disp("a)");
+Td=53.3;// Tension developed in reinforcement in kN ( From Example 32.2)
+SF=2;// Minimum acceptable Safety Factor
+Tall=SF*Td;// Allowable strength of geotextile or geogrid in kN/m
+disp(Tall," Allowable strength of geotextile or geogrid in kN/m");
+
+disp("b)");
+teta=24;// angle of friction in degree
+sigmav=17*9.5;
+Le=Tall/(sigmav*tand(teta)*2*1);// Effective length required to prevent slippage in m
+disp(Le," Effective length required to prevent slippage in m");
+// The answers vary due to round off error
diff --git a/3918/CH35/EX35.1/Ex35_1.sce b/3918/CH35/EX35.1/Ex35_1.sce
new file mode 100644
index 000000000..f36814468
--- /dev/null
+++ b/3918/CH35/EX35.1/Ex35_1.sce
@@ -0,0 +1,14 @@
+//Example 35_1
+clc;
+clear;
+close;
+
+//Given data :
+i=0.007;// Hydraulic gradient causing water flow
+k=2/10000;// Coefficient of permeability in m/sec
+n=35/100;// Porosity
+L=1.5*1000;// Distance between drinking water tube well and injection well in m
+v=k*i;// in m/sec (From Darcy's law)
+vs=v/n;// Seepage velocity in m/sec
+t=L/(vs*365*24*60*60);// Time taken for liquid waste to reach the drinking water tube well in years
+disp(round(t),"Time taken for liquid waste to reach the drinking water tube well in years");
diff --git a/3918/CH35/EX35.2/Ex35_2.sce b/3918/CH35/EX35.2/Ex35_2.sce
new file mode 100644
index 000000000..b7c8370b7
--- /dev/null
+++ b/3918/CH35/EX35.2/Ex35_2.sce
@@ -0,0 +1,17 @@
+//Example 35_2
+clc;
+clear;
+close;
+
+//Given data :
+c=1500*1000;// Concentration of chloride in the leachate in mg/m^3
+c1=200*1000;// Concentration of chloride beneath the linear in mg/m^3
+k=1/(10^9);// Permeability of clay in m/sec
+D=0.5/(10^9);// Diffusion Coefficient in m^2/sec
+n=0.4;// Porosity of clay
+i=-1.3/1;// Hydraulic gradient
+JA=-k*i*c;// Advective mass flux in mg/m^2 sec
+JD=-D*n*(c1-c);// Diffusive mass flux in mg/m^2 sec
+JT=(JA+JD)*3.15*(10^7)/1000;// Total mass flux of chloride ions in g/m^2 yr
+disp(JT,"Total mass flux of chloride ions in g/m^2 yr");
+// The answers vary due to round off error
diff --git a/3918/CH36/EX36.1/Ex36_1.sce b/3918/CH36/EX36.1/Ex36_1.sce
new file mode 100644
index 000000000..aff23b314
--- /dev/null
+++ b/3918/CH36/EX36.1/Ex36_1.sce
@@ -0,0 +1,32 @@
+//Example 36_1
+clc;
+clear;
+close;
+
+//Given data :
+GS=5*1000000*(0.5-0.3)*365/100;// Municipal solid waste(MSW) generation per year in kN/yr
+GS1=GS*10;// Municipal solid waste generation(MSW) for 10 years in kN
+DS=8.5;// Estimated Density of MSW in kN/m^3
+VS=GS1/DS;// Volume of MSW in m^3
+TS=15;// Thickness of MSW landfill in m
+AS=VS/TS;// Approximate Area required MSW landfill in m^2
+disp(AS,"Approximate Area required MSW landfill in m^2");
+// The answer provided in the textbook is wrong
+
+GH=250000;// Municipal Hazardous waste(MHW) generation per year in kN
+GH1=GH*10;// Municipal Hazardous waste(MHW) for 10 years in kN/yr
+DH=12;// Estimated Density of MHW in kN/m^3
+VH=GH1/DH;// Volume of MHW in m^3
+TH=15;// Thickness of MHW landfill in m
+AH=VH/TH;// Approximate Area required MHW landfill in m^2
+disp(AH,"Approximate Area required MHW landfill in m^2");
+// The answer provided in the textbook is wrong
+
+tl=0.90;// Layer of thickness in liner in m
+tc=0.60;// Layer of thickness in cover in m
+VC=(tl+tc)*AS;// Approximate quantity of clay required for MSW landfill in m^3
+disp(VC,"Approximate quantity of clay required for MSW landfill in m^3");
+// The answer provided in the textbook is wrong
+VG=(tl+tc)*AS;// Approximate quantity of geomembrane required for MSW landfill in m^3
+disp(VG,"Approximate quantity of geomembrane required for MSW landfill in m^3");
+// The answer provided in the textbook is wrong
diff --git a/3918/CH36/EX36.3/Ex36_3.sce b/3918/CH36/EX36.3/Ex36_3.sce
new file mode 100644
index 000000000..e4ee72ffa
--- /dev/null
+++ b/3918/CH36/EX36.3/Ex36_3.sce
@@ -0,0 +1,31 @@
+//Example 36_3
+clc;
+clear;
+close;
+
+//Given data :
+b=atand(1/2.5);// Beta in degree
+sc=10;// Sigma in degree
+SF=tand(sc)/tand(b);// Safety Factor
+disp(SF,"Safety Factor is");
+if(SF<1) then
+ disp("Geomembrane will slide without anchorage");
+else
+ disp("Geomembrane will not slide without anchorage");
+end
+D=9.4;// Density of HDPE in kN/m^3
+T=1.5/1000;// Thickness of geomembrane in m
+TS=18;// Tensile Strength at yield in kN/m
+d=10;// depth in m
+L=d/sind(b);// Length in m
+Wg=D*T*L;// Weight of geomembrane in kN/m
+D=Wg*sind(b);// Driving Force in kN/m
+R=Wg*cosd(b)*tand(sc);// Resisting Force in kN/m
+Tg=D-R;// Tension in geomembrane in kN/m
+disp(Tg,"Tension in geomembrane in kN/m");
+if(Tg<TS) then
+ disp("Hence safe in tension");
+else
+ disp("Hence not safe in tension");
+end
+// The answers vary due to round off error
diff --git a/3918/CH36/EX36.4/Ex36_4.sce b/3918/CH36/EX36.4/Ex36_4.sce
new file mode 100644
index 000000000..ad10816b2
--- /dev/null
+++ b/3918/CH36/EX36.4/Ex36_4.sce
@@ -0,0 +1,23 @@
+//Example 36_4
+clc;
+clear;
+close;
+
+//Given data :
+SF=1.5;// Safety Factor
+sc=21;// Angle of interface shearing resistance in degree
+b=round(atand(tand(sc)/SF));// Beta in degree
+L=30;// Length in m
+tt=0.6;// Thickness of top soil in m
+td=0.3;// Thickness of drainage layer in m
+uw=17;// Unit weight of top soil and drainage layer in kN/m^3
+D=9.4;// Density of HDPE in kN/m^3
+sc=10;// Angle of geomembrane-clay interface resistance in degree
+T=1.5/1000;// Thickness of geomembrane in m
+Ws=L*(tt+td)*uw;// Weight of soil in kN/m
+Wg=L*D*T;// Weight of geomembrane in kN/m
+D=Ws*sind(b);// Driving Force in kN/m
+R=Ws*cosd(b)*tand(sc);// Resisting Force in kN/m
+Tg=round(D-R);// Tension in geomembrane in kN/m
+disp(Tg,"Tension in geomembrane in kN/m");
+disp("Geomembrane can fail in tension it its tensile strength is less than 33 kN/m");
diff --git a/3918/CH37/EX37.2/Ex37_2.sce b/3918/CH37/EX37.2/Ex37_2.sce
new file mode 100644
index 000000000..b777d911a
--- /dev/null
+++ b/3918/CH37/EX37.2/Ex37_2.sce
@@ -0,0 +1,23 @@
+//Example 37_2
+clc;
+clear;
+close;
+
+//Given data :
+// When the water level in the pond is low and the phreatic line is well away from the downstream face, the slope is considered to be dry.
+disp("a)");
+cdash=0;
+t=30;// Teta in degree
+b=18;// Beta in degree
+SF=tand(t)/tand(b);// Safety Factor
+disp(SF,"Safety Factor is");
+// The answers vary due to round off error
+
+// When the water level in the pond is high and the phreatic line meets the downstream slope well above the toe of the downstream face.
+disp("b)");
+gd=8;// Dry Unit weight in kN/m^3
+gs=18;// Saturated Unit weight in kN/m^3
+SF=(gd/gs)*(tand(t)/tand(b));// Safety Factor
+disp(SF,"Safety Factor is");
+// The answers vary due to round off error
+disp("It may be noted that the slope is stable when the water level in the pond is low (Safety Factor = 1.75) but the Safety Factor reduces to 45% of the orignal value and to an unsafe value when the water level becomes high and phreatic line reaches the downstream face. Hence it is essential to provide internal drains.");
diff --git a/3918/CH38/EX38.1/Ex38_1.sce b/3918/CH38/EX38.1/Ex38_1.sce
new file mode 100644
index 000000000..2c37cd357
--- /dev/null
+++ b/3918/CH38/EX38.1/Ex38_1.sce
@@ -0,0 +1,39 @@
+//Example 38_1
+clc;
+clear;
+close;
+
+//Given data :
+Ca=200;// Cost of ammended soil barrier(horizontal) in Rs per m^3
+Cg=250;// Cost of geomembrane in Rs per m^2
+Cb=350;// Cost of soil-Bentonite barrier(vertical) in Rs per m^3
+Ta=1;// Thickness of compacted ammended soil in m
+Tg=1.5/1000;// Thickness of geomembrane in m
+Tb=1.2;// Thickness of soil-Bentonite in m
+
+// Alternative A
+disp("Alternative A");
+L=200;// Length if landfill in m
+B=150;// Breath of landfill in m
+Aa=L*B;// Area of landfill in m^2
+Va=Aa*Ta;// Volume of ammended soil barrier layer in m^3
+CA=Va*Ca;// Cost of ammended soil barrier layer in Rs
+Ag=L*B;// Area of geomembrane in m^2
+CG=Ag*Cg;// Cost of geomembrane in Rs
+TC=CA+CG;// Total cost of liner in Rs
+disp(TC," Total cost of liner in Rs");
+
+// Alternative B
+disp("Alternative B");
+L=220;// Length of trench wall in m
+B=190;// Wdith of trench wall in m
+P=2*(L+B);// Perimeter of in m
+d=12;// Depth in m
+V=P*Tb*d;// Volume of cut-off wall in m^3
+C=V*Cb;// Cost of cut-off wall in Rs
+disp(C," Cost of cut-off wall in Rs");
+if(TC<C) then
+ disp("Cost of liner is less than cost of cut-off. Hence cost of liner is chosen");
+else
+ disp("Cost of cut-off is less than cost of liner. Hence cost of cut-off is chosen");
+end
diff --git a/3918/CH4/EX4.1/Ex4_1.sce b/3918/CH4/EX4.1/Ex4_1.sce
new file mode 100644
index 000000000..abd6915aa
--- /dev/null
+++ b/3918/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,27 @@
+//Example 4_1
+clc;
+clear;
+close;
+
+//Given data :
+uw=19;// Unit weight of sand in kN/m^3
+
+// At elevation -10 m
+disp("At Elevation -10 m:");
+E=10;// Elevation in m
+pi=uw*E;// Magnitude of pi in kN/m^2
+u=0;// Magnitude of u in kN/m^2
+pidash=pi-u;// Magnitude of pi' in kN/m^2
+disp(pi," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
+
+// At elevation -25 m
+disp("At Elevation -25 m:");
+E=25;// Elevation in m
+pi=uw*E;// Magnitude of pi in kN/m^2
+u=10*15;// Magnitude of u in kN/m^2
+pidash=pi-u;// Magnitude of pi' in kN/m^2
+disp(pi," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
diff --git a/3918/CH4/EX4.2/Ex4_2.sce b/3918/CH4/EX4.2/Ex4_2.sce
new file mode 100644
index 000000000..3d6f000f4
--- /dev/null
+++ b/3918/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,27 @@
+//Example 4_2
+clc;
+clear;
+close;
+
+//Given data :
+uw=19;// Unit weight of sand in kN/m^3
+
+// At elevation -10 m
+disp("At Elevation -10 m:");
+E=10;// Elevation in m
+pi=uw*E;// Magnitude of pi in kN/m^2
+u=10*10;// Magnitude of u in kN/m^2
+pidash=pi-u;// Magnitude of pi' in kN/m^2
+disp(pi," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
+
+// At elevation -25 m
+disp("At Elevation -25 m:");
+E=25;// Elevation in m
+pi=uw*E;// Magnitude of pi in kN/m^2
+u=10*25;// Magnitude of u in kN/m^2
+pidash=pi-u;// Magnitude of pi' in kN/m^2
+disp(pi," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
diff --git a/3918/CH4/EX4.3/Ex4_3.sce b/3918/CH4/EX4.3/Ex4_3.sce
new file mode 100644
index 000000000..713cd607b
--- /dev/null
+++ b/3918/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,38 @@
+//Example 4_3
+clc;
+clear;
+close;
+
+//Given data :
+uw=19;// Unit weight of sand in kN/m^3
+uw1=10;// Unit weight of fill material in kN/m^3
+
+// At elevation 0 m
+disp("At Elevation 0 m:");
+E=10;// Elevation in m
+pi=uw1*E;// Magnitude of pi in kN/m^2
+u=10*10;// Magnitude of u in kN/m^2
+pidash=pi-u;// Magnitude of pi' in kN/m^2
+disp(pi," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
+
+// At elevation -10 m
+disp("At Elevation -10 m:");
+E=10;// Elevation in m
+pi1=pi+(uw*E);// Magnitude of pi in kN/m^2
+u=10*20;// Magnitude of u in kN/m^2
+pidash=pi1-u;// Magnitude of pi' in kN/m^2
+disp(pi1," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
+
+// At elevation -25 m
+disp("At Elevation -25 m:");
+E=25;// Elevation in m
+pi2=pi+(uw*E);// Magnitude of pi in kN/m^2
+u=10*35;// Magnitude of u in kN/m^2
+pidash=pi2-u;// Magnitude of pi' in kN/m^2
+disp(pi2," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
diff --git a/3918/CH4/EX4.4/Ex4_4.sce b/3918/CH4/EX4.4/Ex4_4.sce
new file mode 100644
index 000000000..03bab2bb4
--- /dev/null
+++ b/3918/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,37 @@
+//Example 4_4
+clc;
+clear;
+close;
+
+//Given data :
+uw=19;// Unit weight of sand in kN/m^3
+uw1=20;// Unit weight of fill material in kN/m^3
+// At elevation 0 m
+disp("At Elevation 0 m:");
+E=10;// Elevation in m
+pi=uw1*E;// Magnitude of pi in kN/m^2
+u=0;// Magnitude of u in kN/m^2
+pidash=pi-u;// Magnitude of pi' in kN/m^2
+disp(pi," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
+
+// At elevation -10 m
+disp("At Elevation -10 m:");
+E=10;// Elevation in m
+pi1=pi+(uw*E);// Magnitude of pi in kN/m^2
+u=0;// Magnitude of u in kN/m^2
+pidash=pi1-u;// Magnitude of pi' in kN/m^2
+disp(pi1," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
+
+// At elevation -25 m
+disp("At Elevation -25 m:");
+E=25;// Elevation in m
+pi2=pi+(uw*E);// Magnitude of pi in kN/m^2
+u=10*15;// Magnitude of u in kN/m^2
+pidash=pi2-u;// Magnitude of pi' in kN/m^2
+disp(pi2," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
diff --git a/3918/CH40/EX40.2/Ex40_2.sce b/3918/CH40/EX40.2/Ex40_2.sce
new file mode 100644
index 000000000..7b0f8ba2b
--- /dev/null
+++ b/3918/CH40/EX40.2/Ex40_2.sce
@@ -0,0 +1,12 @@
+//Example 40_2
+clc;
+clear;
+close;
+
+//Given data :
+m=200;// Mass of milling machine in kg
+k=1*10^6;// Stiffness in N/m
+wn=sqrt(k/m);// Natural frequency of vibration of the machine in rad/sec
+Tn=2*3.14/wn;// Natural time period of vibration of the machine in sedonds
+disp(Tn,"Natural time period of vibration of the machine in sedonds");
+// The answers vary due to round off error
diff --git a/3918/CH40/EX40.3/Ex40_3.sce b/3918/CH40/EX40.3/Ex40_3.sce
new file mode 100644
index 000000000..fa4604bfc
--- /dev/null
+++ b/3918/CH40/EX40.3/Ex40_3.sce
@@ -0,0 +1,14 @@
+//Example 40_3
+clc;
+clear;
+close;
+
+//Given data :
+x=2;// Amplitude in mm
+T=0.15;// Period in seconds
+w=2*3.14/T;// Natural frequency of vibration in rad/sec
+v=w*x;// Maximum velocity in mm/sec
+disp(v,"Maximum velocity in mm/sec");
+a=w*w*x/1000;// Maximum accleration in m/sec^2
+disp(a,"Maximum accleration in m/sec^2");
+// The answers vary due to round off error
diff --git a/3918/CH41/EX41.1/Ex41_1.sce b/3918/CH41/EX41.1/Ex41_1.sce
new file mode 100644
index 000000000..73aaac777
--- /dev/null
+++ b/3918/CH41/EX41.1/Ex41_1.sce
@@ -0,0 +1,13 @@
+//Example 41_1
+clc;
+clear;
+close;
+
+//Given data :
+Cu=20000;// Coefficient of elastic uniform compression of a soil in kN/m^3
+Af=4;// Area of block in m^2
+Al=Af/2;// Area of block halved in m^2
+Cul=Cu*sqrt(Af/Al);// New Coefficient of elastic uniform compression of a soil in kN/m^3
+P=(Cul-Cu)/Cu*100;// Percentage increase in Coefficient of elastic uniform compression of a soil
+disp(P,"Percentage increase in Coefficient of elastic uniform compression of a soil");
+// The answers vary due to round off error
diff --git a/3918/CH41/EX41.2/Ex41_2.sce b/3918/CH41/EX41.2/Ex41_2.sce
new file mode 100644
index 000000000..17e872925
--- /dev/null
+++ b/3918/CH41/EX41.2/Ex41_2.sce
@@ -0,0 +1,16 @@
+//Example 41_2
+clc;
+clear;
+close;
+
+//Given data :
+Af=2*2;// Area in m^2
+Cu=20000;// Coefficient of elastic uniform compression in kN/m^3
+kz=Cu*Af;// Stiffness in the vertical directon in kN/m
+W=125;// Weight of machine in kN
+g=9.81;// Accleration due to gravity in m/sec^2
+m=W/g;// Mass of machine in kg
+wn=sqrt(kz/m);// Natural frequency of vibration in rad/sec
+fn=1/(2*3.14)*wn;// Natural frequency of machine in Hz
+disp(fn,"Natural frequency of machine in Hz");
+// The answers vary due to round off error
diff --git a/3918/CH41/EX41.3/Ex41_3.sce b/3918/CH41/EX41.3/Ex41_3.sce
new file mode 100644
index 000000000..ce3bbe63d
--- /dev/null
+++ b/3918/CH41/EX41.3/Ex41_3.sce
@@ -0,0 +1,32 @@
+//Example 41_3
+clc;
+clear;
+close;
+
+//Given data :
+Wf=1000;// Weight of foundation in kN
+Wm=400;// Weight of machine in kN
+TW=Wf+Wm;// Total Weight in kN
+g=9.81;// Accleration due to gravity in m/sec^2
+m=TW/g;// Mass of foundation in kg
+Cu=100000;// Coefficient of elastic uniform compression for the soil in kN/m^3
+Af=25;// Area of foundation block in m^2
+k=Cu*Af;// Stiffness in kN/m
+fn=1/(2*3.14)*sqrt(k/m);// Natural frequency on machine in Hz
+disp(fn,"Natural frequency on machine in Hz");
+// The answers vary due to round off error
+
+// (a) Natural frequency when the weights are kept constant and the foundation area is doubled
+disp("a)");
+Af1=2*25;// Area of foundation block in m^2
+k1=Cu*Af;// Stiffness in kN/m
+fn1=1/(2*3.14)*sqrt(k1/m);// Natural frequency on machine in Hz
+disp(fn1,"Natural frequency on machine in Hz");
+// The answers vary due to round off error
+
+// (b) Natural frequency when the area is kept constant and the weight is doubled
+disp("b)");
+m2=2*m;// Mass of foundation in kg
+fn2=1/(2*3.14)*sqrt(k/m2);// Natural frequency on machine in Hz
+disp(fn2,"Natural frequency on machine in Hz");
+// The answers vary due to round off error
diff --git a/3918/CH41/EX41.4/Ex41_4.sce b/3918/CH41/EX41.4/Ex41_4.sce
new file mode 100644
index 000000000..4289ff39b
--- /dev/null
+++ b/3918/CH41/EX41.4/Ex41_4.sce
@@ -0,0 +1,26 @@
+//Example 41_4
+clc;
+clear;
+close;
+
+//Given data :
+fn=15;// Resonant frequency in Hz
+A=1.5*0.75;// Area of concrete test block A in m^2
+UW=24;// Unit Weight of concrete in kN/m^3
+W=A*0.75*UW;// Weight of concrete block in kN
+g=9.81;// Accleration due to gravity in m/sec^2
+m=W/g;// Mass of concrete block in kg
+Cu=((fn*2*3.14)^2)*m/A;// Coefficient of elastic uniform compression in kN/m^3
+disp(Cu,"Coefficient of elastic uniform compression in kN/m^3");
+// The answer provided in the textbook is wrong
+// Al=6*6=36 m^2
+// However we limit the value of Al=10 m^2
+Al=10;// Area of block in m^2
+Cul=sqrt(Cu*Cu*Al/A);// New Coefficient of elastic uniform compression in kN/m^3
+Wb=6*6*2.5*UW;// Weight of rigid foundation block in kN
+W=100;// Weight of machine in kN
+TW=Wb+W;// Total weight in kN
+m=W/g;// Mass in kg
+fn=1/(2*3.14)*sqrt(Cul*6*6/m);// Natural frequency in vertical vibrations in Hz
+disp(fn,"Natural frequency in vertical vibrations in Hz");
+// The answer provided in the textbook is wrong
diff --git a/3918/CH41/EX41.5/Ex41_5.sce b/3918/CH41/EX41.5/Ex41_5.sce
new file mode 100644
index 000000000..4a0e1d21a
--- /dev/null
+++ b/3918/CH41/EX41.5/Ex41_5.sce
@@ -0,0 +1,24 @@
+//Example 41_5
+clc;
+clear;
+close;
+
+//Given data :
+fn=14.2;// Resonant frequency in Hz (From the graph in Fig. 41.7)
+A=1*1;// Area of concrete test block A in m^2
+UW=24;// Unit Weight of concrete in kN/m^3
+W=1*1*1*UW;// Weight of concrete block in kN
+g=9.81;// Accleration due to gravity in m/sec^2
+m=W/g;// Mass of block in kg
+Cu=((fn*2*3.14)^2)*m/A;// Coefficient of elastic uniform compression in kN/m^3
+disp(Cu,"Coefficient of elastic uniform compression in kN/m^3");
+// The answers vary due to round off error
+
+// From Fig. 41.7
+f2=925;// in rpm
+f1=775;// in rpm
+fnz=850;// in rpm
+C=(f2-f1)/(2*fnz);// Fraction of critical damping
+C=C*100;// Critical damping in %
+disp(C,"Critical damping in % is");
+// The answers vary due to round off error
diff --git a/3918/CH42/EX42.6/Ex42_6.sce b/3918/CH42/EX42.6/Ex42_6.sce
new file mode 100644
index 000000000..5f59f6921
--- /dev/null
+++ b/3918/CH42/EX42.6/Ex42_6.sce
@@ -0,0 +1,26 @@
+//Example 42_6
+clc;
+clear;
+close;
+
+//Given data :
+gt=18.9;// Total Unit weight in kN/m^3
+gs=8.9;// Unit weight of subsurface in kN/m^3
+z=3;// Depth of interest in m
+rd=1-(0.00765*z);// Stress reduction factor
+amax=0.40;// Peak ground acceleration in g
+g=9.81;// Accleration due to gravity in m/sec^2
+tav=0.65*gt*z/g*amax*rd;// Cyclic shear stress induced during earthquake in kN/m^2
+disp(tav,"Cyclic shear stress induced during earthquake in kN/m^2");
+sv=41.7;// sigma dash v at depth of 3.0 m in kN/m^2
+// The answer provided in the textbook is wrong
+M=0.1;// Magnitude of earthquake
+tcyc=M*sv;// Cyclic shear resistance available during earthquake in kN/m^2
+disp(tcyc,"Cyclic shear resistance available during earthquake in kN/m^2");
+
+if (tav>tcyc) then
+ disp("Since the cyclic shear stress induced during earthquake is more than the cyclic shear resistance available, the soil at depth of 3 m will liquefy");
+else
+ disp("Since the cyclic shear stress induced during earthquake is less than the cyclic shear resistance available, the soil at depth of 3 m will not liquefy");
+end
+// The answer provided in the textbook is wrong
diff --git a/3918/CH42/EX42.7/Ex42_7.sce b/3918/CH42/EX42.7/Ex42_7.sce
new file mode 100644
index 000000000..9ab701457
--- /dev/null
+++ b/3918/CH42/EX42.7/Ex42_7.sce
@@ -0,0 +1,29 @@
+//Example 42_7
+clc;
+clear;
+close;
+
+//Given data :
+b2=30;// in m
+b1=20;// in m
+b=b2-b1;// Base in m
+h=10;// Height in m
+A=1/2*b*h;// Area of failure wedge in m^2
+gt=18;// Total Unit weight in kN/m^3
+c=15;// in kPa
+teta=0;// Angle in degree
+W=A*gt;// Weight of failure wedge per metre length in kN/m
+L=sqrt((h*h)+(b2*b2));// Length of the slip surface in m
+b=atand(h/b2);// Inclination of the failure wedge in degree
+
+// Safety Factor under static condition
+SF=((c*L)+(W*cosd(b)*tand(teta)))/(W*sind(b));// Safety Factor under static condition
+disp(SF,"Safety Factor under static condition is");
+// The answers vary due to round off error
+
+// Dynamic factor of Safety under seismic condition
+kh=0.3;// Pseudostatic seismic coefficient
+Fh=kh*W;// Static force acting horizontally in kN
+DFS=((c*L)+(((W*cosd(b))-(Fh*sind(b)))*tand(teta)))/((W*sind(b))+(Fh*cosd(b)));// Dynamic Factor of Safety under seismic condition
+disp(DFS,"Dynamic Factor of Safety under seismic condition");
+// The answers vary due to round off error
diff --git a/3918/CH42/EX42.8/Ex42_8.sce b/3918/CH42/EX42.8/Ex42_8.sce
new file mode 100644
index 000000000..87b6a3052
--- /dev/null
+++ b/3918/CH42/EX42.8/Ex42_8.sce
@@ -0,0 +1,27 @@
+//Example 42_8
+clc;
+clear;
+close;
+
+//Given data :
+b2=30;// in m
+b1=20;// in m
+b=b2-b1;// Base in m
+h=10;// Height in m
+A=1/2*b*h;// Area of failure wedge in m^2
+gt=18;// Total Unit weight in kN/m^3
+c=15;// in kPa
+teta=0;// Angle in degree
+W=A*gt;// Weight of failure wedge per metre length in kN/m
+L=sqrt((h*h)+(b2*b2));// Length of the slip surface in m
+b=atand(h/b2);// Inclination of the failure wedge in degree
+DFS=1;// Dynamic Factor of Safety under seismic condition
+// Where Fh = kh
+// Since tan(0) = 0, ((W*cosd(b))-(Fh*sind(b)))*tand(teta)) = 0
+Fh=((c*L)-(W*sind(b)))/(cosd(b));// Static force acting horizontally in kN
+kh=Fh/W;// Pseudostatic seismic coefficient
+// kh= ac/g
+g=9.81;// Acceleration due to gravity in m/s^2
+ac=kh*g;// Critical acceleration in m/s^2
+disp(ac,"Critical acceleration in m/s^2");
+// The answer provided in the textbook is wrong
diff --git a/3918/CH6/EX6.1/Ex6_1.sce b/3918/CH6/EX6.1/Ex6_1.sce
new file mode 100644
index 000000000..91f7557e9
--- /dev/null
+++ b/3918/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,16 @@
+//Example 6_1
+clc;
+clear;
+close;
+
+//Given data :
+H1=3500;// Height1 in mm
+H2=550;// Height2 in mm
+L=300;// Length in mm
+A=10000;// Area in mm^2
+V=1000000;// Volume of jar in mm^3
+t=50;// Time taken to fill graduated jar in seconds
+DH=H1-H2;// Difference in Heights(H1-H2) in mm
+k=(V/(t*A))*(L/DH)*(1/1000);// Permeability of silty sand sample in the permeameter in m/sec
+disp(k,"Permeability of silty sand sample in the permeameter in m/sec");
+// The answers vary due to round off error
diff --git a/3918/CH6/EX6.2/Ex6_2.sce b/3918/CH6/EX6.2/Ex6_2.sce
new file mode 100644
index 000000000..ce9458484
--- /dev/null
+++ b/3918/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,18 @@
+//Example 6_2
+clc;
+clear;
+close;
+
+//Given data :
+L=150;// Length of sample in mm
+D=100;// Diameter of sample in mm
+d=2;// Diameter of vertical pipe in mm
+a=3.14*d*d/4;// Area of the vertical pipe in mm^2
+A=3.14*D*D/4;// Area of sample in mm^2
+hi=350;// Height1 in mm
+hf=200;// height2 in mm
+t=60;// Time in seconds
+V=1000000;// Volume of jar in mm^3
+k=(L*a/A)*(log(hi/hf)/t)*(1/1000);// Permeability of silty sand sample in the permeameter in m/sec
+disp(k,"Permeability of silty sand sample in the permeameter in m/sec");
+// The answers vary due to round off error
diff --git a/3918/CH7/EX7.1/Ex7_1.sce b/3918/CH7/EX7.1/Ex7_1.sce
new file mode 100644
index 000000000..d02ad312e
--- /dev/null
+++ b/3918/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,28 @@
+//Example 7_1
+clc;
+clear;
+close;
+
+//Given data :
+
+// At Point A
+disp("At Point A");
+uwa=10;// Unit weight in kN/m^3
+ha=100/1000;// Height from top till point A in m
+pi=uwa*ha;// Magnitude of pi in kN/m^2
+u=uwa*ha;// Magnitude of u in kN/m^2
+pidash=pi-u;// Magnitude of pidash in kN/m^2
+disp(pi," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
+
+// At Point B
+disp("At Point B");
+uwb=20;// Unit weight of soil sample in kN/m^3
+hb=300/1000;// Height from top till point B in m
+pi=pi+(uwb*hb);// Magnitude of pi in kN/m^2
+u=uwa*ha;// Magnitude of u in kN/m^2
+pidash=pi-u;// Magnitude of pidash in kN/m^2
+disp(pi," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
diff --git a/3918/CH7/EX7.2/Ex7_2.sce b/3918/CH7/EX7.2/Ex7_2.sce
new file mode 100644
index 000000000..3978a0cb5
--- /dev/null
+++ b/3918/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,44 @@
+//Example 7_2
+clc;
+clear;
+close;
+
+//Given data :
+
+// At Point A
+disp("a)");
+disp(" At Point A");
+uwa=10;// Unit weight in kN/m^3
+ha=100/1000;// Height from top till point A in m
+pi=uwa*ha;// Magnitude of pi in kN/m^2
+u=uwa*ha;// Magnitude of u in kN/m^2
+pidash=pi-u;// Magnitude of pidash in kN/m^2
+disp(pi," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
+
+// At Point B
+disp(" At Point B");
+uwb=20;// Unit weight of soil sample in kN/m^3
+hb=300/1000;// Height from top till point B in m
+h=600/1000;// Height in mm
+pi1=pi+(uwb*hb);// Magnitude of pi in kN/m^2
+u=uwa*h;// Magnitude of u in kN/m^2
+pidash=pi1-u;// Magnitude of pidash in kN/m^2
+disp(pi1," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
+
+disp("b)");
+uwb=20;// Unit weight of soil sample in kN/m^3
+hb=300/1000;// Height from top till point B in m
+h=700/1000;// Height in mm
+pi2=pi+(uwb*hb);// Magnitude of pi in kN/m^2
+u=uwa*h;// Magnitude of u in kN/m^2
+pidash=pi2-u;// Magnitude of pidash in kN/m^2
+disp(pi2," Magnitude of pi in kN/m^2");
+disp(u," Magnitude of u in kN/m^2");
+disp(pidash," Magnitude of pidash in kN/m^2");
+disp("Therefore effective stress is zero by increasing the water reservoir by another 100 mm");
+disp(hb*1000,"Hence, the total head causing flow in mm");
+