diff options
author | Trupti Kini | 2016-04-13 23:30:24 +0600 |
---|---|---|
committer | Trupti Kini | 2016-04-13 23:30:24 +0600 |
commit | 5b5005e310733f262a679f4396f8f02dd8714bc5 (patch) | |
tree | 47adee1c3259194ed1232aec245f482e0ed4defb | |
parent | bde93a104da9d4510f751a003cdf51ddaa45da1c (diff) | |
download | Python-Textbook-Companions-5b5005e310733f262a679f4396f8f02dd8714bc5.tar.gz Python-Textbook-Companions-5b5005e310733f262a679f4396f8f02dd8714bc5.tar.bz2 Python-Textbook-Companions-5b5005e310733f262a679f4396f8f02dd8714bc5.zip |
Added(A)/Deleted(D) following books
A Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER01_2.ipynb
A Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER03_2.ipynb
A Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER04_2.ipynb
A Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER05_2.ipynb
A Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER06_2.ipynb
A Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER08_2.ipynb
A Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER09_2.ipynb
A Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER10_2.ipynb
A Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER11_2.ipynb
A Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Plot_ex_8.24_1.png
A Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Screenshot04_2.png
A Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Screenshot10_2.png
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/Chapter9_8.ipynb
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter1_8.ipynb
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter2_8.ipynb
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter3_8.ipynb
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter4_8.ipynb
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter6_8.ipynb
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter7_8.ipynb
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter8_8.ipynb
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter_5_8.ipynb
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex1.2_3.png
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex3.7.png
A Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex6.5.png
24 files changed, 13934 insertions, 0 deletions
diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER01_2.ipynb b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER01_2.ipynb new file mode 100644 index 00000000..4e39befa --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER01_2.ipynb @@ -0,0 +1,178 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d8cd8a374e9d2a1423160b0751a9337230518753ef3ce782a87efd8053140cf4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER01:SIGNALS AND SPECTRA"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E09 : Pg 1.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 1.13\n",
+ "# Example 1.9\n",
+ "# Given,\n",
+ "# Signal is x(t)= e^(-at) * u(t)\n",
+ "# unity function u(t)=1 for 0 to infinity \n",
+ "# therefore\n",
+ "import math,numpy\n",
+ "x=1;\n",
+ "# We assume 'infinity' value as 10 and the value of 'a' is 1\n",
+ "#t= 0:1:10;\n",
+ "t=numpy.linspace(0,10,num=11)\n",
+ "a=1;# a >0\n",
+ "z=((math.e)**(-a*t) * x);\n",
+ "y=numpy.fft.fft(z);\n",
+ "print 'fourier transform of x(t)=',y"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fourier transform of x(t)= [ 1.58195029+0.j 1.33722176-0.38516024j 1.02105993-0.4033185j\n",
+ " 0.84862839-0.29364174j 0.76732853-0.17191927j 0.73478625-0.05628763j\n",
+ " 0.73478625+0.05628763j 0.76732853+0.17191927j 0.84862839+0.29364174j\n",
+ " 1.02105993+0.4033185j 1.33722176+0.38516024j]\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E10 : Pg 1.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 1.14\n",
+ "# Example 1.10\n",
+ "# Given,\n",
+ "# Signal is x(t)= e**|-a|t * u(t)\n",
+ "# unity function u(t)=1 for 0 to infinity \n",
+ "# therefore\n",
+ "import numpy,math\n",
+ "x=1;\n",
+ "# We assume 'infinity' value as 10 and the value of 'a' is 1\n",
+ "t= numpy.linspace(0,10,num=11);\n",
+ "a1=1;# For a >0\n",
+ "a2=-1; # For a <0\n",
+ "z=((math.e)**(a2*t) * x)+((math.e)**(a1*t) * x);\n",
+ "y=numpy.fft.fft(z);\n",
+ "print'fourier transform of x(t)=',y"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fourier transform of x(t)= [ 34846.35579562 +0.j 20193.20071216+23060.75353691j\n",
+ " 1262.96607876+24147.94540875j -9061.39666752+17581.25336274j\n",
+ " -13929.23742795+10293.34682733j -15877.71059326 +3370.11697016j\n",
+ " -15877.71059326 -3370.11697016j -13929.23742795-10293.34682733j\n",
+ " -9061.39666752-17581.25336274j 1262.96607876-24147.94540875j\n",
+ " 20193.20071216-23060.75353691j]\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E11 : Pg 1.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 1.14\n",
+ "# Example 1.11\n",
+ "# (a)\n",
+ "# Given\n",
+ "# Signal is x(t) = rect(t)\n",
+ "# rect(t) = 1 for -a< |t| < a and 0 elsewhere\n",
+ "# Therefore\n",
+ "# We find out fourier transform of x(t)= 1 for -a< |t| < a thus,\n",
+ "import math,numpy\n",
+ "x=([1]);\n",
+ "a= 200; # Assume \n",
+ "t= numpy.linspace(-a,a,num=2*a+1); # range for fourier transform\n",
+ "y=numpy.fft.fft(x);\n",
+ "print'Fourier transform of x(t)=',y\n",
+ "# (b)\n",
+ "# Given\n",
+ "# Signal is x(t) = rect(t)\n",
+ "# rect(t) = 1 for -a/4< |t| < a/4 and 0 elsewhere\n",
+ "# Therefore\n",
+ "# We find out fourier transform of x(t)= 1 for -a/4< |t| < a/4 thus,\n",
+ "x=([1]);\n",
+ "a= 200; # Assume \n",
+ "t= numpy.linspace(-a/4,a/4,num=(a/2)+1);# range for fourer transform\n",
+ "y=numpy.fft.fft(x);\n",
+ "print'Fourier transform of x(t)=',y\n",
+ "# (c)\n",
+ "# Given\n",
+ "# Signal is x(t) = rect(t)\n",
+ "# rect(t) = 1 for b < |t| < b + a/2 and 0 elsewhere\n",
+ "# Therefore\n",
+ "# We find out fourier transform of x(t)= 1 for b < |t| < b+ a/2 thus,\n",
+ "x=([1]);\n",
+ "a= 200; # Assume \n",
+ "b=100; # Assume\n",
+ "t=numpy.linspace(b,(b+(a/2)),num=((a/2)+1)) ;# range for fourer transform\n",
+ "y=numpy.fft.fft(x);\n",
+ "print'Fourier transform of x(t)=',y"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fourier transform of x(t)= [ 1.+0.j]\n",
+ "Fourier transform of x(t)= [ 1.+0.j]\n",
+ "Fourier transform of x(t)= [ 1.+0.j]\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER03_2.ipynb b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER03_2.ipynb new file mode 100644 index 00000000..0f40c83a --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER03_2.ipynb @@ -0,0 +1,143 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:7baac9edb2128ede2f66bcc8790788a8e9bd4ebfa3d83c78364ed1ad1c37e3be"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER03:AMPLITUDE"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E07 : Pg 3.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 3.14\n",
+ "# Example 3.7\n",
+ "# Given\n",
+ "# (a)efficiency=((u**2)/(2+(u**2)))\n",
+ "u=0.5;\n",
+ "n=((u**2.)/(2.+(u**2.)));\n",
+ "np=n*100.;\n",
+ "print\"Efficiney: \",round(np,2),\"%\"\n",
+ "\n",
+ "# (b)nmax,\n",
+ "# nmax occurs at u=1;\n",
+ "u1=1.;\n",
+ "nmax=((u1**2.)/(2.+(u1**2.)));\n",
+ "nmaxp=nmax*100.;\n",
+ "print\"Efficiney max: \",nmaxp,\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Efficiney: 11.11 %\n",
+ "Efficiney max: 33.3333333333 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E08 : Pg 3.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 3.14\n",
+ "# Example 3.8\n",
+ "# Given\n",
+ "# From waveform\n",
+ "Amax=150.;\n",
+ "Amin=30.;\n",
+ "\n",
+ "# (a)Modulation index\n",
+ "u=((Amax-Amin)/(Amax+Amin));\n",
+ "print\"Modulation Index: \",round(u,2)\n",
+ "\n",
+ "Ac=(Amax/(1.+u));\n",
+ "# (b)\n",
+ "# Carrier Power\n",
+ "Pc=(Ac**2.)/2.;\n",
+ "print\"Carrier Power: \",round(Pc,2),\"W\"\n",
+ "\n",
+ "# Side band Power\n",
+ "PSB=(Amin**2.)/2.;\n",
+ "print\"USB=LSB Power: \",round(PSB,2),\"W\"\n",
+ "\n",
+ "# Total Average power\n",
+ "Pt=Pc+(2.*PSB);\n",
+ "print\"Total Average Power: \",round(Pt,2),\"W\"\n",
+ "\n",
+ "# (c)Peak Envelope Power\n",
+ "# Given\n",
+ "R=60; # Ohm\n",
+ "PEP=(Amax**2)/(2*R);\n",
+ "print\"Peak Envelope Power: \",round(PEP),\"W\"\n",
+ "\n",
+ "# (d) Modulation Efficieny\n",
+ "n=PSB/Pt;\n",
+ "print\"Modulation efficieny: \",round(n,2)\n",
+ "\n",
+ "# (e) Given\n",
+ "# (i) u=0.2\n",
+ "u1=0.2;\n",
+ "A1=(60./u1)-Ac;\n",
+ "print\"A=\",round(A1)\n",
+ "\n",
+ "# (ii) u=0.8\n",
+ "u2=0.8;\n",
+ "A2=(60./u2)-Ac;\n",
+ "print \"A=\",round(A2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Modulation Index: 0.67\n",
+ "Carrier Power: 4050.0 W\n",
+ "USB=LSB Power: 450.0 W\n",
+ "Total Average Power: 4950.0 W\n",
+ "Peak Envelope Power: 188.0 W\n",
+ "Modulation efficieny: 0.09\n",
+ "A= 210.0\n",
+ "A= -15.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER04_2.ipynb b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER04_2.ipynb new file mode 100644 index 00000000..62bae8a2 --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER04_2.ipynb @@ -0,0 +1,680 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a49a8ec12fc3b73c3ede4bd700b2981c396abe3970143184cc460eca3744fac1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER04:ANGLE MODULATION"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E03 : Pg 4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.9\n",
+ "# Example 4.3\n",
+ "# Given\n",
+ "fc=1.*10.**6.; # Hz\n",
+ "kf=5.;\n",
+ "mt=1.*10.**5.; # Hz\n",
+ "\n",
+ "# (a) mi(t) with fm\n",
+ "mi=(fc+(kf*mt));\n",
+ "print\"Max, Inst. Frequency with FM\",mi,\"Hz\"\n",
+ "import math \n",
+ "kp=3.;\n",
+ "# (b) mi2(t) with pm\n",
+ "mi2=fc+(mt*(kp/(2*math.pi)));\n",
+ "\n",
+ "print\"Max, Inst. Frequency with PM\",mi2,\"Hz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Max, Inst. Frequency with FM 1500000.0 Hz\n",
+ "Max, Inst. Frequency with PM 1047746.48293 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E09 : Pg 4.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.13\n",
+ "# Example 4.9\n",
+ "# Given\n",
+ "delf=20.*10.**3.; # hz\n",
+ "fm=10.*10.**3.; # Hz\n",
+ "\n",
+ "B=delf/fm;\n",
+ "print\"Beta: \",B"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Beta: 2.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E13 : Pg 4.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.16\n",
+ "# Example 4.13\n",
+ "# Given\n",
+ "# x(t)=10cos((2*pi*10**8*t)+(200cos(2*pi*10**3*t)))\n",
+ "# on differentiating\n",
+ "# wi=2*pi*(1D+8)-4*pi*sin(2*pi*(1D+3)*t)\n",
+ "# Therefore\n",
+ "import math \n",
+ "delw=4.*math.pi*(1.*10.**5.);\n",
+ "wm=2.*math.pi*(1.*10.**3.);\n",
+ "B=delw/wm;\n",
+ "wb=2.*(B+1.)*wm;\n",
+ "fb=wb/2.*math.pi;\n",
+ "print\"Wb\",wb,\"rad/s\"\n",
+ "print\"Fb\",fb,\"Hz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wb 2525840.49349 rad/s\n",
+ "Fb 3967580.96924 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E14 : Pg 4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.17\n",
+ "# Example 4.14\n",
+ "# Given\n",
+ "delf=100.*10.**3; # Hz\n",
+ "fc=20.*10.**6.; # Hz\n",
+ "\n",
+ "# As B=delf/fm;\n",
+ "# (a) fm1=1*10.**3hz\n",
+ "print'Part a'\n",
+ "fm1=1.*10.**3.; # Hz\n",
+ "B1=delf/fm1;\n",
+ "print'Modulation Index',B1\n",
+ "fb1=2.*delf;\n",
+ "print'Bandwidth',fb1,'Hz'\n",
+ "# (b) fm2=100*10.**3hz\n",
+ "print'\\nPart b'\n",
+ "fm2=100.*10.**3.; # Hz\n",
+ "B2=delf/fm2;\n",
+ "print'Modulation Index',B2\n",
+ "fb2=2.*(B2+1.)*fm2;\n",
+ "print'Bandwidth',fb2,'Hz'\n",
+ "# (c) fm3=500*10.**3hz\n",
+ "print'\\nPart c'\n",
+ "fm3=500.*10.**3.; # Hz\n",
+ "B3=delf/fm3;\n",
+ "print'Modulation Index',B3\n",
+ "fb3=2.*fm3;\n",
+ "print'Bandwidth',fb3,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Part a\n",
+ "Modulation Index 100.0\n",
+ "Bandwidth 200000.0 Hz\n",
+ "\n",
+ "Part b\n",
+ "Modulation Index 1.0\n",
+ "Bandwidth 400000.0 Hz\n",
+ "\n",
+ "Part c\n",
+ "Modulation Index 0.2\n",
+ "Bandwidth 1000000.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E15 : Pg 4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.17\n",
+ "# Example 4.15\n",
+ "# Given\n",
+ "# x(t)=10cos(wct+3sinwmt)\n",
+ "# Comparing with standard equation\n",
+ "B=3.;\n",
+ "fm=1.*10.**3.; # hz\n",
+ "fb=2.*(B+1.)*fm;\n",
+ "\n",
+ "# (a)fm is doubled\n",
+ "fma=2.*fm;\n",
+ "fba=2.*(B+1.)*fma;\n",
+ "print\"fb with 2fm: \",fba\n",
+ "\n",
+ "# (b)fm is one halved\n",
+ "fmb=fm/2.;\n",
+ "fbb=2.*(B+1.)*fmb;\n",
+ "print\"fb with 0.5fm: \",fbb"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fb with 2fm: 16000.0\n",
+ "fb with 0.5fm: 4000.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E16 : Pg 4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.18\n",
+ "# Example 4.16\n",
+ "# Given\n",
+ "# x(t)=10cos(wct+3sinwmt)\n",
+ "# Comparing with standard equation of fm\n",
+ "B=3.;\n",
+ "fm=1.*10.**3.; # hz\n",
+ "fb=2.*(B+1.)*fm;\n",
+ "\n",
+ "# B is inversaly proportional to fm\n",
+ "\n",
+ "# (a)fm is doubled\n",
+ "Ba=B/2.;\n",
+ "fma=2.*fm;\n",
+ "fba=2.*(Ba+1.)*fma;\n",
+ "print\"fb with 2fm: \",fba\n",
+ "\n",
+ "\n",
+ "\n",
+ "# (b)fm is one halved\n",
+ "Bb=2.*B;\n",
+ "fmb=fm/2.;\n",
+ "fbb=2.*(Bb+1.)*fmb;\n",
+ "print\"fb with 0.5fm: \",fbb"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fb with 2fm: 10000.0\n",
+ "fb with 0.5fm: 7000.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E17 : Pg 4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.18\n",
+ "# Example 4.17\n",
+ "\n",
+ "# Given\n",
+ "fm=2.*10.**3.; # Hz\n",
+ "delf=5.*10.**3.; # Hz\n",
+ "\n",
+ "# (a) Bandwidth of modulated signal\n",
+ "B=delf/fm;\n",
+ "\n",
+ "fb=2.*(B+1.)*fm;\n",
+ "print'Bandwidth',fb,'Hz'\n",
+ "\n",
+ "# (b)Max. frequency deviation and Bandwidth of new signal\n",
+ "# Given\n",
+ "fm1=fm-(1.*10.**3.);\n",
+ "delf1=3.*delf;\n",
+ "\n",
+ "B1=delf1/fm1;\n",
+ "\n",
+ "fd=B1*fm1;\n",
+ "print'Maximum frequency deviation',fd,'Hz'\n",
+ "\n",
+ "fb1=2.*(B1+1.)*fm1;\n",
+ "print'Bandwidth',fb1,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Bandwidth 14000.0 Hz\n",
+ "Maximum frequency deviation 15000.0 Hz\n",
+ "Bandwidth 32000.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E18 : Pg 4.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.19\n",
+ "# Example 4.18\n",
+ "# Given\n",
+ "delf=75.*10.**3.; # Hz\n",
+ "fM=15.*10.**3.; # Hz\n",
+ "\n",
+ "D=delf/fM;\n",
+ "# Given formula fb=2(*10.**2)*fM\n",
+ "fb1=2.*10.**2.*fM;\n",
+ "print'BW uing formula',fb1,'Hz'\n",
+ "\n",
+ "# Carsons Rule\n",
+ "fb2=2.*10.**1.*fM;\n",
+ "print'BW uing Carsons Rule',fb2,'Hz'\n",
+ "\n",
+ "# High quality Fm radios require minimum 200kHz\n",
+ "# Therefore, carsons rule underestimates bandwidth"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "BW uing formula 3000000.0 Hz\n",
+ "BW uing Carsons Rule 300000.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E19 : Pg 4.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.19\n",
+ "# Example 4.19\n",
+ "# Given\n",
+ "fm1=50.; # Hz\n",
+ "fm2=15.*10.**3.; # Hz\n",
+ "\n",
+ "delf=75.*10.**3.; # Hz\n",
+ "\n",
+ "# As B=delf/fm\n",
+ "Bmin=delf/fm2;\n",
+ "Bmax=delf/fm1;\n",
+ "\n",
+ "# Let B1=0.5\n",
+ "B1=0.5;\n",
+ "n=(Bmax/B1);\n",
+ "print'Multiplication factor',n\n",
+ "\n",
+ "delf1=(delf/n);\n",
+ "print'Max allowed frequency deviation',delf1,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Multiplication factor 3000.0\n",
+ "Max allowed frequency deviation 25.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E20 : Pg 4.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.20\n",
+ "# Example 4.20\n",
+ "# Given\n",
+ "f1=2.*10.**5.; # Hz\n",
+ "fLO=10.8*10.**6.; # Hz\n",
+ "delf1=25.; # Hz\n",
+ "n1=64.;\n",
+ "n2=48.;\n",
+ "\n",
+ "delf=(delf1*n1*n2);\n",
+ "print'Maximum frequency deviation',delf,'Hz'\n",
+ "\n",
+ "f2=n1*f1;\n",
+ "\n",
+ "f3a=f2+fLO;\n",
+ "f3b=f2-fLO;\n",
+ "\n",
+ "# For f3a\n",
+ "fca=n2*f3a;\n",
+ "print'Carrier frequency 1',fca,'Hz'\n",
+ "\n",
+ "# For f3b\n",
+ "fcb=n2*f3b;\n",
+ "print'Carrier frequency 2',fcb,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum frequency deviation 76800.0 Hz\n",
+ "Carrier frequency 1 1132800000.0 Hz\n",
+ "Carrier frequency 2 96000000.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E21 : Pg 4.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.20\n",
+ "# Example 4.21\n",
+ "# Given\n",
+ "delf=20.*10.**3.; # Hz\n",
+ "fc=200.*10.**3.; # Hz\n",
+ "of=96.*10.**6.; # hz\n",
+ "# delf=n1*n2 and as only doublers are used, n1*n2 has to be power of 2\n",
+ "# By trail and error, we find\n",
+ "n1=64.;\n",
+ "n2=32.;\n",
+ "# Output of first Multiplier\n",
+ "o1=n1*fc;\n",
+ "print'Output of first multiplier: ',o1,'Hz'\n",
+ "i2=of/n2;\n",
+ "flo=o1-i2;\n",
+ "print'fLO',flo,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output of first multiplier: 12800000.0 Hz\n",
+ "fLO 9800000.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E22 : Pg 4.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.20\n",
+ "# Example 4.22\n",
+ "# Given\n",
+ "B=0.2; \n",
+ "f1=200.*10.**3.; # Hz\n",
+ "fml=50.; # Hz\n",
+ "fmh=15.*10.**3.; # Hz\n",
+ "delf=75.*10.**3.; # hz\n",
+ "fc=108.*10.**6.; # Hz\n",
+ "\n",
+ "delf1=B*fml;\n",
+ "n1n2=delf/delf1;\n",
+ "\n",
+ "# Let n2=150\n",
+ "n2=150.;\n",
+ "flo=((delf*f1)-fc)/n2;\n",
+ "print'fLO',flo,'Hz'\n",
+ "\n",
+ "n1=n1n2/n2;\n",
+ "print\"n1 with n2=150:\",n1"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fLO 99280000.0 Hz\n",
+ "n1 with n2=150: 50.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E23 : Pg 4.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.21\n",
+ "# Example 4.23\n",
+ "# Given,\n",
+ "\n",
+ "delfd1=50.; # Hz\n",
+ "f1=120.; # Hz\n",
+ "\n",
+ "delfd2=20000.; # Hz\n",
+ "f2=240.; # Hz\n",
+ "# (a)PM\n",
+ "delf1=(f2/f1)*delfd1;\n",
+ "n1=delfd2/delf1;\n",
+ "print'Frequency multiplication factor in PM',n1\n",
+ "\n",
+ "# (b)FM\n",
+ "n2=delfd2/delfd1;\n",
+ "print'Frequency multiplication factor in FM',n2"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency multiplication factor in PM 200.0\n",
+ "Frequency multiplication factor in FM 400.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E29 : Pg 4.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 4.25\n",
+ "# Example 4.29\n",
+ "# Given,\n",
+ "f1=108.; # MHz\n",
+ "f2=157.; # MHz\n",
+ "\n",
+ "# (a) Image frequency overlaps RF band\n",
+ "fIF=12.; # MHz\n",
+ "\n",
+ "fL01=f1-fIF;\n",
+ "print'fL01',fL01,'MHz'\n",
+ "fim1=fL01-fIF;\n",
+ "print'fim1',fim1,'MHz'\n",
+ "\n",
+ "fL02=f2-fIF;\n",
+ "print'fL02',fL02,'MHz'\n",
+ "fim2=fL02-fIF;\n",
+ "print'fim2',fim2,'MHz'\n",
+ "\n",
+ "# Clearly image and RF band overlap"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fL01 96.0 MHz\n",
+ "fim1 84.0 MHz\n",
+ "fL02 145.0 MHz\n",
+ "fim2 133.0 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER05_2.ipynb b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER05_2.ipynb new file mode 100644 index 00000000..d917ea6c --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER05_2.ipynb @@ -0,0 +1,820 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d2b10e85dc4e5ecd691f760bb8b2905ecd459bb295630a40b80f0bb469c6ca0a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER05:PULSE MODULATION"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E09 : Pg 5.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.26\n",
+ "# Example 5.9\n",
+ "# Given,\n",
+ "# m(t)=10cos(2000*pi*t)cos(8000*pi*t)\n",
+ "# or 5 cos (6000*pi*t) +5*cos(10000*pi*t)\n",
+ "# (a) Minimum sampling rate\n",
+ "# we have\n",
+ "fM=5000.; # Hz\n",
+ "fs=2.*fM;\n",
+ "print'Minimum sampling rate',fs,'Hz'\n",
+ "\n",
+ "# (b)bandpass sampling theoram\n",
+ "fu=fM;\n",
+ "fb=fM-3000.; # Hz\n",
+ "# As fu/fb is 2.5\n",
+ "# We have\n",
+ "k=2.;\n",
+ "fs2=(2.*fu)/k;\n",
+ "print'Minimum sampling rate by sampling theoram',fs2,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum sampling rate 10000.0 Hz\n",
+ "Minimum sampling rate by sampling theoram 5000.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E14 : Pg 5.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.31\n",
+ "# Example 5.14\n",
+ "\n",
+ "# Given,\n",
+ "Rb=36000.; # (b/s)\n",
+ "fM=3200.; # Hz\n",
+ "fs=2.*fM;\n",
+ "n=Rb/fs;\n",
+ "# As n should be less than Rs/fs\n",
+ "\n",
+ "nn=round(n,2)-1;\n",
+ "print'Binary digits',nn\n",
+ "\n",
+ "L=2**nn;\n",
+ "print'Quantizing level',L\n",
+ "\n",
+ "fs=Rb/nn;\n",
+ "print'Sampling Rate',fs,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Binary digits 4.63\n",
+ "Quantizing level 24.7610398967\n",
+ "Sampling Rate 7775.37796976 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E15 : Pg 5.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.31\n",
+ "# Example 5.15\n",
+ "mp=1.; # Assume peak amplitude is unity\n",
+ "# Given\n",
+ "dela=0.02*mp;\n",
+ "\n",
+ "L=(mp*2)/dela;\n",
+ "\n",
+ "#for i in range(0,10):\n",
+ "# j=2**i;\n",
+ "# if(j>=L)\n",
+ "# L1=j;\n",
+ "# break;\n",
+ "import math \n",
+ "#n=math.log(L1,2);# bits per sample\n",
+ "n=7.;\n",
+ "print'Number of bits',n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of bits 7.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E18 : Pg 5.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.31\n",
+ "# Example 5.18\n",
+ "# Given,\n",
+ "import math \n",
+ "\n",
+ "SbyN=40.; # db\n",
+ "SbyN0=10.**(SbyN/10);\n",
+ "\n",
+ "# As sbyn=3L**2/2\n",
+ "L=math.sqrt((2.*(SbyN0))/3.);\n",
+ "LL=round(L);\n",
+ "\n",
+ "n=(math.log(LL))/math.log(2);\n",
+ "\n",
+ "nn=(round(n))+1; # Upper limit\n",
+ "\n",
+ "print'Binary digits',nn\n",
+ "LL=2.**nn;\n",
+ "\n",
+ "print'Number of levels',LL\n",
+ "# As SQN= 1.76+6.02(n)\n",
+ "SQN= 1.76+6.02*(nn);\n",
+ "print'Signal to quantizin ratio',SQN,'db'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Binary digits 7.0\n",
+ "Number of levels 128.0\n",
+ "Signal to quantizin ratio 43.9 db\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E19 : Pg 5.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.33\n",
+ "# Example 5.19\n",
+ "# Given,\n",
+ "n=16.;\n",
+ "Rb=44100.; # b/s\n",
+ "# (a) Output signal to quantizing ratio\n",
+ "SNQ=1.76+(6.02*n);\n",
+ "print'Output signal to quantizing ratio: ',SNQ,'db'\n",
+ "\n",
+ "# (b)Input Bit Rate\n",
+ "IBR=2.*Rb*n;\n",
+ "print'Input bit rate: ',IBR,'B/s'\n",
+ "OBR=2.*IBR;\n",
+ "print'Output bit rate: ',OBR,'B/s'\n",
+ "\n",
+ "# (c)Number of bits recorded\n",
+ "# Given, an hours time\n",
+ "# Therefore, time\n",
+ "t=60.*60.;\n",
+ "NBR=OBR*t;\n",
+ "print'Number of bits recorded: ',NBR,'Bytes'\n",
+ "\n",
+ "# (d) Dictionary\n",
+ "# Given\n",
+ "p=1500.;\n",
+ "c=2.;\n",
+ "l=100.;\n",
+ "w=8.;\n",
+ "let=6.;\n",
+ "b=7.;\n",
+ "d=p*c*l*w*let*b;\n",
+ "print'Number of bits required',d,'Bytes'\n",
+ "\n",
+ "x=NBR/(2.*d);\n",
+ "y=round(x);\n",
+ "print'Number of comparable books',y"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output signal to quantizing ratio: 98.08 db\n",
+ "Input bit rate: 1411200.0 B/s\n",
+ "Output bit rate: 2822400.0 B/s\n",
+ "Number of bits recorded: 10160640000.0 Bytes\n",
+ "Number of bits required 100800000.0 Bytes\n",
+ "Number of comparable books 50.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E22 : Pg 5.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.35\n",
+ "# Example 5.22\n",
+ "# Given,\n",
+ "f1=200.; # Hz\n",
+ "f2=3300.; # Hz\n",
+ "fs=8000.; # Samples/s\n",
+ "SQN=30.; # dB\n",
+ "import math \n",
+ "# (a)Minimum number of quantizin levels and bits per sample\n",
+ "# From SQN=1.76+20log L\n",
+ "La=10.**((SQN-1.76)/20.);\n",
+ "L=round(La);\n",
+ "print'Minimum number of quantizing levels',L\n",
+ "n=math.log(L)/math.log(2);\n",
+ "nn=round(n);\n",
+ "print'Minimum number of bits per sample',nn\n",
+ "\n",
+ "# (b)Minimum system bandwidth\n",
+ "Fpcm=(nn*fs)/2.;\n",
+ "print'Minimum system Bandwidth',Fpcm,'Hz'\n",
+ "\n",
+ "# (c)For u=255\n",
+ "# SQN=20logL-10.1\n",
+ "La1=10.**((SQN+10.1)/20.);\n",
+ "L1=(round(La1))+1.; # Upper Limit\n",
+ "print'Minimum number of quantizing levels for u=255',L1\n",
+ "n1=math.log(L1)/math.log(2);\n",
+ "nn1=(round(n1));\n",
+ "print'Minimum number of bits per sample',nn1\n",
+ "\n",
+ "# Minimum system bandwidth\n",
+ "Fpcm1=(nn1*fs)/2.;\n",
+ "print'Minimum system Bandwidth',Fpcm1,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum number of quantizing levels 26.0\n",
+ "Minimum number of bits per sample 5.0\n",
+ "Minimum system Bandwidth 20000.0 Hz\n",
+ "Minimum number of quantizing levels for u=255 102.0\n",
+ "Minimum number of bits per sample 7.0\n",
+ "Minimum system Bandwidth 28000.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E25 : Pg 5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.37\n",
+ "# Example 5.25\n",
+ "# Given,\n",
+ "import math \n",
+ "fs=32.*10.**+3.; # Hz\n",
+ "fm=1000.; # Hz\n",
+ "fM=4.*10.**3.; # Hz\n",
+ "# As SNR=(3*(fs**3))/(8*pi*pi*(fm**2)*fM)\n",
+ "SNR=(3.*(fs**3.))/(8.*math.pi*math.pi*(fm**2.)*fM);\n",
+ "SNRdb=(math.log(SNR))/math.log(10);\n",
+ "print'Output SNR',SNRdb,'dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output SNR 2.49312146597 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E26 : Pg 5.38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.38\n",
+ "# Example 5.26\n",
+ "# Given,\n",
+ "n=4.;\n",
+ "SNQ=1.76+(6.02*n);\n",
+ "print'Output SNR',SNQ,'dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output SNR 25.84 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E27 : Pg 5.38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.38\n",
+ "# Example 5.27\n",
+ "import math \n",
+ "# Given,\n",
+ "bw=3.*10.**3.; # Hz\n",
+ "n=3.;\n",
+ "fs=(n*2.*bw);\n",
+ "dela=250.*10.**3; # mV\n",
+ "fm=1000.; # Hz\n",
+ "# (a) Maximum amplitude\n",
+ "Amax=(dela*fs)/(2.*math.pi*fm);\n",
+ "print'Maximum Amplitude',Amax,'V'\n",
+ "\n",
+ "# (b) Output signal to quantizing ratio\n",
+ "SNRO=(3.*(fs**3.))/(8.*math.pi*math.pi*(fm**3.));\n",
+ "SNRdb=10.*(math.log(SNRO))/math.log(10);\n",
+ "print'Output SNR',SNRdb,'dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum Amplitude 716197.243914 V\n",
+ "Output SNR 23.4554903765 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E32 : Pg 5.40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.40\n",
+ "# Example 5.32\n",
+ "# Given,\n",
+ "m1=3.*10.**3.; # Hz\n",
+ "m2=3.5*10.**3.; # Hz\n",
+ "# Since highest frequency is of m2\n",
+ "Sr=2.*m2; \n",
+ "print'Sampling Rate',Sr,'Samples/s'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Sampling Rate 7000.0 Samples/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E33 : Pg 5.40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.40\n",
+ "# Example 5.33\n",
+ "# Given,\n",
+ "import math \n",
+ "m1=3.6*10.**3.; # Hz\n",
+ "m2=1.2*10.**3.; # Hz\n",
+ "m3=m2;\n",
+ "m4=m2;\n",
+ "# (a)Nyquist rate\n",
+ "nr1=2.*m1;\n",
+ "print'Nyquist Rate of m1(t)',nr1\n",
+ "nr2=2.*m2;\n",
+ "print'Nyquist Rate of m2(t)',nr2\n",
+ "nr3=2.*m3;\n",
+ "print'Nyquist Rate of m3(t)',nr3\n",
+ "nr4=2.*m4;\n",
+ "print'Nyquist Rate of m4(t)',nr4\n",
+ "\n",
+ "# (b) Speed of commutator\n",
+ "c=nr1+nr2+nr3+nr4;\n",
+ "print'Speed of commutator',c,'samples/s'\n",
+ "\n",
+ "# (c)Output bit rate\n",
+ "# Given, \n",
+ "L=1024.;\n",
+ "n=math.log(L)/math.log(2);\n",
+ "OBR=n*c;\n",
+ "print'Output bit rate',OBR,'b/s'\n",
+ "\n",
+ "# (d)Minimum channel bandwidth\n",
+ "fB=c/2.;\n",
+ "print'Minimum Channel Bandwidth',fB,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Nyquist Rate of m1(t) 7200.0\n",
+ "Nyquist Rate of m2(t) 2400.0\n",
+ "Nyquist Rate of m3(t) 2400.0\n",
+ "Nyquist Rate of m4(t) 2400.0\n",
+ "Speed of commutator 14400.0 samples/s\n",
+ "Output bit rate 144000.0 b/s\n",
+ "Minimum Channel Bandwidth 7200.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E34 : Pg 5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.41\n",
+ "# Example 5.34\n",
+ "\n",
+ "# Given,\n",
+ "fs=8000.; # Hz\n",
+ "m=24.;\n",
+ "n=8.;\n",
+ "# (a) Duration of each bit\n",
+ "t1=1./fs;\n",
+ "t2=(m*n)+1.; # Extra bit for synchronization\n",
+ "Tb=t1/t2;\n",
+ "print'Duration of each bit',Tb,'seconds'\n",
+ "\n",
+ "# (b) Transmission Rate\n",
+ "Rb=1./Tb;\n",
+ "print'Transmission Rate',Rb,'b/s'\n",
+ "\n",
+ "# (c)Minimum transmission bandwidth\n",
+ "fT1=1./(2.*Tb);\n",
+ "print'Minimum transmission bandwidth',fT1,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Duration of each bit 6.47668393782e-07 seconds\n",
+ "Transmission Rate 1544000.0 b/s\n",
+ "Minimum transmission bandwidth 772000.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E35 : Pg 5.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.42\n",
+ "# Example 5.35\n",
+ "# Given,\n",
+ "n=24.;\n",
+ "f=3.4*10.**3; # Hz\n",
+ "ts=1.*10**6.; # Second\n",
+ "# (a) Spacing between succesive multiplexed pulses\n",
+ "fs=8000.; # Samples per second\n",
+ "t1=1./fs;\n",
+ "t2=n+1.; # One synchronizing bit\n",
+ "Tb=t1/t2;\n",
+ "# Actual Tb, as actual duration of each pulse is 1us\n",
+ "ATb=Tb-ts;\n",
+ "print'Spacing between succesive multiplexed pulses',ATb,'Seconds'\n",
+ "# (b) Nyquist Rate of Sampling\n",
+ "f1=2.*f;\n",
+ "T=1./f1; # Seconds\n",
+ "Tb1=T/t2;\n",
+ "ATb1=Tb1-ts;\n",
+ "print'Spacing between succesive multiplexed pulses using Nyquist rate of sampling',ATb1,'Seconds'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Spacing between succesive multiplexed pulses -999999.999995 Seconds\n",
+ "Spacing between succesive multiplexed pulses using Nyquist rate of sampling -999999.999994 Seconds\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E37 : Pg 5.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.43\n",
+ "# Example 5.37\n",
+ "# Given,\n",
+ "bw=3.5*10.**3.; # Hz\n",
+ "# Roll off factor\n",
+ "a=0.25;\n",
+ "Rb=(2.*bw)/(1.+a);\n",
+ "print'Data Rate',Rb,'b/s'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Data Rate 5600.0 b/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E38 : Pg 5.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.43\n",
+ "# Example 5.38\n",
+ "# Given,\n",
+ "fB=75.*10.**3.; # Hz\n",
+ "Rb=0.1*10.**6.; # B/s\n",
+ "Tb=1./Rb;\n",
+ "a=(2.*fB*Tb)-1.;\n",
+ "print'Roll off factor',a"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Roll off factor 0.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E39 : Pg 5.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.43\n",
+ "# Example 5.39\n",
+ "# Given,\n",
+ "import math \n",
+ "m=8.;\n",
+ "fM=2.*10.**3.; # Hz\n",
+ "a=0.2;\n",
+ "# Here we choose L=128;\n",
+ "L=128.;\n",
+ "n=math.log(L)/math.log(2);\n",
+ "Sr=2.*fM;\n",
+ "fs=1.25*Sr;\n",
+ "\n",
+ "# For n tdm signals\n",
+ "x=m*fs;\n",
+ "\n",
+ "# Resultant bit rate\n",
+ "br=7.*x;\n",
+ "\n",
+ "# Minimum Transmission bandwidth\n",
+ "fB=((1.+a)*br)/2.;\n",
+ "print'Minimum Transmission bandwidth',fB,'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum Transmission bandwidth 168000.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E40 : Pg 5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 5.44\n",
+ "# Example 5.40\n",
+ "# Given,\n",
+ "import math \n",
+ "M=16.;\n",
+ "sr=40000.;\n",
+ "a=0.3;\n",
+ "# (a) Bit Rate\n",
+ "n=math.log(M)/math.log(2);\n",
+ "br=sr*n;\n",
+ "print'Bit Rate: ',br,'b/s'\n",
+ "\n",
+ "# (b)\n",
+ "# As 2*fB=(1+a)*R/log2M\n",
+ "# Given \n",
+ "bw=110.*10.**3.; # Hz # =2*fB\n",
+ "\n",
+ "M=2.**(((1.+a)*br)/bw);\n",
+ "MM=round(M);\n",
+ "print'Value of M',MM\n",
+ "\n",
+ "# (c)Band Rate\n",
+ "band=br/(math.log(n))/math.log(2);\n",
+ "print'Band Rate',band,'Symbols/s'\n",
+ "\n",
+ "# (d) Spectral efficiency\n",
+ "BT=((1.+a)*br)/2.;\n",
+ "Eff=br/BT;\n",
+ "print'Spectral efficiency',Eff,'b/s Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Bit Rate: 160000.0 b/s\n",
+ "Value of M 4.0\n",
+ "Band Rate 166509.51848 Symbols/s\n",
+ "Spectral efficiency 1.53846153846 b/s Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER06_2.ipynb b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER06_2.ipynb new file mode 100644 index 00000000..3fe5c8b4 --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER06_2.ipynb @@ -0,0 +1,380 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a14c7a989e8c3ea4932d8ef52a48aca6495d802f38f7487ab2fe14fa0d728058"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER06:PROBABILITY AND RANDOM VARIABLES"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E07 : Pg 6.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 6.16\n",
+ "# Example 6.7\n",
+ "# Given\n",
+ "# Pdot=2*Pdash and Pdot+Pdash=1\n",
+ "# Therfore, on solving using linear equations\n",
+ "import math \n",
+ "#a=([1, -2],[1, 1]);\n",
+ "##c=([0],[1]);\n",
+ "#b=1/(a)*c;\n",
+ "Pdash=0.3333333;#b(1,1);\n",
+ "Pdot=0.6666667;#b(2,1);\n",
+ "print'Pdot:',Pdot\n",
+ "print'Pdash:',Pdash"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Pdot: 0.6666667\n",
+ "Pdash: 0.3333333\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E14 : Pg 6.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 6.18\n",
+ "# Example 6.14\n",
+ "# Given\n",
+ "p=0.1;\n",
+ "q=0.2;\n",
+ "Pm0=0.5;\n",
+ "Pr1bym0=p;\n",
+ "Pr0bym1=q;\n",
+ "# (a) Find Pr0 and Pr1\n",
+ "Pm1=1-Pm0;\n",
+ "Pr0bym0=1-Pr1bym0;\n",
+ "Pr1bym1=1-Pr0bym1;\n",
+ "\n",
+ "# By formula\n",
+ "# P(r0)=(P(r0/m0)*P(m0))+(P(r0/m1)*P(m1);\n",
+ "# P(r1)=(P(r1/m0)*P(m0))+(P(r1/m1)*P(m1);\n",
+ "Pr0=(Pr0bym0*Pm0)+(Pr0bym1*Pm1);\n",
+ "Pr1=(Pr1bym0*Pm0)+(Pr1bym1*Pm1);\n",
+ "print'P(r0):',Pr0\n",
+ "print'P(r1):',Pr1\n",
+ "# (b)P(m0/r0)\n",
+ "# Using Bayes Rule\n",
+ "# P(m0/r0)=(P(m0)*P(r0/m0)/P(r0))\n",
+ "Pm0byr0=(Pm0*Pr0bym0)/Pr0;\n",
+ "print'P(m0/r0):',Pm0byr0\n",
+ "# (c)P(m1/r1)\n",
+ "# Using Bayes Rule\n",
+ "# P(m1/r1)=(P(m1)*P(r1/m1)/P(r1))\n",
+ "Pm1byr1=(Pm1*Pr1bym1)/Pr1;\n",
+ "print'P(m1/r1):',Pm1byr1\n",
+ "\n",
+ "# (d)Probabilty error\n",
+ "# As Pe=(P(r1/m0)*P(m0))+(P(r0/m1)*P(m1))\n",
+ "Pe=(Pr1bym0*Pm0)+(Pr0bym1*Pm1);\n",
+ "print'Probability error:',Pe\n",
+ "\n",
+ "# (e)Probabilty that is transmitted correctly\n",
+ "# As Pc=(P(r0/m0)*P(m0))+(Pr1bym1*Pm1)\n",
+ "\n",
+ "Pc=(Pr0bym0*Pm0)+(Pr1bym1*Pm1);\n",
+ "print'Probabilty that is transmitted correctly:',Pc"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "P(r0): 0.55\n",
+ "P(r1): 0.45\n",
+ "P(m0/r0): 0.818181818182\n",
+ "P(m1/r1): 0.888888888889\n",
+ "Probability error: 0.15\n",
+ "Probabilty that is transmitted correctly: 0.85\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E16 : Pg 6.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 6.21\n",
+ "# Example 6.16\n",
+ "# Given\n",
+ "p=0.4;\n",
+ "Pp=p;\n",
+ "q=0.3;\n",
+ "Pn=q;\n",
+ "a=1.; # i start value\n",
+ "b=6.; # i end value\n",
+ "# (a)Probabilty that all pulses are positive\n",
+ "s=1.;\n",
+ "for i in range(1,6):\n",
+ " s=s*Pp;\n",
+ "print'Probabilty that all pulses are positive:',s\n",
+ "\n",
+ "# (b)Pulses are positive ,positive, positive, zero,zero,negative\n",
+ "Pz=1.-(p+q);\n",
+ "s1=(Pp**3.)*(Pz**2.)*Pn;\n",
+ "print'Probabilty that all pulses are positive ,positive, positive, zero,zero,negative:',s1"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Probabilty that all pulses are positive: 0.01024\n",
+ "Probabilty that all pulses are positive ,positive, positive, zero,zero,negative: 0.001728\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E17 : Pg 6.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 6.21\n",
+ "# Example 6.17\n",
+ "# Given\n",
+ "import math \n",
+ "P1=0.6;\n",
+ "P0=0.4;\n",
+ "n=5.; # Five digit sequence\n",
+ "j=2.; # two outcomes 0 and 1\n",
+ "\n",
+ "# (a)1,1,0,0,0\n",
+ "xf=(math.factorial(n))/((math.factorial(j))*(math.factorial(n-j)));\n",
+ "s=xf*(P1**j)*(P0**(n-j));\n",
+ "print'Probability for 1,1,0,0,0:',s\n",
+ "\n",
+ "# (b)atleast 3 1's\n",
+ "# P(X>=3)=1-P(X<=2)\n",
+ "# Here y=1-x\n",
+ "x=0;\n",
+ "for k in range(0,2):\n",
+ " f=(math.factorial(n))/((math.factorial(k))*(math.factorial(n-k)));\n",
+ " x=x+(f*((P1**k)*(P0**(n-k))));\n",
+ "y=1.-x;\n",
+ "print'Probability for atleast three 1 s:',y"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Probability for 1,1,0,0,0: 0.2304\n",
+ "Probability for atleast three 1 s: 0.91296\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E20 : Pg 6.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 6.23\n",
+ "# Example 6.20\n",
+ "# Given\n",
+ "import math \n",
+ "pe=0.01; # Error probability\n",
+ "\n",
+ "# (a) Probabilty of more than one error in 10 recieved digits\n",
+ "n=10.;\n",
+ "# As P(X>1)=1-P(X=0)-P(X=1)\n",
+ "# Let x=P(X>1)\n",
+ "# s=P(X=0)+P(X=1)\n",
+ "s=0;\n",
+ "for t in range(0,1):\n",
+ " f=(math.factorial(n))/((math.factorial(t))*(math.factorial(n-t)));\n",
+ " s=s+(f*(pe**t)*((1-pe)**(n-t)));\n",
+ "x=1-s;\n",
+ "print'Probabilty of more than one error in 10 recieved digits:',x\n",
+ "\n",
+ "# (b)Using Poisson approximation\n",
+ "# P(X=k)~[{(%exp)**(-n*p)}*{((n*p)**k)}]/k factorial\n",
+ "s1=0;\n",
+ "for k in range(0,1):\n",
+ " j=math.factorial(k);\n",
+ " s1=s1+((math.exp(-n*pe))*(((n*pe)**k)))/j;\n",
+ "x1=1.-s1;\n",
+ "print'Using Poisson Approximation:',x1"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Probabilty of more than one error in 10 recieved digits: 0.0956179249912\n",
+ "Using Poisson Approximation: 0.095162581964\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E23 : Pg 6.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 6.23\n",
+ "# Example 6.23\n",
+ "# We find, k=1/(b-a)\n",
+ "# (b) if a=1 and b=2,P(|x|<c) where c=1/2\n",
+ "a=-1.;\n",
+ "b=2.;\n",
+ "c=1./2.;\n",
+ "\n",
+ "k=1./(b-a);\n",
+ "# P(|x|<c) = P(-c<=x<=c)\n",
+ "# Let y\n",
+ "x0=-c;x1=c;\n",
+ "y=1.;#integrate('1','x',x0,x1);\n",
+ "y1=k*y;\n",
+ "print'P(|x|<c):',y1"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "P(|x|<c): 0.333333333333\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E41 : Pg 6.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 6.34\n",
+ "# Example 6.41\n",
+ "# Given\n",
+ "import math \n",
+ "n=16.; # binary digits\n",
+ "p=0.01; # Probabilty error due to noise\n",
+ "\n",
+ "# (a) Average errors per block\n",
+ "# E(X)=n*p\n",
+ "EofX=n*p;\n",
+ "print'Average errors per block:',EofX\n",
+ "\n",
+ "# (b)Varience of errors of block\n",
+ "# s=n*p*(1-p)\n",
+ "s=n*p*(1.-p);\n",
+ "print'Varience of errors per block:',s\n",
+ "\n",
+ "\n",
+ "# (c) Probability that number of errors per block is bgeater or equal than 4\n",
+ "i=4.;\n",
+ "# AsP(X>=4)=1=P(X<=3)\n",
+ "P3=0;\n",
+ "for k in range(0,3):\n",
+ " f=(math.factorial(n))/((math.factorial(k))*(math.factorial(n-k)));\n",
+ " P3=P3+(f*(p**k)*((1-p)**(n-k)));\n",
+ "P4=1.-P3;\n",
+ "print'Probability that number of errors per block is bgeater or equal than 4:',P4"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Average errors per block: 0.16\n",
+ "Varience of errors per block: 0.1584\n",
+ "Probability that number of errors per block is bgeater or equal than 4: 0.000507942409291\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER08_2.ipynb b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER08_2.ipynb new file mode 100644 index 00000000..2b57bca4 --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER08_2.ipynb @@ -0,0 +1,1088 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:f6c29af3d9b16a8f90e98fbed00e1caee12f7cad0d6c98636d72910f1db1ff12"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER08:NOISE"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E01 : Pg 8.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.6\n",
+ "# Example 8.1\n",
+ "import math \n",
+ "print'Part a'\n",
+ "# (a)Given, u1=1W and u2=1mW\n",
+ "# Change to dBW and dBm\n",
+ "u1=1.*10.**3.;\n",
+ "u2=1.;\n",
+ "# (i)470mW\n",
+ "a=470.*10.**3.;\n",
+ "y1=(10.*math.log(a/u1))/math.log(10);\n",
+ "print'dBm',y1\n",
+ "\n",
+ "y2=(10*math.log(a/u2))/math.log(10);\n",
+ "print'dBW',y2\n",
+ "\n",
+ "# (ii)1W\n",
+ "b=1.;\n",
+ "z1=(10.*math.log(b/u1))/math.log(10);\n",
+ "print'dBm',z1\n",
+ "\n",
+ "z2=(10.*math.log(b/u2))/math.log(10);\n",
+ "print'dBW',z2\n",
+ "\n",
+ "# (iii)100nW\n",
+ "c=100.*10.**9;\n",
+ "x1=(10*math.log(c/u1))/math.log(10);\n",
+ "print'dBm',x1\n",
+ "\n",
+ "x2=(10.*math.log(c/u2))/math.log(10);\n",
+ "print'dBW',x2\n",
+ "\n",
+ "print'\\nPart B'\n",
+ "# (b)Here u1=1W (for dBW)and u2=1mW (for dBm)\n",
+ "# Change to powers to watts\n",
+ "# (i)-20dBW\n",
+ "a=-20.;\n",
+ "k1=u2*(10.**(a/10.));\n",
+ "print'W',k1\n",
+ "\n",
+ "\n",
+ "# (ii)47dBm\n",
+ "b=47.;\n",
+ "k2=u1*(10.**(b/10.));\n",
+ "print'W',k2\n",
+ "\n",
+ "\n",
+ "# (ii)0dBm\n",
+ "c=0;\n",
+ "k3=u1*(10.**(c/10.));\n",
+ "print'W',k3\n",
+ "\n",
+ "\n",
+ "print'\\nPart C'\n",
+ "# (c)Given, channel loss=20dB and Pt=1W\n",
+ "l=-20.;\n",
+ "PT=1.;\n",
+ "PR=10.**(l/10.);\n",
+ "print'Received Power',PR,'W'\n",
+ "\n",
+ "print'\\nPart D'\n",
+ "# (d)Given, channel loss=30dB when signal=3dB and overall loss=20dB\n",
+ "l1=-30.;\n",
+ "s=-3.;\n",
+ "l2=-20.;\n",
+ "q=-l1-s-s+l2;\n",
+ "d1=10.**(q/10.);\n",
+ "print'=',q,'dB'\n",
+ "print d1\n",
+ "\n",
+ "print'\\nPart E'\n",
+ "# (e)Given,\n",
+ "Si=0; # dBm\n",
+ "S1=1.*10.**3.*(10.**(Si/10.));\n",
+ "Ni=1.*10.**7.; # W\n",
+ "\n",
+ "Osnr=S1/Ni;\n",
+ "Odb=(10.*(math.log(Osnr)))/math.log(10)\n",
+ "print Odb,'dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Part a\n",
+ "dBm 26.7209785794\n",
+ "dBW 56.7209785794\n",
+ "dBm -30.0\n",
+ "dBW 0.0\n",
+ "dBm 80.0\n",
+ "dBW 110.0\n",
+ "\n",
+ "Part B\n",
+ "W 0.01\n",
+ "W 50118723.3627\n",
+ "W 1000.0\n",
+ "\n",
+ "Part C\n",
+ "Received Power 0.01 W\n",
+ "\n",
+ "Part D\n",
+ "= 16.0 dB\n",
+ "39.8107170553\n",
+ "\n",
+ "Part E\n",
+ "-40.0 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E02 : Pg 8.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.7\n",
+ "# Example 8.2\n",
+ "# Given,\n",
+ "import math \n",
+ "R=1000.;\n",
+ "T=27.; # degree celsius\n",
+ "TK=T+273.; # kelvin\n",
+ "# We know, rms noise voltage is 4RKTB\n",
+ "K=1.38*10.**28.;\n",
+ "B=10.;\n",
+ "V=math.sqrt(4.*R*K*TK*B);\n",
+ "print'Rms noise voltage:',V,'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rms noise voltage: 4.06939798988e+17 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E03 : Pg 8.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.8\n",
+ "# Example 8.3\n",
+ "# Given,\n",
+ "G=100.;\n",
+ "G1=(10.**(G/10.));\n",
+ "\n",
+ "T=30.;\n",
+ "Te=270.;\n",
+ "\n",
+ "# We know,output noise power=GKB(T+Te)\n",
+ "K=1.38*10.**23.;\n",
+ "B=1.5*10.**6.;\n",
+ "\n",
+ "No=G1*1.38*10.**23.*1.5*10.**6.*(T+Te);\n",
+ "print'Output Noise Power',No,'W'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output Noise Power 6.21e+41 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E04 : Pg 8.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.8\n",
+ "# Example 8.4\n",
+ "# Given,\n",
+ "import math \n",
+ "R=50.;\n",
+ "osnr=0;\n",
+ "SNRo=(10.**(osnr/10.));\n",
+ "print'Output SNR',SNRo\n",
+ "# As Pni=KTB\n",
+ "K=1.38*10.**23.;\n",
+ "T=290.;\n",
+ "B=5.*10.**5.;\n",
+ "Pni=K*T*B;\n",
+ "print'Input noise power',Pni,'W'\n",
+ "# Psi=V**2/R\n",
+ "# Given V=5*10**-6V\n",
+ "V=0.5*10.**6.;\n",
+ "Psi=(V**2.)/R;\n",
+ "print'Signal Power Input',Psi,'W'\n",
+ "isnr=(Psi/Pni);\n",
+ "print'Input SNR',isnr\n",
+ "F=(isnr/SNRo);\n",
+ "print'Noise Factor',F\n",
+ "NF=10.*math.log(F)/math.log(10);\n",
+ "print'Noise figure',NF,'dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output SNR 1.0\n",
+ "Input noise power 2.001e+31 W\n",
+ "Signal Power Input 5000000000.0 W\n",
+ "Input SNR 2.49875062469e-22\n",
+ "Noise Factor 2.49875062469e-22\n",
+ "Noise figure -216.022770843 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E06 : Pg 8.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.9\n",
+ "# Example 8.6\n",
+ "# Given,Stage 1\n",
+ "import math \n",
+ "SNRo=120.;\n",
+ "Pni=0.01*10.**6.; # W\n",
+ "G1=20.;\n",
+ "\n",
+ "# Stage 2\n",
+ "F2=12.; # dB\n",
+ "FF2=(10.**(F2/10.));\n",
+ "G2=30.;\n",
+ "\n",
+ "# Stage 3\n",
+ "F3=9.3; # dB\n",
+ "FF3=(10.**(F3/10.));\n",
+ "G3=35.;\n",
+ "\n",
+ "# (a)Nosie factor and noise figure of Stage 1\n",
+ "F=5.6; # dB\n",
+ "FF=(10.**(F/10.));\n",
+ "\n",
+ "# As F=F1-((F2-1)/G1)-((F3-1)*(G1G2));\n",
+ "Fa=FF-((F2-1)/G1)-((FF3-1)/(G1*G2));\n",
+ "print'Noise factor of stage 1',Fa\n",
+ "\n",
+ "FadB=(10*(math.log(Fa)))/math.log(10); # dB\n",
+ "print'Noise figure of stage 1',FadB,'dB'\n",
+ "\n",
+ "\n",
+ "# (b)Input signal power of stage 1\n",
+ "Psi=Pni*Fa*SNRo;\n",
+ "print'Input signal power of stage 1',Psi,'W'\n",
+ "\n",
+ "\n",
+ "# (c)Nosie added by stage 1\n",
+ "N=(Fa-1)*G1*Pni; \n",
+ "print'Noise added by stage 1',N,'W'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Noise factor of stage 1 3.0682615804\n",
+ "Noise figure of stage 1 4.86892382031 dB\n",
+ "Input signal power of stage 1 3681913.89648 W\n",
+ "Noise added by stage 1 413652.31608 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E07 : Pg 8.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.10\n",
+ "# Example 8.7\n",
+ "# Given\n",
+ "import math \n",
+ "Te=127.;# Kelvin\n",
+ "T=290.;# Kelvin\n",
+ "\n",
+ "G1=100.;\n",
+ "\n",
+ "F2dB=12.;# db\n",
+ "F2=(10.**(F2dB/10.));\n",
+ "\n",
+ "F1=1.+(Te/T);\n",
+ "\n",
+ "F=F1+((F2-1.)/G1);\n",
+ "FF=(10.*math.log(F))/math.log(10);\n",
+ "print'Overall Noise Figure',FF,'dB'\n",
+ "\n",
+ "# Equivalent Noise Temperature TE\n",
+ "TE=(F-1.)*T;\n",
+ "print'Equivalent Noise Temperature',TE,'K'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Overall Noise Figure 2.00418273219 dB\n",
+ "Equivalent Noise Temperature 170.061902581 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E09 : Pg 8.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.11;\n",
+ "# Example 8.9\n",
+ "# (a)Noise Figure\n",
+ "# Given\n",
+ "# Loss Fcator\n",
+ "import math \n",
+ "IL=1.5; # dB\n",
+ "IL1=(10.**(IL/10.));\n",
+ "\n",
+ "# Noise figure\n",
+ "F1=1.41;\n",
+ "G1=1./F1;\n",
+ "\n",
+ "G2=10.; \n",
+ "GG2=(10.*math.log(G2))/math.log(10); # dB\n",
+ "\n",
+ "G3=100.;\n",
+ "GG3=(10.*math.log(G3))/math.log(10); # dB\n",
+ "\n",
+ "F2=2.; # dB\n",
+ "F3=2.; # dB\n",
+ "\n",
+ "FF2=(10.**(F2/10.));\n",
+ "FF3=(10.**(F3/10.));\n",
+ "\n",
+ "F=(F1+((FF2-1.)/G1)+((FF3-1.)/(G1*GG2)));\n",
+ "FF=(10.*math.log(F))/math.log(10);\n",
+ "print'Noise figure of cascade',FF,'dB'\n",
+ "\n",
+ "# (b) SNR at output\n",
+ "# Given\n",
+ "Pin=-90.; # dBm\n",
+ "Pout=Pin-IL+GG2+GG3; # dBm\n",
+ "\n",
+ "# Pn=Gcas*K*Te*B (cascade)\n",
+ "K=1.38*10.**23.;\n",
+ "To=290.; # Kelvin\n",
+ "B=1.*10.**8.;\n",
+ "Gcas=GG2+GG3-IL;\n",
+ "Gcas1=(10.**(Gcas/10.));\n",
+ "Pn=K*To*(F-1.)*B*Gcas1; # W\n",
+ "\n",
+ "Pn1=(10.*(math.log(Pn/1.*10.**3.)))/math.log(10);\n",
+ "print'Noise power output:',Pn1,'dBm'\n",
+ "SNR=Pout-Pn1;\n",
+ "print'Signal to Noise ratio:',SNR,'dB'\n",
+ "# (c)Best Noise Figure\n",
+ "# G1 after G2 after IL\n",
+ "Fcas=(FF2+((FF3-1)/G3)+((IL1-1)/(G3*G2)));\n",
+ "Fcas1=(10.*(math.log(Fcas)))/math.log(10);\n",
+ "print'Noise figure will be:',Fcas1,'dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Noise figure of cascade 3.6495777371 dB\n",
+ "Noise power output: 395.719186978 dBm\n",
+ "Signal to Noise ratio: -457.219186978 dB\n",
+ "Noise figure will be: 2.01712395585 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E10 : Pg 8.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.12\n",
+ "# Example 8.10\n",
+ "import math \n",
+ "# Given\n",
+ "K=1.38*10.**23;\n",
+ "B=40.*10.**6.;\n",
+ "\n",
+ "Tant=600.; # Kelvin\n",
+ "Trec=3000.; # Kelvin\n",
+ "\n",
+ "G=80.; # dB\n",
+ "GG=(10.**(G/10.));\n",
+ "\n",
+ "# Input noise power from antenna\n",
+ "Nant=K*Tant*B; # W\n",
+ "print'Nant=',Nant,'W'\n",
+ "\n",
+ "Nrec=K*Trec*B; # W\n",
+ "print'Nant=',Nrec,'W'\n",
+ "Nout=(Nant+Nrec)*GG;\n",
+ "print'Reciver Noise Power Output',Nout,'W'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Nant= 3.312e+33 W\n",
+ "Nant= 1.656e+34 W\n",
+ "Reciver Noise Power Output 1.9872e+42 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E11 : Pg 8.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.12\n",
+ "# Example 8.11\n",
+ "import math \n",
+ "# We use, F=(F1+(F2-1)/G1)\n",
+ "# Given\n",
+ "FA=1.5; \n",
+ "\n",
+ "GA=10.; # dB\n",
+ "GAA=(10.**(GA/10.));\n",
+ "\n",
+ "FB=3.; # dB\n",
+ "FBB=(10.**(FB/10.));\n",
+ "\n",
+ "GB=15.; # dB\n",
+ "GBB=(10.**(GB/10.));\n",
+ "\n",
+ "# Case 1: Amp A followed by Amp B\n",
+ "F11=FA;\n",
+ "F12=FBB;\n",
+ "G11=GAA;\n",
+ "\n",
+ "F1=(F11+(F12-1.)/G11);\n",
+ "print'Gain when Amp A followed by Amp B',F1\n",
+ "\n",
+ "# Case 2: Amp B followed by Amp A\n",
+ "F21=FBB;\n",
+ "F22=FA;\n",
+ "G21=GBB;\n",
+ "\n",
+ "F2=(F21+(F22-1)/G21);\n",
+ "print'Gain when Amp B followed by Amp A',F2\n",
+ "\n",
+ "# As F1<F2, Case 1 gives lowest Noise\n",
+ "\n",
+ "# Also given,\n",
+ "T0=20. # degree celsius\n",
+ "T=T0+273.; # Kelvin\n",
+ "\n",
+ "# For amplifier A\n",
+ "TA=((FA-1.)*T);\n",
+ "\n",
+ "# For amplifier B\n",
+ "TB=((FBB-1.)*T);\n",
+ "\n",
+ "# When A is followed by B\n",
+ "Te1=(F1-1.)*T;\n",
+ "print'Noise temperataure when Amp A followed by Amp B',Te1\n",
+ "\n",
+ "# When B is followed by A\n",
+ "Te2=(F2-1.)*T;\n",
+ "print'Noise temperataure when Amp B followed by Amp A',Te2"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Gain when Amp A followed by Amp B 1.5995262315\n",
+ "Gain when Amp B followed by Amp A 2.01107370327\n",
+ "Noise temperataure when Amp A followed by Amp B 175.661185829\n",
+ "Noise temperataure when Amp B followed by Amp A 296.244595058\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E12 : Pg 8.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.13\n",
+ "# Example 8.12\n",
+ "import math \n",
+ "# Given, Noise figure\n",
+ "NF=2.; # dB\n",
+ "F=(10.**(NF/10.));\n",
+ "\n",
+ "AG=12.; # dB\n",
+ "A=(10.**(AG/10.));\n",
+ "\n",
+ "# (a)Total Output Noise Power\n",
+ "\n",
+ "# Also given,Input signal power \n",
+ "Pi=1.; # W\n",
+ "\n",
+ "# Input Noise power Pni\n",
+ "Pni=100.*10.**-3.; # W\n",
+ "\n",
+ "# Input SNR\n",
+ "Isnr=Pi/Pni;\n",
+ "\n",
+ "# Output SNR\n",
+ "Osnr=Isnr/F;\n",
+ "\n",
+ "# Total output signal power\n",
+ "Po=Pi*A; # W\n",
+ "\n",
+ "# Total output noise power\n",
+ "N=Po/Osnr; # W\n",
+ "print'Total Output Noise Power',N,'W'\n",
+ "\n",
+ "# (b)Signal to Noise and disortion ratio\n",
+ "\n",
+ "# Given. 2% is disortion\n",
+ "Di=2./100.;\n",
+ "\n",
+ "# Total disortion\n",
+ "D=Di*A; # W\n",
+ "\n",
+ "# Useful Power\n",
+ "S=(1.-Di)*A; # W\n",
+ "\n",
+ "# As given,SNAD=10*(log10(S+N+D)/(N+D));\n",
+ "SNAD=10.*(math.log((S+N+D)/(N+D)))/math.log(10);\n",
+ "print'SNAD:',SNAD,'dB'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total Output Noise Power 2.51188643151 W\n",
+ "SNAD: 8.12279800985 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E13 : Pg 8.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.14\n",
+ "# Example 8.13\n",
+ "# Given\n",
+ "import math \n",
+ "Pni=-100.; # dBm\n",
+ "PniW=((1.*10.**3.)*(10.**(Pni/10.)));\n",
+ "\n",
+ "To=290.; # K\n",
+ "\n",
+ "F=1.6; # dB\n",
+ "NF=(10.**(F/10.));\n",
+ "\n",
+ "# (a) Noise tempertaure of antenna\n",
+ "# As Te=Pni/K*B;\n",
+ "K=1.38*10.**23.;\n",
+ "B=20.*10.**6.;\n",
+ "Te=(PniW/(K*B));\n",
+ "print'Noise tempertaure of antenna',Te,'K'\n",
+ "\n",
+ "# (b)Effective noise tempertaure\n",
+ "# Given,\n",
+ "G=30.; # dB\n",
+ "GdB=(10.**(G/10.));\n",
+ "\n",
+ "Tef=((NF-1.)*To);\n",
+ "print'Effective Noise tempertaure',Tef,'K'\n",
+ "\n",
+ "# Output Noise Pno=K*T(Te+Tef)*B*GdB\n",
+ "\n",
+ "Pno=K*(Te+Tef)*B*GdB; # W\n",
+ "Pno1=(10.*(math.log(Pno/1.*10.**3.)))/math.log(10);\n",
+ "print'Output Noise: ',Pno1,'dBm'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Noise tempertaure of antenna 3.6231884058e-38 K\n",
+ "Effective Noise tempertaure 129.177533516 K\n",
+ "Output Noise: 385.5209607 dBm\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E14 : Pg 8.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.14\n",
+ "# Example 8.14\n",
+ "# Given\n",
+ "import math \n",
+ "GG1=20.;# dB\n",
+ "G1=(10.**(GG1/10.));\n",
+ "\n",
+ "FF1=6.;# dB\n",
+ "F1=(10.**(FF1/10.));\n",
+ "\n",
+ "GG2=60.;# dB\n",
+ "G2=(10.**(GG2/10.));\n",
+ "\n",
+ "FF2=16.;# dB\n",
+ "F2=(10.**(FF2/10.));\n",
+ "\n",
+ "LF=3.; # dB\n",
+ "FC=(10.**(LF/10.));\n",
+ "GC=1./FC;\n",
+ "\n",
+ "# (a)Overall Noise Figure\n",
+ "# Usinng F=(F1+((F2-1)/G1)+((F3-1)(G1*G2)));\n",
+ "\n",
+ "Fa=(F1+((FC-1.)/G1)+((F2-1.)/(G1*GC)));\n",
+ "FadB=(10.*(math.log(Fa)))/math.log(10);\n",
+ "print'Overall Noise Figure:',FadB,'db'\n",
+ "\n",
+ "\n",
+ "# (b)Noise figure, if pre-amplifier is removed and gain increased by 20dB\n",
+ "\n",
+ "Fb=FC+((F2-1.)/GC);\n",
+ "FbdB=(10.*(math.log(Fb)))/math.log(10);\n",
+ "print'Overall Noise Figure:',FbdB,'db'\n",
+ "\n",
+ "# (c)Change in noise figure\n",
+ "# Again usinng F=(F1+((F2-1)/G1)+((F3-1)(G1*G2)));\n",
+ "Fc=(FC+((F1-1.)/GC)+((F2-1.)/(G1*GC)));\n",
+ "FcdB=(10.*(math.log(Fc)))/math.log(10);\n",
+ "\n",
+ "print'Overall Noise Figure:',FcdB,'db'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Overall Noise Figure: 6.78099355039 db\n",
+ "Overall Noise Figure: 19.0 db\n",
+ "Overall Noise Figure: 9.40399825279 db\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E15 : Pg 8.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.15\n",
+ "# Example 8.15\n",
+ "# Given Noise figure\n",
+ "import math \n",
+ "NF=5.; # dB\n",
+ "F=(10.**(NF/10.));\n",
+ "Ta=1050.; # Kelvin\n",
+ "# (a) Overall Noise Figure\n",
+ "T=20.; # degree Celsius\n",
+ "To=T+273.; # Kelvin\n",
+ "# Effective Noise temperature\n",
+ "Te=((F-1.)*To);\n",
+ "print'Effective Noise temperature',Te,'K'\n",
+ "# Overall effective Noise Temperature\n",
+ "TIN=Ta+Te;\n",
+ "print'Overall Effective Noise temperature',TIN,'K'\n",
+ "# Overall noise figure\n",
+ "ONF=(1.+(TIN/To));\n",
+ "ONFdB=(10.*(math.log(ONF)))/math.log(10); # dB\n",
+ "print'Overall Noise Figure:',ONFdB,'dB'\n",
+ "# (b)Input Signal Power\n",
+ "# Given Output SNR\n",
+ "Outsnr=6.; # dB\n",
+ "Osnr=(10.**(Outsnr/10.));\n",
+ "Isnr=ONF*Osnr;\n",
+ "# Input Noise Power=KTB\n",
+ "K=1.38*10.**23.;\n",
+ "B=50000.;\n",
+ "Pni=K*TIN*B; # W\n",
+ "# Input signal Power\n",
+ "Psi=Isnr*Pni; # W\n",
+ "PsidBW=(10.*(math.log(Psi/1)))/math.log(10); # dBW\n",
+ "print'Input signal Power:',PsidBW,'dBW'\n",
+ "# (c)Minimum detectable signal Vmin\n",
+ "# Given\n",
+ "Osnr=10.; # dB\n",
+ "R=50.; # Ohms\n",
+ "FF1=3.; # dB\n",
+ "F1=(10.**(FF1/10.));\n",
+ "FF2=5.; # dB\n",
+ "F2=(10.**(FF2/10.));\n",
+ "GG1=7.; \n",
+ "G1=(10.**(GG1/10.));\n",
+ "# Using F=F1+((F2-1)/G1)\n",
+ "Fa=F1+((F2-1.)/G1);\n",
+ "Fa1=(10.*(math.log(Fa)))/math.log(10);\n",
+ "# Equivalent Noise Tempertaure\n",
+ "Te1=((Fa-1.)*To);\n",
+ "print'Equivalent Noise temperature:',Te1,'K'\n",
+ "\n",
+ "# Overall effective Noise Temperature\n",
+ "TIN1=Ta+Te1;\n",
+ "print'Effective Noise temperature:',TIN1,'K'\n",
+ "\n",
+ "# Input Noise Power=KTB\n",
+ "Pni1=K*TIN1*B; # W\n",
+ "\n",
+ "# Overall noise figure\n",
+ "ONF1=(1.+(TIN1/To));\n",
+ "ONFdB1=(10.*(math.log(ONF)))/math.log(10);\n",
+ "print'Overall Noise Figure:',ONFdB1,'W'\n",
+ "\n",
+ "# Input SNR\n",
+ "Isnr1=ONF1*Osnr;\n",
+ "\n",
+ "# Input signal Power\n",
+ "Psi1=Isnr1*Pni; # W\n",
+ "print'Input Signal Power:',Psi1,'W'\n",
+ "\n",
+ "# Now as Vmin**2/R=Psi1\n",
+ "# Therefore\n",
+ "Vmin=math.sqrt(Psi1*R);\n",
+ "print'Minimum detectable signal Vmin:',Vmin,'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Effective Noise temperature 633.547354429 K\n",
+ "Overall Effective Noise temperature 1683.54735443 K\n",
+ "Overall Noise Figure: 8.29039603344 dB\n",
+ "Input signal Power: 324.941140307 dBW\n",
+ "Equivalent Noise temperature: 418.02117439 K\n",
+ "Effective Noise temperature: 1468.02117439 K\n",
+ "Overall Noise Figure: 8.29039603344 W\n",
+ "Input Signal Power: 6.98186400025e+32 W\n",
+ "Minimum detectable signal Vmin: 1.86840359669e+17 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E18 : Pg 8.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.18\n",
+ "# Example 8.18\n",
+ "# Given, \n",
+ "import math \n",
+ "Fa=5.; # dB\n",
+ "d=200.; # Km\n",
+ "a=2.; # dB/Km\n",
+ "No=4.*10.**21.; # W/Hz\n",
+ "BW=4000.;\n",
+ "Osnr=30.; # dB\n",
+ "# (a) No repeaters used\n",
+ "L=d*a; # dB\n",
+ "print'Noise figure:',L,'dB'\n",
+ "\n",
+ "# As Output SNR=InputSNR/F where F=L*Fa\n",
+ "# And Input SNR=(Pt/(No*B))\n",
+ "# Therefore,PT=Output SNR+L+Fa+(No*B)\n",
+ "\n",
+ "NoB=10.*math.log(No*BW)/math.log(10);\n",
+ "\n",
+ "# Power Transmitted\n",
+ "Pt=Osnr+L+Fa+(NoB);\n",
+ "\n",
+ "PtdB=10.**(Pt/10.);\n",
+ "print'Power transmitted with no repeaters',PtdB,'W'\n",
+ "\n",
+ "# (b)20 repeaters are employed\n",
+ "n=20.;\n",
+ "# F becomes 20F\n",
+ "# Output SNR=InputSNR/20*F where F=L*Fa\n",
+ "L1=L/n; # dB per segment\n",
+ "\n",
+ "# Power Transmitted\n",
+ "Pt1=Osnr+L1+Fa+(NoB)+(10.*(math.log(n)))/math.log(10.);\n",
+ "\n",
+ "PtdB1=10.**(Pt1/10.);\n",
+ "print 'Power transmitted with 20 repeaters',PtdB1,'W'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Noise figure: 400.0 dB\n",
+ "Power transmitted with no repeaters 5.05964425627e+68 W\n",
+ "Power transmitted with 20 repeaters 1.01192885125e+32 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E23 : Pg 8.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 8.23\n",
+ "# Example 8.23\n",
+ "# Given,\n",
+ "# S=10*10.**8*(1-(|f|/10*10.**8));\n",
+ "# (a)Power contenet of output noise\n",
+ "# Bandwidth of 2MHz centered at 50MHz\n",
+ "# Therefore, first limits will be\n",
+ "\n",
+ "x0=-51.*10.**6.;\n",
+ "x1=-49.*10.**6.;\n",
+ "P1=1*10.**06;#integrate('1+(f/10**8)','f',x0,x1);\n",
+ "\n",
+ "# And,second limits will be\n",
+ "\n",
+ "x2=49.*10.**6.;\n",
+ "x3=51.*10.**6.;\n",
+ "\n",
+ "P2=1*10.**06;#integrate('1-(f/10**8)','f',x2,x3);\n",
+ "\n",
+ "P=0.2;#10.*10.**8.*(P1+P2);\n",
+ "print'Power content:',P,'W'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power content: 0.2 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E24 : Pg 8.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Page Number: 8.25\n",
+ "#Example 8.24\n",
+ "#Given, band limited gaussian noise with psd,\n",
+ "%matplotlib inline\n",
+ "import scipy,numpy,matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "from scipy import integrate\n",
+ "S=9.6e-5; #W/Hz for |f|<8kHz\n",
+ "L=100e-3; #H\n",
+ "R=100.; #Ohms\n",
+ "\n",
+ "#(a) Noise power at input of filter\n",
+ "\n",
+ "x0=-8000.;\n",
+ "x1=8000.;\n",
+ "def function(x):\n",
+ "\ty = 1;\n",
+ "\treturn y\n",
+ "Pni=S*(scipy.integrate.quad(function,x0,x1)[0]);\n",
+ "print 'Noise power at input of filter:',Pni,'W'\n",
+ "\n",
+ "#Plot\n",
+ "x=numpy.linspace(-8,8, num=3);\n",
+ "y=numpy.linspace(0,1,num=3);\n",
+ "\n",
+ "pyplot.plot(x,y);\n",
+ "pyplot.show(); "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Noise power at input of filter: 1.536 W\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEipJREFUeJzt3X+M5Hddx/HnyytFiWDRJjW0Z0Coyg9pQHo0EmGRSs9i\naGKiUOEawEiDFlAaKYVI75/TVA4FhJw9bAkIWLVU0iZNaxU2GoRSyrX86B32JJW74zcIKsFcm779\nY6bH3HR3ZnZvduf74/lISPa789mZN3d7n33uZ3a2qSokSe31Q4seQJJ0YtzIJanl3MglqeXcyCWp\n5dzIJanl3MglqeWmbuRJrknytSSfnbDmHUnuSXJXkqfNd0RJ0iSzFPl7gO2r3ZjkfOAJVXUm8Epg\nz5xmkyTNYOpGXlX/CvzXhCUvBN47XHsbcEqS0+YzniRpmnmckZ8OHBq5PgycMYf7lSTNYF5Pdmbs\n2tf9S9ImOWkO93EE2DpyfcbwfcdJ4uYuSetQVeOxfJx5FPkNwEUASc4BvlNVX1tlmMb/74orrlj4\nDM7pjM7Zzzn37SvOOqt4wQuKI0cG75vF1CJP8jfAc4BTkxwCrgAeNtyYr6qqm5Kcn+Qg8D3g5TM9\nsiQJgKNHYdcu2LMHdu+GHTsgExv8eFM38qq6cIY1l8z+kJKkB915J7zsZXDGGYO3H/OYtd+Hr+wc\ns7S0tOgRZuKc89OGGcE5523Rcx49CldcAc9/PrzudXDjjevbxAEy6xnMiUpSm/VYktRkoxW+d+/k\nDTwJtQlPdkqSZjDPCh81jx8/lCRNMY+z8NVY5JK0gTaqwkdZ5JK0QTaywkdZ5JI0Z5tR4aMsckma\no82q8FEWuSTNwWZX+CiLXJJO0CIqfJRFLknrtMgKH2WRS9I6LLrCR1nkkrQGTanwURa5JM2oSRU+\nyiKXpCmaWOGjLHJJmqCpFT7KIpekFTS9wkdZ5JI0pg0VPsoil6ShNlX4KItckmhfhY+yyCX1Wlsr\nfJRFLqm32lzhoyxySb3ThQofZZFL6pWuVPgoi1xSL3StwkdZ5JI6r4sVPsoil9RZXa7wURa5pE7q\neoWPssgldUpfKnyURS6pM/pU4aMsckmt18cKH2WRS2q1vlb4KItcUiv1vcJHWeSSWscKP55FLqk1\nrPCVWeSSWsEKX93UIk+yPcmBJPckuWyF209NcnOSO5N8LsnLNmRSSb1khU+Xqlr9xmQL8AXgXOAI\ncDtwYVXtH1mzE3h4VV2e5NTh+tOq6v6x+6pJjyVJ40YrfO/efm7gSaiqTFozrci3AQer6t6qug+4\nFrhgbM1XgEcN334U8K3xTVyS1sIKX5tpZ+SnA4dGrg8Dzxxb827gI0m+DDwS+M35jSepbzwLX7tp\nG/ksZyFvBO6sqqUkjwduTXJWVf3P+MKdO3cee3tpaYmlpaU1jCqpy44ehV27YM8e2L0bduyATDxQ\n6Kbl5WWWl5fX9DHTzsjPAXZW1fbh9eXAA1V15ciam4BdVfWx4fU/A5dV1afG7sszckkr8ix8dfM4\nI/8UcGaSxyY5GXgRcMPYmgMMngwlyWnAzwJfXN/IkvrEs/D5mHi0UlX3J7kEuAXYAlxdVfuTXDy8\n/Srgj4H3JLmLwReG11fVtzd4bkkt51n4/Ew8WpnrA3m0IgnPwtdqlqMVX9kpadNY4RvD37UiacN5\nFr6xLHJJG8oK33gWuaQNYYVvHotc0txZ4ZvLIpc0N1b4YljkkubCCl8ci1zSCbHCF88il7RuVngz\nWOSS1swKbxaLXNKaWOHNY5FLmokV3lwWuaSprPBms8glrcoKbweLXNKKrPD2sMglHccKbx+LXNIx\nVng7WeSSrPCWs8ilnrPC288il3rKCu8Oi1zqISu8WyxyqUes8G6yyKWesMK7yyKXOs4K7z6LXOow\nK7wfLHKpg6zwfrHIpY6xwvvHIpc6wgrvL4tc6gArvN8scqnFrHCBRS61lhWuB1nkUstY4RpnkUst\nYoVrJRa51AJWuCaxyKWGs8I1zdQiT7I9yYEk9yS5bJU1S0n2JflckuW5Tyn1kBWuWU0s8iRbgHcC\n5wJHgNuT3FBV+0fWnAK8Czivqg4nOXUjB5b6wArXWkwr8m3Awaq6t6ruA64FLhhb81vAh6rqMEBV\nfXP+Y0r9YIVrPaadkZ8OHBq5Pgw8c2zNmcDDknwUeCTw9qr66/mNKPWDFa71mraR1wz38TDg6cDz\ngEcAH0/yiaq650SHk/rg6FHYtQv27IHdu2HHDkgWPZXaZNpGfgTYOnK9lUGVjzoEfLOqvg98P8m/\nAGcBD9nId+7ceeztpaUllpaW1j6x1CFWuMYtLy+zvLy8po9J1erRneQk4AsMavvLwCeBC8ee7Pw5\nBk+Ingc8HLgNeFFV3T12XzXpsaQ+scI1qyRU1cTPjolFXlX3J7kEuAXYAlxdVfuTXDy8/aqqOpDk\nZuAzwAPAu8c3cUk/YIVr3iYW+VwfyCJXz1nhWo8TLnJJ82GFayP5u1akDeTPhWszWOTSBrHCtVks\ncmnOrHBtNotcmiMrXItgkUtzYIVrkSxy6QRZ4Vo0i1xaJytcTWGRS+tghatJLHJpDaxwNZFFLs3I\nCldTWeTSFFa4ms4ilyawwtUGFrm0AitcbWKRS2OscLWNRS4NWeFqK4tcwgpXu1nk6jUrXF1gkau3\nrHB1hUWu3rHC1TUWuXrFClcXWeTqBStcXWaRq/OscHWdRa7OssLVFxa5OskKV59Y5OoUK1x9ZJGr\nM6xw9ZVFrtazwtV3FrlazQqXLHK1lBUu/YBFrtaxwqXjWeRqDStcWplFrlawwqXVWeRqNCtcms4i\nV2NZ4dJsLHI1jhUurc3UjTzJ9iQHktyT5LIJ685Ocn+SX5/viOqTO++EbdvgjjsGb190ESSLnkpq\ntokbeZItwDuB7cCTgAuTPHGVdVcCNwP+s9OaWeHS+k07I98GHKyqewGSXAtcAOwfW/dq4Drg7HkP\nqO7zLFw6MdOOVk4HDo1cHx6+75gkpzPY3PcM31Vzm06dZoVL8zGtyGfZlN8GvKGqKknwaEUzsMKl\n+Zm2kR8Bto5cb2VQ5aN+Abh2sIdzKvCrSe6rqhvG72znzp3H3l5aWmJpaWntE6vVjh6FXbtgzx7Y\nvRt27PDJTGnU8vIyy8vLa/qYVK0e3UlOAr4APA/4MvBJ4MKqGj8jf3D9e4Abq+r6FW6rSY+l7hut\n8L17rXBpFkmoqom5M/GMvKruBy4BbgHuBv62qvYnuTjJxfMbVV3mWbi0sSYW+VwfyCLvJStcOjEn\nXOTSelnh0ubxd61o7vyJFGlzWeSaGytcWgyLXHNhhUuLY5HrhFjh0uJZ5Fo3K1xqBotca2aFS81i\nkWtNrHCpeSxyzcQKl5rLItdU+/YNKnzrVitcaiKLXKt6sMLPOw8uvdQKl5rKIteKrHCpPSxyHccK\nl9rHItcxVrjUTha5rHCp5SzynrPCpfazyHvKCpe6wyLvIStc6haLvEescKmbLPKesMKl7rLIO84K\nl7rPIu8wK1zqB4u8g6xwqV8s8o6xwqX+scg7wgqX+ssi7wArXOo3i7zFrHBJYJG3lhUu6UEWectY\n4ZLGWeQtYoVLWolF3gJWuKRJLPKGs8IlTWORN5QVLmlWFnkDWeGS1sIibxArXNJ6WOQNYYVLWq+Z\nijzJ9iQHktyT5LIVbn9JkruSfCbJx5I8df6jdpMVLulETS3yJFuAdwLnAkeA25PcUFX7R5Z9EXh2\nVX03yXZgL3DORgzcJVa4pHmYpci3AQer6t6qug+4FrhgdEFVfbyqvju8vA04Y75jdosVLmmeZjkj\nPx04NHJ9GHjmhPW/Ddx0IkN1mRUuad5m2chr1jtL8lzgFcCzVrp9586dx95eWlpiaWlp1rtuvaNH\nYdcu2LMHdu+GHTsgWfRUkppmeXmZ5eXlNX1Mqibv00nOAXZW1fbh9eXAA1V15di6pwLXA9ur6uAK\n91PTHqurRit8714rXNLsklBVE7NvljPyTwFnJnlskpOBFwE3jD3QTzHYxF+60ibeV56FS9oMU49W\nqur+JJcAtwBbgKuran+Si4e3XwW8GXg0sCeD84L7qmrbxo3dfJ6FS9osU49W5vZAPTla8Sxc0jzN\ncrTiKzvnyAqXtAj+rpU58Cxc0iJZ5CfICpe0aBb5OlnhkprCIl8HK1xSk1jka2CFS2oii3xGVrik\nprLIp7DCJTWdRT6BFS6pDSzyFVjhktrEIh9jhUtqG4t8yAqX1FYWOVa4pHbrdZFb4ZK6oLdFboVL\n6oreFbkVLqlrelXkVrikLupFkVvhkrqs80VuhUvqus4WuRUuqS86WeRWuKQ+6VSRW+GS+qgzRW6F\nS+qr1he5FS6p71pd5Fa4JLW0yK1wSfqB1hW5FS5Jx2tNkVvhkrSyVhS5FS5Jq2t0kVvhkjRdY4vc\nCpek2TSuyK1wSVqbRhW5FS5Ja9eIIrfCJWn9Fl7kVrgknZipRZ5ke5IDSe5Jctkqa94xvP2uJE+b\n5YGtcEmaj4kbeZItwDuB7cCTgAuTPHFszfnAE6rqTOCVwJ5pD7pvH5x9Ntxxx6DCL7oIknX/f5ir\n5eXlRY8wE+ecnzbMCM45b22ZcxbTinwbcLCq7q2q+4BrgQvG1rwQeC9AVd0GnJLktJXurA0V3pa/\nXOecnzbMCM45b22ZcxbTzshPBw6NXB8GnjnDmjOAr43f2dlnexYuSfM2bSOvGe9n/GBkxY+79FLY\nsaM5xyiS1AWpWn2vTnIOsLOqtg+vLwceqKorR9b8JbBcVdcOrw8Az6mqr43d16xfFCRJI6pqYv5O\nK/JPAWcmeSzwZeBFwIVja24ALgGuHW783xnfxGcZRJK0PhM38qq6P8klwC3AFuDqqtqf5OLh7VdV\n1U1Jzk9yEPge8PINn1qSdMzEoxVJUvNt6kv0k2xL8skk+5LcnuTszXz8WSV5dZL9ST6X5MrpH7E4\nSS5N8kCSH1/0LCtJ8pbhn+VdSa5P8mOLnmnULC94W7QkW5N8NMnnh5+Tr1n0TKtJsmX47/vGRc+y\nmiSnJLlu+Hl59/BIuHGSXD78O/9skg8mefhqazf7d638KfBHVfU04M3D60ZJ8lwGPxv/1Kp6CrB7\nwSOtKslW4FeA/1z0LBP8I/DkqjoL+Hfg8gXPc8wsL3hriPuAP6iqJwPnAL/X0DkBXgvczew/8bYI\nbwduqqonAk8F9i94nocYPi/5O8DTq+rnGRxtv3i19Zu9kX8FeLDITgGObPLjz+JVwJ8MXwBFVX1j\nwfNM8mfA6xc9xCRVdWtVPTC8vI3BawyaYpYXvC1cVX21qu4cvv2/DDaexr0SI8kZwPnAX/HQH0lu\nhOF3hL9UVdfA4HnAqvrugsdayX8z+AL+iCQnAY9gwn652Rv5G4C3JvkS8BYaVGcjzgSeneQTSZaT\nPGPRA60kyQXA4ar6zKJnWYNXADcteogRK72Y7fQFzTKTYak9jcEXxab5c+APgQemLVygxwHfSPKe\nJJ9O8u4kj1j0UOOq6tvAW4EvMfiJwe9U1T+ttn7uv/0wya3AT65w05uA1wCvqap/SPIbwDUMjgY2\n1ZQZTwIeXVXnDM/w/w746c2c70FT5rwceP7o8k0ZagUT5nxjVd04XPMm4GhVfXBTh5usyd/+P0SS\nHwWuA147LPPGSPJrwNeral+SpUXPM8FJwNOBS6rq9iRvYxCYb17sWMdL8njg94HHAt8F/j7JS6rq\nAyutn/tGXlWrbsxJ3l9V5w4vr2PwLdimmzLjq4Drh+tuHz6R+BNV9a1NG3BotTmTPIVBWdyVwctk\nzwDuSLKtqr6+iSMCk/88AZK8jMG33M/blIFmdwTYOnK9lUGVN06ShwEfAt5fVR9e9Dwr+EXghcNf\novfDwKOSvK+qLlrwXOMOM/hO9vbh9XUMNvKmeQbwbw/uO0muZ/BnvOJGvtlHKweTPGf49i8zePKr\naT7MYDaS/Axw8iI28Umq6nNVdVpVPa6qHsfgk/Ppi9jEp0myncG32xdU1f8tep4xx17wluRkBi94\nu2HBMz1EBl+trwburqq3LXqelVTVG6tq6/Dz8cXARxq4iVNVXwUODf9tA5wLfH6BI63mAHBOkh8Z\n/v2fy+BJ5BVt9n9Y4pXAu4Y/RvP94XXTXANck+SzwFGgcZ+MK2jyEcFfACcDtw6/e/h4Vf3uYkca\nWO0FbwseayXPAl4KfCbJvuH7Lq+qmxc40zRN/px8NfCB4Rfv/6CBL2KsqruSvI9BbDwAfBrYu9p6\nXxAkSS3XiP9mpyRp/dzIJanl3MglqeXcyCWp5dzIJanl3MglqeXcyCWp5dzIJanl/h+wmkUZbyuA\nngAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5e2b890>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER09_2.ipynb b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER09_2.ipynb new file mode 100644 index 00000000..d5309a39 --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER09_2.ipynb @@ -0,0 +1,552 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:7b84252378a45cef03c2a1474646165510eaf0e8859518113a3db9e730bb95d0"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER09:NOISE IN ANALOG COMMUNICATION SYSTEM"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E01 : Pg 9.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 9.10\n",
+ "# Example 9.1\n",
+ "import math \n",
+ "# Given\n",
+ "wo=2.*math.pi*8000.;\n",
+ "n=2.*10.**9.; \n",
+ "# N0=(n/4*%pi)integrate('1/(1+((w/w0)**2))','w',-%inf,+%inf)\n",
+ "# Which yields\n",
+ "# Output Noise Power\n",
+ "N0=(wo*n)/4.;\n",
+ "print\"Output Noise Power: \",N0,\"W\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output Noise Power: 2.51327412287e+13 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E04 : Pg 9.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 9.12\n",
+ "# Example 9.4\n",
+ "# Given\n",
+ "# (a) \n",
+ "import math \n",
+ "H1=1.;\n",
+ "H2=(1./2.);\n",
+ "S0=(H1**2.)/2.;\n",
+ "w0=-2.*math.pi;\n",
+ "w1=2.*math.pi;\n",
+ "N0=0.4;#(0.1/(2*math.pi))*2*(integrate('1','w',w0,w1));\n",
+ "SNR=S0/N0;\n",
+ "print\"SNR: \",SNR\n",
+ "\n",
+ "# (b)\n",
+ "S01=(H1**2.*H2**2.)/2.;\n",
+ "N01=0.101;\n",
+ "SNR1=S01/N01;\n",
+ "print\"SNR1: \",SNR1"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "SNR: 1.25\n",
+ "SNR1: 1.23762376238\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E08 : Pg 9.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 9.15\n",
+ "# Example 9.8\n",
+ "# Given\n",
+ "import math \n",
+ "p=0.99;\n",
+ "u=1.;\n",
+ "q=1-p;\n",
+ "# As exp(-Ac^2/4*n*B)=1-p\n",
+ "# AndAC^2/2*n*B=S/N\n",
+ "# Therefore exp(-(1/2)*(S/N))=1-p\n",
+ "SN=2.*(math.log(1/q));\n",
+ "SN1=(round(SN)+1); # Upper limit\n",
+ "print'S/N:',SN1,'db'\n",
+ "# Hence proved"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "S/N: 10.0 db\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E09 : Pg 9.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 9.16\n",
+ "# Example 9.9\n",
+ "# Given\n",
+ "import math\n",
+ "Si=7.*10.**4.;\n",
+ "u=1.;\n",
+ "BW=4.*10.**3.; # Hz\n",
+ "n=2.*10.**12.; # W/Hz\n",
+ "\n",
+ "# (a)Minimum value of Ac\n",
+ "SbyN=40.; # dB\n",
+ "SN=10.**(SbyN/10.);\n",
+ "\n",
+ "Sx=0.167;#2*[integrate('(x**2)*(-x+1)','x',0,1)];\n",
+ "# Now\n",
+ "g=SN/(Sx/(1+Sx));\n",
+ "# And\n",
+ "# Ac=sqrt((2*n*BW*g)/(1+(u**2*Sx))\n",
+ "# We have\n",
+ "Ac=math.sqrt((2.*n*BW*g)/(1.+(u**2.*Sx)));\n",
+ "print'Minimum Value of Ac:',Ac,'V'\n",
+ "\n",
+ "# (b)Threshold value of Ac\n",
+ "# AS S/N at threshold is 10dB\n",
+ "SNT=10.; # dB\n",
+ "gT=2.*SNT;\n",
+ "AcT=math.sqrt((2.*n*BW*gT)/(1.+(u**2.*Sx)));\n",
+ "print'Minimum Value of Ac at Threshold:',AcT,'V'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum Value of Ac: 30952929301.4 V\n",
+ "Minimum Value of Ac at Threshold: 523648135.033 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E10 : Pg 9.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 9.17\n",
+ "# Example 9.10\n",
+ "# Given\n",
+ "\n",
+ "BW=10.*10.**3.; # Hz\n",
+ "SNR=40.; # dB\n",
+ "SNRO=10.**(SNR/10.);\n",
+ "P=40.; # dB\n",
+ "PL=10.**(P/10.);\n",
+ "n=2.*10.**9.; # W/Hz\n",
+ "USx2=0.5;\n",
+ "# For DSB, AM and SSB bandwidth requirement\n",
+ "BTD=2.*BW;\n",
+ "BTA=2.*BW;\n",
+ "BTS=BW;\n",
+ "print'Transmission Bandwidth for DSB:',BTD,'Hz'\n",
+ "print'Transmission Bandwidth for AM:',BTA,'Hz'\n",
+ "print'Transmission Bandwidth for SSB:',BTS,'Hz'\n",
+ "\n",
+ "\n",
+ "# Pt for DSB and SSB\n",
+ "# As SNRO=Si/nBW\n",
+ "Si=n*BW*SNRO; # W\n",
+ "# Considering Channel loss\n",
+ "ST=Si*PL;\n",
+ "print'Power transmission for DSB and SSB:',ST,'W'\n",
+ "\n",
+ "# Pt for AM\n",
+ "# As SNRO=x*Si/nBW\n",
+ "# x=USx2/(1+USx)\n",
+ "x=USx2/(1.+USx2);\n",
+ "Si1=(n*BW*SNRO)/x; # W\n",
+ "# Considering Channel loss\n",
+ "ST1=Si1*PL;\n",
+ "print'Power transmission for AM:',ST1,'W'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Transmission Bandwidth for DSB: 20000.0 Hz\n",
+ "Transmission Bandwidth for AM: 20000.0 Hz\n",
+ "Transmission Bandwidth for SSB: 10000.0 Hz\n",
+ "Power transmission for DSB and SSB: 2e+21 W\n",
+ "Power transmission for AM: 6e+21 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E13 : Pg 9.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 9.20\n",
+ "# Example 9.13\n",
+ "# Given\n",
+ "import math \n",
+ "Mf1=0.003;\n",
+ "# for f<=1.5*10.**3 Hz\n",
+ "f1=1.5*10.**3.; # Hz\n",
+ "Mf2=0.001;\n",
+ "# for 1.5*10.**3 <=f<=3*10.**3 Hz\n",
+ "f2=3.*10.**3.; # Hz\n",
+ "Mf3=0;\n",
+ "# for f>3*10.**3 Hz\n",
+ "# (a) Ac that power transmitted is 100mW\n",
+ "St=100.*10.**3.; # W\n",
+ "# As St=2*[{f1*(Mf1*Ac/2)**2}+{f1*(Mf2*Ac/2)**2}+{f2*(Mf3*Ac/2)**2}]\n",
+ "# Neglecting Mf3 as zero\n",
+ "Ac=math.sqrt((4.*St)/(2.*f1*(Mf1**2.+Mf2**2.)));\n",
+ "print'Ac for s(t)=100mw:',Ac,'V'\n",
+ "# (b)Power in abscence of noise\n",
+ "Zt=2.*((f1*(((Mf1*Ac)/4.)**2.))+(f1*(((Mf2*Ac)/4.)**2.))+(f2*(((Mf3*Ac)/4.)**2.)));\n",
+ "print'Power in absence of Noise:',Zt,'W'\n",
+ "# (c)\n",
+ "# Given\n",
+ "N0=0.0001*10.**3.; # W/Hz\n",
+ "# Psd=N0/4\n",
+ "# Pt=2*f1*N0/4\n",
+ "Pt=(2.*f2*N0)/4.;\n",
+ "print'Power:',Pt,'W'\n",
+ "# (d) SNR at output\n",
+ "SNR=Zt/Pt;\n",
+ "SNRO=10.*math.log(SNR)/math.log(10);\n",
+ "print'SNR at output for SSB:',SNRO,'dB'\n",
+ "# (e)For DSB\n",
+ "St1=100.*10.**3.; # W\n",
+ "# As St=4*[{f1*(Mf1*Ac/2)**2}+{f1*(Mf2*Ac/2)**2}+{f2*(Mf3*Ac/2)**2}]\n",
+ "# Neglecting Mf3 as zero\n",
+ "Ac1=math.sqrt((4.*St)/(4.*f1*(Mf1**2.+Mf3**2.)));\n",
+ "Zt1=4.*((f1*(((Mf1*Ac)/4.)**2.))+(f1*(((Mf2*Ac)/4.)**2.))+(f2*(((Mf3*Ac)/4.)**2.)));\n",
+ "# SNR at output\n",
+ "SNR1=Zt1/Pt;\n",
+ "SNRO1=10.*math.log(SNR1)/math.log(10);\n",
+ "print'SNR at output for DSB:',SNRO1,'dB'\n",
+ "# 3dB increase in SNR\n",
+ "# DSB has higher SNR but SSB os spectarally efficient"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ac for s(t)=100mw: 3651.4837167 V\n",
+ "Power in absence of Noise: 25000.0 W\n",
+ "Power: 150.0 W\n",
+ "SNR at output for SSB: 22.2184874962 dB\n",
+ "SNR at output for DSB: 25.2287874528 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E14 : Pg 9.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 9.22\n",
+ "# Example 9.14\n",
+ "# Given\n",
+ "import math \n",
+ "delf=75.*10.**3.; # Hz\n",
+ "W=15.*10.**3.; # Hz\n",
+ "Sx=1./2.;\n",
+ "# As SNRO=3(delf/W)**2*Sx*g\n",
+ "# Assume g=1\n",
+ "g=1.;\n",
+ "\n",
+ "SNRO=3.*(delf/W)**2*Sx*g;\n",
+ "SNdB=10.*math.log(SNRO)/math.log(10);\n",
+ "print'Output SNR:',SNdB,'dB'\n",
+ "\n",
+ "# Hence it is SNdB times better"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Output SNR: 15.7403126773 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E17 : Pg 9.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 9.23\n",
+ "# Example 9.17\n",
+ "# Given\n",
+ "import math \n",
+ "oSNR=40.; # dB\n",
+ "SNRO=10.**(oSNR/10.);\n",
+ "n=2.*10.**10.; # W/Hz\n",
+ "l=50.; # dB\n",
+ "PL=10.**(l/10.);\n",
+ "B=15.*10.**3.; # Hz\n",
+ "Sx=1./2.;\n",
+ "# (a) DSB Modulation\n",
+ "BTD=2.*B;\n",
+ "print'Transmission bandwidth for DSB:',BTD,'Hz'\n",
+ "# As SNRO=Si/(n*B)\n",
+ "SiD=SNRO*n*B;\n",
+ "STD=SiD*PL;\n",
+ "print'Average Power transmitted for DSB:',STD,'W'\n",
+ "\n",
+ "# (b) AM\n",
+ "U=1.;\n",
+ "U2Sx=U*U*Sx;\n",
+ "BTA=2.*B;\n",
+ "print'Transmission bandwidth for AM:',BTA,'Hz'\n",
+ "# As SNRO=x*Si/(n*B)\n",
+ "# where x=USx/(1+USx)\n",
+ "x=U2Sx/(1.+U2Sx);\n",
+ "SiA=(SNRO*n*B)/x;\n",
+ "STA=SiA*PL;\n",
+ "print'Average Power transmitted for AM:',STA,'W'\n",
+ "\n",
+ "# (c)PM\n",
+ "kp=3.;\n",
+ "BTP=2.*(kp+1.)*B;\n",
+ "print'Transmission bandwidth for PM:',BTP,'Hz'\n",
+ "# As SNRO=kp**2*Sx*Si/(n*B)\n",
+ "SiP=(SNRO*n*B)/(Sx*(kp**2));\n",
+ "STP=SiP*PL;\n",
+ "print'Average Power transmitted for PM:',STP,'W'\n",
+ "\n",
+ "# (d)FM\n",
+ "D=5.;\n",
+ "BTF=2.*10.**1.*B;\n",
+ "print'Transmission bandwidth for FM:',BTF,'Hz'\n",
+ "# As SNRO=3*D**2*Sx*Si/(n*B)\n",
+ "SiF=(SNRO*n*B)/(3.*(D**2.)*Sx);\n",
+ "STF=SiF*PL;\n",
+ "print'Average Power transmitted for FM:',STF,'W'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Transmission bandwidth for DSB: 30000.0 Hz\n",
+ "Average Power transmitted for DSB: 3e+23 W\n",
+ "Transmission bandwidth for AM: 30000.0 Hz\n",
+ "Average Power transmitted for AM: 9e+23 W\n",
+ "Transmission bandwidth for PM: 120000.0 Hz\n",
+ "Average Power transmitted for PM: 6.66666666667e+22 W\n",
+ "Transmission bandwidth for FM: 300000.0 Hz\n",
+ "Average Power transmitted for FM: 8e+21 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E18 : Pg 9.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 9.24\n",
+ "# Example 9.18\n",
+ "# (b)Modulation index b\n",
+ "# Given\n",
+ "SNdB=30.; # dB\n",
+ "SNRO=10.**(SNdB/10.);\n",
+ "# As SNRO=30*b**2*(b+1)\n",
+ "# Therefore\n",
+ "#p2=poly(0,'x');\n",
+ "#p3 =30.*(p2**3.)+30.*(p2**2.)-1000.;\n",
+ "#r=roots(p3);\n",
+ "t=2.917128 ;#2.92+0j;#r(3,1);\n",
+ "print'Modulation index:',t"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Modulation index: 2.917128\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E21 : Pg 9.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 9.27\n",
+ "# Example 9.21\n",
+ "# Given\n",
+ "import math \n",
+ "BW=5000.; # Hz\n",
+ "P=0.1; # W\n",
+ "CBW=100.*10.**3.; # Hz\n",
+ "A=80.; # dB\n",
+ "A1=10.**(-A/10.);\n",
+ "N0=2*(0.5*10.**12.); # W/Hz\n",
+ "Pt=10.*10.**3.; # W\n",
+ "\n",
+ "# We know, CBW=2*(*10.**1)*BW\n",
+ "# Therefore\n",
+ "D=(CBW/(2.*BW))-1.;\n",
+ "kp=D;\n",
+ "Si=Pt*A1;\n",
+ "Sx=P;\n",
+ "# We know\n",
+ "# SNR=((kp**2)*Si*Sx)/(N0*BW);\n",
+ "\n",
+ "SNR=((kp**2.)*Si*Sx)/(N0*BW);\n",
+ "SNR1=10.*math.log(SNR)/math.log(10);\n",
+ "print\"SNR at output: \",SNR1,\"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "SNR at output: -187.904849855 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER10_2.ipynb b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER10_2.ipynb new file mode 100644 index 00000000..e766e88f --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER10_2.ipynb @@ -0,0 +1,567 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:37e281407bf18ea4cb97b4d94f518d678964a52abb4754faf8b1ff73d8221481"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER10:DIGITAL MODULATION AND DEMODULATION"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E01 : Pg 10.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.18\n",
+ "# Example 10.1\n",
+ "from math import sqrt,erfc\n",
+ "# Given\n",
+ "Rb=1.*10.**6.; # b/s\n",
+ "A=5.*10.**3.; # V\n",
+ "N0=0.5*10.**11.; # W/Hz\n",
+ "\n",
+ "Tb=1./Rb;\n",
+ "Eb=(A*A*Tb)/2.;\n",
+ "\n",
+ "# (a) ASK\n",
+ "# Pe=Q(x)\n",
+ "# where\n",
+ "xA=sqrt(Eb/N0);\n",
+ "\n",
+ "PeA=(1./2.)*erfc(xA/1.414);\n",
+ "print'For ASK:',round(PeA,2)\n",
+ "\n",
+ "# (b) PSK\n",
+ "# Pe=Q(x)\n",
+ "# where\n",
+ "xP=sqrt((2.*Eb)/N0);\n",
+ "\n",
+ "PeP=(1./2.)*erfc(xP/1.414);\n",
+ "print'For PSK:',round(PeP,2)\n",
+ "\n",
+ "# (c) FSK\n",
+ "# Pe=Q(x)\n",
+ "# where\n",
+ "xF=sqrt(Eb/N0);\n",
+ "\n",
+ "PeF=(1./2.)*erfc(xF/1.414);\n",
+ "print'For FSK:',round(PeF,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For ASK: 0.5\n",
+ "For PSK: 0.5\n",
+ "For FSK: 0.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E02 : Pg 10.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.19\n",
+ "# Example 10.2\n",
+ "from math import sqrt,erfc\n",
+ "# Given\n",
+ "Rb=1.*10.**6.; # b/s\n",
+ "\n",
+ "# (a)\n",
+ "Aa=1.*10.**3.; # V\n",
+ "N0=1*10.**11.; # W/Hz\n",
+ "\n",
+ "Tb=1./Rb;\n",
+ "Eba=(Aa*Aa*Tb)/2.;\n",
+ "\n",
+ "# Pe=Q(z)\n",
+ "# where\n",
+ "za=sqrt((2.*Eba)/N0);\n",
+ "\n",
+ "Peb=(1./2.)*erfc(za/1.414);\n",
+ "print'For Average bit error probability:',round(Peb,5)\n",
+ "\n",
+ "# (b) Maintain Pb=2*10**3\n",
+ "# From table\n",
+ "zb=2.9;\n",
+ "Ebb=((zb**2.)*N0)/2.;\n",
+ "P=Ebb*Tb;\n",
+ "Ab=sqrt((2.*P));\n",
+ "print'Average Power:',round(Ab,2),'V'\n",
+ "\n",
+ "# (c)\n",
+ "Ac=100.; # V\n",
+ "Rbc=1.*10.**5.; # p/s\n",
+ "N01=1.*10.**2.; # W/Hz\n",
+ "Tbc=1./Rbc;\n",
+ "Ebc=(Ac*Ac*Tbc);\n",
+ "\n",
+ "zc=sqrt(((2.*Ebc)/N01));\n",
+ "\n",
+ "Pec=(1./2.)*erfc(zc/1.414);\n",
+ "# Pec=0.0000039\n",
+ "# nearly 10**-5\n",
+ "print'For Average bit error probability for bipolar antipodal signals:',10**-5"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For Average bit error probability: 0.5\n",
+ "Average Power: 917.06 V\n",
+ "For Average bit error probability for bipolar antipodal signals: 1e-05\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E06 : Pg 10.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.23\n",
+ "# Example 10.6\n",
+ "# Given\n",
+ "import math\n",
+ "p=0.1; # dB\n",
+ "p1=10.**(-p/10.);\n",
+ "p2=math.sqrt(p1);\n",
+ "t=8.68;#math.acosd(p2);\n",
+ "a=round(t);\n",
+ "print'System cannot tolerate more than:',a,'degrees'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "System cannot tolerate more than: 9.0 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E11 : Pg 10.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.28\n",
+ "# Example 10.11\n",
+ "from math import sqrt,erfc\n",
+ "# Given\n",
+ "Rb=1.*10.**6.; # b/s\n",
+ "T=1.*10.**5.;\n",
+ "N0=2.*0.5*10.**7.; # W/Hz\n",
+ "\n",
+ "# From table for Q(z)=10**-5\n",
+ "z=4.25;\n",
+ "\n",
+ "# As z=sqrt(A*A*T/2*N0)\n",
+ "x=((z**2.)*2.*N0)/T;\n",
+ "A=sqrt(x);\n",
+ "print'Required value of A:',round(A,2)\n",
+ "\n",
+ "# (b) Bandwidth\n",
+ "# B=1/(2*(T/2))\n",
+ "# Therefore B=1/T\n",
+ "B=(1./T);\n",
+ "print'Bandwidth:',round(B,2),'Hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Required value of A: 60.1\n",
+ "Bandwidth: 0.0 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E17 : Pg 10.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.33\n",
+ "# Example 10.17\n",
+ "from math import sqrt,erfc\n",
+ "# Given\n",
+ "A=0.2*10.**3.; # V\n",
+ "T=2.*10.**6.; # s\n",
+ "n=2.*1.*10.**15.; # W/Hz\n",
+ "\n",
+ "\n",
+ "# Pe=Q(z)\n",
+ "# where\n",
+ "x=(A*A*T)/(4.*n);\n",
+ "z=sqrt(x);\n",
+ "Pe=(1./2.)*erfc(z/1.414);\n",
+ "print'Error probability:',round(Pe,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Error probability: 0.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E18 : Pg 10.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.34\n",
+ "# Example 10.18\n",
+ "from math import sqrt,erfc\n",
+ "# Given\n",
+ "A=0.2*10.**3.; # V\n",
+ "A1=A/1.414;\n",
+ "\n",
+ "T=2.*10.**6.; # s\n",
+ "n=2.*1.*10.**15.; # W/Hz\n",
+ "\n",
+ "\n",
+ "# Pe=Q(z)\n",
+ "# where\n",
+ "x=(A1*A1*T)/(n);\n",
+ "z=sqrt(x);\n",
+ "Pe=(1./2.)*erfc(z/1.414);\n",
+ "print'Error probability:',round(Pe,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Error probability: 0.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E19 : Pg 10.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.35\n",
+ "# Example 10.19\n",
+ "from math import sqrt,erfc\n",
+ "# Given\n",
+ "d12sqr=8.;\n",
+ "N0=2.*0.5; # W/Hz\n",
+ "\n",
+ "# (c)\n",
+ "# As for two equiprobables\n",
+ "# Pe=Q(z)\n",
+ "# where z=sqrt(d12**2)/sqrt(2*N0)\n",
+ "z=sqrt((d12sqr)/(2.*N0));\n",
+ "Pe=(1./2.)*erfc(z/1.414);\n",
+ "print'Probabilty error:',round(Pe,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Probabilty error: 0.02\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E20 : Pg 10.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.36\n",
+ "# Example 10.20\n",
+ "from math import sqrt,erfc\n",
+ "# Given\n",
+ "c=sqrt(2.);\n",
+ "A=sqrt(5.);\n",
+ "N0=1.; # W/Hz\n",
+ "\n",
+ "d12sqr=4.*A*A;\n",
+ "\n",
+ "# As for two equiprobables\n",
+ "# Pe=Q(z)\n",
+ "# where z=sqrt(d12**2)/(2*N0)\n",
+ "z=sqrt((d12sqr)/(sqrt(2.*N0)));\n",
+ "Pe=(1./2.)*erfc(z/1.414);\n",
+ "print'Probabilty error:',round(Pe,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Probabilty error: 0.0001\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E24 : Pg 10.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.41\n",
+ "# Example 10.24\n",
+ "# (a) Number of constellation Points\n",
+ "# Given\n",
+ "Rs=2400.; # bps\n",
+ "Rb=19.2*10.**3.; # bps\n",
+ "\n",
+ "# As Rs=Rb/log2M\n",
+ "M=2.**(Rb/Rs);\n",
+ "print'Number of constellation points =',round(M,2)\n",
+ "\n",
+ "# (b) Bandwidth efficiency\n",
+ "BT=2400; # Symbols/second\n",
+ "n=Rb/BT;\n",
+ "print'Bandwidth efficiency = ',round(n,2),'bps/hz'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of constellation points = 256.0\n",
+ "Bandwidth efficiency = 8.0 "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "bps/hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E25 : Pg 10.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.41\n",
+ "# Example 10.25\n",
+ "from math import sqrt,erfc\n",
+ "# Given\n",
+ "A1=0.5;\n",
+ "A2=0.5;\n",
+ "T=0.01; # sec\n",
+ "N0=2.*0.0001; # W/Hz\n",
+ "f=50.; # Hz\n",
+ "\n",
+ "# (a) Probability of bit error\n",
+ "Es1=(A1**2.*T)/2.;\n",
+ "Es2=(A2**2.*T)/2.;\n",
+ "\n",
+ "Eb=(Es1+Es2)/2.;\n",
+ "# As PE=Qsqrt(Ep+Eq-2Epq/2N0)\n",
+ "# In this case Ep=Eq=Eb\n",
+ "# Therefore PE=Qsqrt(Eb(1-p)/N0)\n",
+ "# where p=Epq/Eb\n",
+ "\n",
+ "# p=(1/Eb)*integrate('0.5*cos(2000*%pi*t)*0.5*cos(2020*%pi*t)','t',0,T);\n",
+ "# We get\n",
+ "p=0.94;\n",
+ "q=1.-p;\n",
+ "# As Pe=Q(z)\n",
+ "# where z=sqrt(Eb/N0)\n",
+ "z=sqrt((Eb*q)/N0);\n",
+ "Pe=(1./2.)*erfc(z/1.414);\n",
+ "print'Probabilty of bit error :',round(Pe,2)\n",
+ "\n",
+ "# (b)\n",
+ "# Given\n",
+ "fs=50.; # Hz\n",
+ "# or fs=1/2T where T=0.001\n",
+ "# This implies y=tone spacing will be orthogonal\n",
+ "# Therefor p=0\n",
+ "\n",
+ "# As Pe=Q(z)\n",
+ "# where z=sqrt(Eb/N0)\n",
+ "zb=sqrt(Eb/N0);\n",
+ "PB=(1./2.)*erfc(zb/1.414);\n",
+ "print'Probabilty error for fs=50Hz :',round(PB,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Probabilty of bit error : 0.27\n",
+ "Probabilty error for fs=50Hz : 0.01\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E27 : Pg 10.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 10.43\n",
+ "# Example 10.27\n",
+ "\n",
+ "# Given\n",
+ "Rb=4.8*10.**3.; # b/s\n",
+ "bw=3.2*10.**3.; # Hz\n",
+ "\n",
+ "# BPSK can give maximum spectral efficiency of 1bps/Hz, therefore not suitable\n",
+ "# QPSK can give twice spectral efficiency,2bps/Hz, therefore\n",
+ "qpsk=2.*bw;\n",
+ "# PSK can give thrice spectral efficiency,3bps/Hz, therefore\n",
+ "psk=3.*bw;\n",
+ "\n",
+ "# QPSK is most suitable\n",
+ "Rs=Rb/2.;\n",
+ "# Roll off Factor\n",
+ "a=(bw/Rs)-1.;\n",
+ "ap=a*100.;\n",
+ "print'Roll off factor:',ap,'%'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Roll off factor: 33.3333333333 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER11_2.ipynb b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER11_2.ipynb new file mode 100644 index 00000000..6824656b --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/CHAPTER11_2.ipynb @@ -0,0 +1,986 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:f1db97a77be4ceb916ff99dd9448fe12159171d5c39ed2fdbf37f4d6ea76794b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "CHAPTER11:INFORMATION THEORY AND SOURCE CODING"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E02 : Pg 11.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.12\n",
+ "# Example 11.2\n",
+ "# Given\n",
+ "# Probabilities of four symbols\n",
+ "Px=([0.4, 0.3, 0.2, 0.1]);\n",
+ "import math \n",
+ "# (a) H(X)\n",
+ "# As H(X)=-Sum of(P(xi)log2P(xi)) \n",
+ "# Where i=0 to n;\n",
+ "HofX=-1.8464;\n",
+ "#for i=1:4\n",
+ "#HofX=HofX+(Px(i)*math.log(Px(i,2)));\n",
+ "print 'H(X):',-HofX,'b/symbol'\n",
+ "\n",
+ "# (b)Amount of information in x1x2x1x3 and x4x3x3x2\n",
+ "Px1x2x1x3=0.0096;#Px(1)*Px(2)*Px(1)*Px(3);\n",
+ "Ix1x2x1x3=6.7027;#-log2(Px1x2x1x3);\n",
+ "print'\\nIx1x2x1x3:',Ix1x2x1x3,'b/symbol'\n",
+ "\n",
+ "Px4x3x3x2=0.0012;#Px(4)*Px(3)*Px(3)*Px(2);\n",
+ "Ix4x3x3x2=9.7027;#log2(Px4x3x3x2);\n",
+ "print'\\nIx4x3x3x2:',Ix4x3x3x2,'b/symbol\\n'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "H(X): 1.8464 b/symbol\n",
+ "\n",
+ "Ix1x2x1x3: 6.7027 b/symbol\n",
+ "\n",
+ "Ix4x3x3x2: 9.7027 b/symbol\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E03 : Pg 11.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.13\n",
+ "# Example 11.3\n",
+ "# As H(X) is maximum when\n",
+ "# Px1=Px2=1/2\n",
+ "import math \n",
+ "Px=([0.5, 0.5]);\n",
+ "# As H(X)=-Sum of[P(xi)log2P(xi)] \n",
+ "# Where i=0 to n;\n",
+ "HofX=0;\n",
+ "for i in range(1,2):\n",
+ " HofX=HofX+(Px[i]*math.log(Px[i]))/math.log(2);\n",
+ "print'Maximum H(X):',-HofX,'b/symbol'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum H(X): 0.5 b/symbol\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E05 : Pg 11.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.15\n",
+ "# Example 11.5\n",
+ "# Given\n",
+ "# Picture elements\n",
+ "import math \n",
+ "pe=2.*10.**6.;\n",
+ "# Brightness levels\n",
+ "l=16.;\n",
+ "# Rate of repeatation\n",
+ "rr=32.; # Per second\n",
+ "\n",
+ "\n",
+ "# As H(X)=-Sum of[P(xi)log2P(xi)] \n",
+ "# Where i=0 to n;\n",
+ "HofX=(-1.)*l*((1./l)*math.log(1./l,2));\n",
+ "\n",
+ "r=pe*rr;\n",
+ "\n",
+ "# As R=r*H(X)\n",
+ "R=r*HofX;\n",
+ "print'Average rate of information conveyed:',round(R,2),'b/symbol'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Average rate of information conveyed: 256000000.0 b/symbol\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E06 : Pg 11.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.15\n",
+ "# Example 11.6\n",
+ "# Given\n",
+ "# Pdot-2*Pdash and Pdot+Pdash=1\n",
+ "# Therfore, on solving\n",
+ "import math \n",
+ "Pdot=2./3.;\n",
+ "Pdash=1./3.;\n",
+ "\n",
+ "tdot=0.2; # Sec\n",
+ "tdash=0.6; # Sec\n",
+ "tspace=0.2; # Sec\n",
+ "\n",
+ "# Finding H(X)\n",
+ "# As H(X)=-Sum of[P(xi)log2P(xi)] \n",
+ "# Where i=0 to n;\n",
+ "HofX=(-1.)*((Pdot*math.log(Pdot,2))+(Pdash*math.log(Pdash,2)));\n",
+ "\n",
+ "# Average time per symbol\n",
+ "Ts=(Pdot*tdot)+(Pdash*tdash)+tspace;\n",
+ "\n",
+ "# Average Symbol Rate\n",
+ "r=1./Ts;\n",
+ "\n",
+ "# Average information rate\n",
+ "R=r*HofX;\n",
+ "print'Average information rate :',R,'b/symbol'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Average information rate : 1.72180468885 b/symbol\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E07 : Pg 11.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.15\n",
+ "# Example 11.7\n",
+ "# (a)Channel Matrix\n",
+ "# Given\n",
+ "Py1byx1=0.9;\n",
+ "Py2byx1=0.1;\n",
+ "Py1byx2=0.2;\n",
+ "Py2byx2=0.8;\n",
+ "PYbyX=([0.9,0.1],\n",
+ "\t [0.2, 0.8]);\n",
+ "print'Channel Matrix P(Y/X):',PYbyX\n",
+ "\n",
+ "# (b)Py1 and Py2\n",
+ "# Given\n",
+ "Px1=0.5;\n",
+ "Px2=Px1;\n",
+ "# As P(Y)=P(X)*P(Y/X)\n",
+ "PX=([Px1, Px2]);\n",
+ "#PY=PX*PYbyX;\n",
+ "PY=([0.55,0.45]);\n",
+ "print'P(y1) P(y2):',PY\n",
+ "\n",
+ "# (c)Joint Probabilities P(x1,y2) and P(x2,y1)\n",
+ "# Diagonalizing PX\n",
+ "#PXd=diag(PX);\n",
+ "#PXY=PXd*PYbyX;\n",
+ "PXY=([0.05],[0.1])\n",
+ "print'P(x1,y2) P(x2,y1)',PXY"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Channel Matrix P(Y/X): ([0.9, 0.1], [0.2, 0.8])\n",
+ "P(y1) P(y2): [0.55, 0.45]\n",
+ "P(x1,y2) P(x2,y1) ([0.05], [0.1])\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E08 : Pg 11.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.16\n",
+ "# Example 11.8\n",
+ "# (a) Channel Matrix\n",
+ "# Given\n",
+ "PYbyX=([0.9, 0.1],[0.2, 0.8]);\n",
+ "PZbyY=([0.9, 0.1],[0.2, 0.8]);\n",
+ "\n",
+ "# As P(Z/X)=P(Y/X)*P(Z/Y)\n",
+ "#PZbyX=PYbyX*PZbyY;\n",
+ "PZbyX=([0.83, 0.17],[0.34, 0.66])\n",
+ "print'Channel Matrix',PZbyX\n",
+ "\n",
+ "# (b)Pz1 and Pz2\n",
+ "# Given\n",
+ "Px1=0.5;\n",
+ "Px2=Px1;\n",
+ "# As P(Z)=P(X)*P(Z/X)\n",
+ "\n",
+ "# P(X) matrix\n",
+ "PX=([Px1, Px2]);\n",
+ "#PZ=PX*PZbyX;\n",
+ "PZ=([0.585, 0.415])\n",
+ "print'P(z1) P(z2):',PZ"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Channel Matrix ([0.83, 0.17], [0.34, 0.66])\n",
+ "P(z1) P(z2): [0.585, 0.415]\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E09 : Pg 11.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.17\n",
+ "# Example 11.9\n",
+ "# Given\n",
+ "p=0.2;\n",
+ "Px1=0.5;\n",
+ "Px2=0.5;\n",
+ "# P(X) Matrix\n",
+ "PX=([Px1, Px2]);\n",
+ "# Given\n",
+ "PYbyX=([(1-p), p, 0],[0, p, (1-p)]);\n",
+ "# P(y)=\n",
+ "#PY=PX*PYbyX;\n",
+ "PY=([0.4, 0.2, 0.4])\n",
+ "print'P(y1) P(y2) P(y3):',PY"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "P(y1) P(y2) P(y3): [0.4, 0.2, 0.4]\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E16 : Pg 11.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.21\n",
+ "# Example 11.16\n",
+ "# (b)I(X;Y)\n",
+ "# Given\n",
+ "a=0.5;\n",
+ "p=0.1;\n",
+ "# As we know\n",
+ "# P(Y)=P(X)*P(Y/X)\n",
+ "# We have\n",
+ "#PX=([a, (1-a)]);\n",
+ "#PYbyX=([(1-p), p],[p, (1-p)]);\n",
+ "#PY=PX*PYbyX;\n",
+ "\n",
+ "# As H(Y)=-Sum of[P(yi)log2P(yi)] \n",
+ "# Where i=0 to n;\n",
+ "#HofY=0;\n",
+ "#for i in range(1,2):\n",
+ "# HofY=HofY+(PY[i]*math.log(PY[i]))/math.log(2);\n",
+ "\n",
+ "# For BSC, I(X;Y)=H(Y)+plog2(p)+(1-p)log2(1-p)\n",
+ "#IXY=-HofY+((p*math.log(p,2))+((1-p)*math.log(1-p,2)));\n",
+ "IXY=0.5310044 \n",
+ "print'I(X;Y) for a=0.5 and p=0.1:',IXY\n",
+ "\n",
+ "\n",
+ "# (c)I1(X;Y)\n",
+ "# Given\n",
+ "a1=0.5;\n",
+ "p1=0.5;\n",
+ "# As we know\n",
+ "# P(Y)=P(X)*P(Y/X)\n",
+ "# We have\n",
+ "#PX1=([a1, (1-a1)]);\n",
+ "#PYbyX1=([(1-p1), p1],[p1 (1-p1)]);\n",
+ "#PY1=PX1*PYbyX1;\n",
+ "\n",
+ "# As H(Y)=-Sum of[P(yi)log2P(yi)] \n",
+ "# Where i=0 to n;\n",
+ "#HofY1=0;\n",
+ "#for i in range(1,2):\n",
+ " # HofY1=HofY1+(PY1[i]*math.log(PY1[i]))/math.log(2)\n",
+ "\n",
+ "# For BSC, I(X;Y)=H(Y)+plog2(p)+(1-p)log2(1-p)\n",
+ "#IXY1=-HofY1+(p1*math.log(p1,2))+((1-p1)*math.log(1-p1,2));\n",
+ "IXY1=0\n",
+ "print'I(X;Y) for a=0.5 and p=0.5:',IXY1"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I(X;Y) for a=0.5 and p=0.1: 0.5310044\n",
+ "I(X;Y) for a=0.5 and p=0.5: 0\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E20 : Pg 11.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.24\n",
+ "# Example 11.20\n",
+ "import math\n",
+ "# Given\n",
+ "# f(x)=1/a for x from 0 to a\n",
+ "# 0, otherwise\n",
+ "\n",
+ "# We have\n",
+ "# H(X)=-integrate[f(x))*log2f(x)]dx\n",
+ "# Here, f(x)=1/a for limits 0 to a\n",
+ "# H(X)=-integrate(1/a)*log2(1/a)dx for 0 to a\n",
+ "# H(X)=log2(a)\n",
+ "\n",
+ "# (a)a1=1\n",
+ "a1=1;\n",
+ "y1=math.log(a1,2);\n",
+ "print'For a=1, H(X):',y1\n",
+ "\n",
+ "# (b)a2=2\n",
+ "a2=2.;\n",
+ "y2=math.log(a2,2);\n",
+ "print'For a=2, H(X):',y2\n",
+ "\n",
+ "\n",
+ "# (c)a3=1/2\n",
+ "a3=1./2.;\n",
+ "y3=math.log(a3,2);\n",
+ "print'For a=1/2, H(X):',y3"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For a=1, H(X): 0.0\n",
+ "For a=2, H(X): 1.0\n",
+ "For a=1/2, H(X): -1.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E23 : Pg 11.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.26\n",
+ "# Example 11.23\n",
+ "# Given\n",
+ "import math \n",
+ "B=4.*10.**3.; # Hz\n",
+ "S=0.1*10**3.; # W\n",
+ "n=2.*(1.*10.**12.); # W/hz\n",
+ "\n",
+ "N=n*B;\n",
+ "SN=S/N;\n",
+ "# As Channel Capacity\n",
+ "# C=B*(log2(1+(S/N)));\n",
+ "C=B*(math.log(1+(S/N),2));\n",
+ "print'Channel Capacity',round(C,12),'b/s'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Channel Capacity 7.2e-11 b/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E24 : Pg 11.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.26\n",
+ "# Example 11.24\n",
+ "# (a) Information Rate\n",
+ "# Given\n",
+ "import math \n",
+ "n=1.25; # times\n",
+ "l=256.; # Levels\n",
+ "fM=4.*10.**3.; # Hz # Bandwidth\n",
+ "Nr=2.*fM; # Nyquist Rate\n",
+ "r=Nr*n;\n",
+ "HofX=math.log(l,2);\n",
+ "# Information rate\n",
+ "R=r*HofX;\n",
+ "print'Information Rate:',R,'b/s'\n",
+ "\n",
+ "# (b)\n",
+ "# As Channel Capacity\n",
+ "# C=B*(log2(1+(S/N)));\n",
+ "B=10.**4.; # Hz\n",
+ "SNdB=20.; # dB\n",
+ "SN=10.**(SNdB/10);\n",
+ "C=B*(math.log(1+(SN),2));\n",
+ "print'Channel Capacity:',C,'b/s'\n",
+ "\n",
+ "# As R>C, error free transmission isnt possible\n",
+ "\n",
+ "# (c)For error free transmission\n",
+ "C1=R;\n",
+ "# Therfore S/N\n",
+ "SN1=(2.**(C1/B))-1;\n",
+ "SN1dB=10.*(math.log(SN1,10));\n",
+ "print'For error free transmission S/N:',SN1dB,'dB'\n",
+ "\n",
+ "# (d)Bandwidth for error free transmission\n",
+ "SN2dB=20.; # dB\n",
+ "SN2=10.**(SN2dB/10);\n",
+ "# As Channel Capacity\n",
+ "# C=B*(log2(1+(S/N)));\n",
+ "B=C1/(math.log(1+(SN2),2));\n",
+ "print'Bandwidth for error free transmission:',B,'Hz'\n",
+ "# Therefore bandwidth should be greater than or equal to B"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Information Rate: 80000.0 b/s\n",
+ "Channel Capacity: 66582.1148275 b/s\n",
+ "For error free transmission S/N: 24.0654018043 dB\n",
+ "Bandwidth for error free transmission: 12015.2386579 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E25 : Pg 11.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.27\n",
+ "# Example 11.25\n",
+ "# Given\n",
+ "import math,numpy\n",
+ "p=0.9;\n",
+ "Px=([p, (1-p)]);\n",
+ "n=1;\n",
+ "# Average Code length\n",
+ "# L=Summation(P(xi)ni) \n",
+ "L=0;\n",
+ "for i in range(1,2):\n",
+ " L=L+(Px[i]*n);\n",
+ "\n",
+ "# As H(X)=-Sum of[P(xi)log2P(xi)] \n",
+ "# Where i=0 to n;\n",
+ "HofX=0;\n",
+ "print(numpy.shape(Px))\n",
+ "for i in range(0,2):\n",
+ " HofX=HofX+(Px[i]*math.log(Px[i]))/math.log(2);\n",
+ " \n",
+ "# Efficiency=H(X)/L\n",
+ "n=-HofX/L;\n",
+ "np=n*100.;\n",
+ "print'Code efficiency:',np,'%'\n",
+ "\n",
+ "# Redundancy\n",
+ "g=1-n;\n",
+ "gp=g*100.;\n",
+ "print'Code redundancy:',gp,\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(2,)\n",
+ "Code efficiency: 468.995593589 %\n",
+ "Code redundancy: -368.995593589 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E26 : Pg 11.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.28\n",
+ "# Example 11.26\n",
+ "import math,numpy\n",
+ "# Given\n",
+ "Pa=([0.81, 0.09, 0.09, 0.01]);\n",
+ "n=([1, 2, 3, 4]);\n",
+ "\n",
+ "# Average Code length\n",
+ "# L=Summation(P(xi)ni) \n",
+ "L=0;\n",
+ "for i in range(1,4):\n",
+ " L=L+(Pa[i]*n[i]);\n",
+ "\n",
+ "# Entropy of second order extension\n",
+ "# As H(X**2)=-Sum of[P(ai)log2P(ai)] \n",
+ "# Where i=0 to n;\n",
+ "HofX2=0;\n",
+ "print(numpy.shape(Pa))\n",
+ "for i in range(0,4):\n",
+ " HofX2=HofX2+(Pa[i]*math.log(Pa[i]))/math.log(2);\n",
+ "# b/s\n",
+ "\n",
+ "# Efficiency=H(X**2)/L\n",
+ "n=-HofX2/L;\n",
+ "np=n*100.;\n",
+ "print'Code efficiency:',np,'%'\n",
+ "\n",
+ "# Redundancy\n",
+ "g=1-n;\n",
+ "gp=g*100.;\n",
+ "print'Code redundancy:',gp,'%'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(4,)\n",
+ "Code efficiency: 191.426772894 %\n",
+ "Code redundancy: -91.4267728936 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E27 : Pg 11.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.28\n",
+ "# Example 11.27\n",
+ "# As Kraft inequlity\n",
+ "# K=summation(2**(-n))\n",
+ "# where i from 0 to 4\n",
+ "# As i=1,2,3,4\n",
+ "# Given\n",
+ "\n",
+ "# For Code A\n",
+ "na=([2, 2, 2, 2]);\n",
+ "KA=0;\n",
+ "for i in range(1,4):\n",
+ " KA=KA+(2.**(-na[i]));\n",
+ "\n",
+ "print'For Code A:',KA\n",
+ "\n",
+ "# For Code B\n",
+ "nb=([1, 2, 2, 3]);\n",
+ "KB=0;\n",
+ "for i in range(1,4):\n",
+ " KB=KB+(2.**(-nb[i]));\n",
+ "print'For Code B:',KB\n",
+ "\n",
+ "# For Code C\n",
+ "nc=([1, 2, 3, 3]);\n",
+ "KC=0;\n",
+ "for i in range(1,4):\n",
+ " KC=KC+(2**(-nc[i]));\n",
+ "print'For Code C:',KC\n",
+ "\n",
+ "# For Code D\n",
+ "nd=([1, 3, 3, 3]);\n",
+ "KD=0;\n",
+ "for i in range(1,4):\n",
+ " KD=KD+(2**(-nd[i]));\n",
+ "print'For Code D:',KD\n",
+ "\n",
+ "# All codes except Code B satisfy Kraft inequality"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For Code A: 0.75\n",
+ "For Code B: 0.625\n",
+ "For Code C: 0.5\n",
+ "For Code D: 0.375\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E32 : Pg 11.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Page Number: 11.31\n",
+ "# Example 11.32\n",
+ "# Given\n",
+ "Px=([1/2, 1/4, 1/8, 1/8]);\n",
+ "\n",
+ "# As I(xi)=-log2(Pxi)\n",
+ "#for i in range(1,4):\n",
+ "#Ix(i)=-math.log(Px[i])/math.log(2);\n",
+ "#n[i]=Ix(i);\n",
+ "\n",
+ "# As H(X)=-Sum of[P(xi)log2P(xi)]\n",
+ "# and I(xi)=-log2p(xi) \n",
+ "# Where i=0 to n;\n",
+ "#HofX=0;\n",
+ "#print(numpy.shape(Px))\n",
+ "#for i in range(0,4):\n",
+ "#\tHofX=HofX+(Px[i]*Ix(i);\n",
+ "HofX=1.75;\n",
+ "# Average Code length\n",
+ "# L=Summation(P(xi)ni) \n",
+ "#L=0;\n",
+ "#for i in range(1,4):\n",
+ "# L=L+(Px[i]*n[i]);\n",
+ "L=1.75;\n",
+ "# Efficiency=H(X)/L\n",
+ "n=HofX/L;\n",
+ "np=n*100.;\n",
+ "print'Code efficiency:',np,'%'\n",
+ "\n",
+ "# Hence, efficiency is 100%"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Code efficiency: 100.0 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E33 : Pg 11.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.32\n",
+ "# Example 11.33\n",
+ "# Given\n",
+ "# (a)Efficiency of code\n",
+ "import math\n",
+ "Px=([0.2, 0.2, 0.2, 0.2, 0.2]);\n",
+ "na=([2, 2, 2, 3, 3]);\n",
+ "\n",
+ "# As H(X)=-Sum of[P(ai)log2P(ai)] \n",
+ "# Where i=0 to n;\n",
+ "HofX=0;\n",
+ "for i in range(1,5):\n",
+ " HofX=HofX+(Px[i]*math.log(Px[i]))/math.log(2);\n",
+ "\n",
+ "# Average Code length\n",
+ "# L=Summation(P(xi)ni)\n",
+ "La=0;\n",
+ "for i in range(1,5):\n",
+ " La=La+(Px[i]*na[i]);\n",
+ "\n",
+ "# Efficiency=H(X)/L\n",
+ "ea=-HofX/La;\n",
+ "npa=ea*100.;\n",
+ "print'Code efficiency for Shannon code 1:',npa,'%'\n",
+ "\n",
+ "# (b) Another Shannon Fano Code\n",
+ "nb=([2, 3, 3, 2, 2]);\n",
+ "\n",
+ "# Average Code length\n",
+ "# L=Summation(P(xi)ni)\n",
+ "Lb=0;\n",
+ "for i in range(1,5):\n",
+ " Lb=Lb+(Px[i]*nb[i]);\n",
+ "\n",
+ "# Efficiency=H(X)/L\n",
+ "eb=-HofX/Lb;\n",
+ "npb=eb*100;\n",
+ "print'Code efficiency for Shannon code 2:',npb,'%'\n",
+ "\n",
+ "# (c) Hauffman Code\n",
+ "nc=([2, 3, 3, 2, 2]);\n",
+ "\n",
+ "# Average Code length\n",
+ "# L=Summation(P(xi)ni)\n",
+ "Lc=0;\n",
+ "for i in range(1,5):\n",
+ " Lc=Lc+(Px[i]*nc[i]);\n",
+ "\n",
+ "# Efficiency=H(X)/L\n",
+ "ec=-HofX/Lc;\n",
+ "npc=ec*100.;\n",
+ "print'Code efficiency for Hauffman code:',npc,'%'\n",
+ "\n",
+ "# Efficiency of all codes is same"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Code efficiency for Shannon code 1: 92.8771237955 %\n",
+ "Code efficiency for Shannon code 2: 92.8771237955 %\n",
+ "Code efficiency for Hauffman code: 92.8771237955 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E34 : Pg 11.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Page Number: 11.33\n",
+ "# Example 11.34\n",
+ "# Given\n",
+ "# (a) For Shannon Fano Code\n",
+ "import numpy, math\n",
+ "Px=([0.4, 0.19, 0.16, 0.15, 0.1]);\n",
+ "n=([2, 2, 2, 3, 3]);\n",
+ "\n",
+ "# Average Code length\n",
+ "# L=Summation(P(xi)ni) \n",
+ "L=0;\n",
+ "for i in range(1,5):\n",
+ " L=L+(Px[i]*n[i]);\n",
+ "# As H(X)=-Sum of[P(xi)log2P(xi)] \n",
+ "# Where i=0 to n;\n",
+ "HofX=0;\n",
+ "print(numpy.shape(Px))\n",
+ "for i in range(1,5):\n",
+ " HofX=HofX+(Px[i]*math.log(Px[i]))/math.log(2);\n",
+ "# Efficiency=H(X)/L\n",
+ "n=-HofX/L;\n",
+ "np=n*100.;\n",
+ "print'Code efficiency for shannon fanon:',np,'%'\n",
+ "\n",
+ "# (b) For Huffman Code\n",
+ "nh=([1, 3, 3, 3, 3]);\n",
+ "\n",
+ "# Average Code length\n",
+ "# L=Summation(P(xi)ni) \n",
+ "Lh=0;\n",
+ "for i in range(1,5):\n",
+ " Lh=Lh+(Px[i]*nh[i]);\n",
+ "\n",
+ "# Efficiency=H(X)/L\n",
+ "n1=-HofX/Lh;\n",
+ "np1=n1*100.;\n",
+ "print'Code efficiency for hauffman:',np1,'%'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(5,)\n",
+ "Code efficiency for shannon fanon: 111.791799137 %\n",
+ "Code efficiency for hauffman: 90.05450486 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Plot_ex_8.24_1.png b/Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Plot_ex_8.24_1.png Binary files differnew file mode 100644 index 00000000..c3f2a4cd --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Plot_ex_8.24_1.png diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Screenshot04_2.png b/Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Screenshot04_2.png Binary files differnew file mode 100644 index 00000000..10cfbbdd --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Screenshot04_2.png diff --git a/Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Screenshot10_2.png b/Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Screenshot10_2.png Binary files differnew file mode 100644 index 00000000..0ce6e492 --- /dev/null +++ b/Analog_and_Digital_Communications_by_H_P_Hsu/screenshots/Screenshot10_2.png diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/Chapter9_8.ipynb b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/Chapter9_8.ipynb new file mode 100644 index 00000000..5520ce18 --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/Chapter9_8.ipynb @@ -0,0 +1,419 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:36c7c29426c0c7be14ce2ec6430ec42fa1b0070a30e5ffbe18ec0fb6fd9b8d34"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter09:Numerical Solution of Partial Differential Equations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.1:pg-350"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#standard five point formula\n",
+ "#example 9.1\n",
+ "#page 350\n",
+ "\n",
+ "u2=5.0;u3=1.0;\n",
+ "for i in range(0,3):\n",
+ " u1=(u2+u3+6.0)/4.0\n",
+ " u2=(u1/2.0)+(5.0/2.0)\n",
+ " u3=(u1/2.0)+(1.0/2.0)\n",
+ " print\" the values are u1=%d\\t u2=%d\\t u3=%d\\t\\n\\n\" %(u1,u2,u3)\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " the values are u1=3\t u2=4\t u3=2\t\n",
+ "\n",
+ "\n",
+ " the values are u1=3\t u2=4\t u3=2\t\n",
+ "\n",
+ "\n",
+ " the values are u1=3\t u2=4\t u3=2\t\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.2:pg-351"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#solution of laplace equation by jacobi method,gauss-seidel method and SOR method\n",
+ "#example 9.2\n",
+ "#page 351\n",
+ "u1=0.25\n",
+ "u2=0.25\n",
+ "u3=0.5\n",
+ "u4=0.5 #initial values\n",
+ "print \"jacobis iteration process\\n\\n\"\n",
+ "print\"u1\\t u2\\t u3\\t u4\\t \\n\\n\"\n",
+ "print \"%f\\t %f\\t %f\\t %f\\t \\n\" %(u1,u2,u3,u4)\n",
+ "for i in range(0,7):\n",
+ " u11=(0+u2+0+u4)/4\n",
+ " u22=(u1+0+0+u3)/4\n",
+ " u33=(1+u2+0+u4)/4\n",
+ " u44=(1+0+u3+u1)/4\n",
+ " u1=u11\n",
+ " u2=u22\n",
+ " u3=u33\n",
+ " u4=u44\n",
+ " print \"%f\\t %f\\t %f\\t %f\\t \\n\" %(u11,u22,u33,u44) \n",
+ "print \" gauss seidel process\\n\\n\"\n",
+ "u1=0.25\n",
+ "u2=0.3125\n",
+ "u3=0.5625\n",
+ "u4=0.46875 #initial values\n",
+ "print \"u1\\t u2\\t u3\\t u4\\t \\n\\n\"\n",
+ "print \"%f\\t %f\\t %f\\t %f\\t \\n\" %(u1,u2,u3,u4)\n",
+ "for i in range(0,4):\n",
+ "\n",
+ " u1=(0.0+u2+0.0+u4)/4.0\n",
+ " u2=(u1+0.0+0.0+u3)/4.0\n",
+ " u3=(1.0+u2+0.0+u4)/4.0\n",
+ " u4=(1.0+0.0+u3+u1)/4.0\n",
+ " print \"%f\\t %f\\t %f\\t %f\\t \\n\" %(u1,u2,u3,u4) \n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "jacobis iteration process\n",
+ "\n",
+ "\n",
+ "u1\t u2\t u3\t u4\t \n",
+ "\n",
+ "\n",
+ "0.250000\t 0.250000\t 0.500000\t 0.500000\t \n",
+ "\n",
+ "0.187500\t 0.187500\t 0.437500\t 0.437500\t \n",
+ "\n",
+ "0.156250\t 0.156250\t 0.406250\t 0.406250\t \n",
+ "\n",
+ "0.140625\t 0.140625\t 0.390625\t 0.390625\t \n",
+ "\n",
+ "0.132812\t 0.132812\t 0.382812\t 0.382812\t \n",
+ "\n",
+ "0.128906\t 0.128906\t 0.378906\t 0.378906\t \n",
+ "\n",
+ "0.126953\t 0.126953\t 0.376953\t 0.376953\t \n",
+ "\n",
+ "0.125977\t 0.125977\t 0.375977\t 0.375977\t \n",
+ "\n",
+ " gauss seidel process\n",
+ "\n",
+ "\n",
+ "u1\t u2\t u3\t u4\t \n",
+ "\n",
+ "\n",
+ "0.250000\t 0.312500\t 0.562500\t 0.468750\t \n",
+ "\n",
+ "0.195312\t 0.189453\t 0.414551\t 0.402466\t \n",
+ "\n",
+ "0.147980\t 0.140633\t 0.385775\t 0.383439\t \n",
+ "\n",
+ "0.131018\t 0.129198\t 0.378159\t 0.377294\t \n",
+ "\n",
+ "0.126623\t 0.126196\t 0.375872\t 0.375624\t \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.4:pg-354"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#poisson equation\n",
+ "#exaample 9.4\n",
+ "#page 354\n",
+ "u2=0.0;u4=0.0;\n",
+ "print \" u1\\t u2\\t u3\\t u4\\t\\n\\n\"\n",
+ "for i in range(0,6):\n",
+ " u1=(u2/2.0)+30.0\n",
+ " u2=(u1+u4+150.0)/4.0\n",
+ " u4=(u2/2.0)+45.0\n",
+ " print \"%0.2f\\t %0.2f\\t %0.2f\\t %0.2f\\n\" %(u1,u2,u2,u4)\n",
+ "print \" from last two iterates we conclude u1=67 u2=75 u3=75 u4=83\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " u1\t u2\t u3\t u4\t\n",
+ "\n",
+ "\n",
+ "30.00\t 45.00\t 45.00\t 67.50\n",
+ "\n",
+ "52.50\t 67.50\t 67.50\t 78.75\n",
+ "\n",
+ "63.75\t 73.12\t 73.12\t 81.56\n",
+ "\n",
+ "66.56\t 74.53\t 74.53\t 82.27\n",
+ "\n",
+ "67.27\t 74.88\t 74.88\t 82.44\n",
+ "\n",
+ "67.44\t 74.97\t 74.97\t 82.49\n",
+ "\n",
+ " from last two iterates we conclude u1=67 u2=75 u3=75 u4=83\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 59
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.6:pg-362"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#bender-schmidt formula\n",
+ "#example 9.6\n",
+ "#page 362\n",
+ "def f(x):\n",
+ " return (4*x)-(x*x)\n",
+ "#u=[f(0),f(1),f(2),f(3),f(4)]\n",
+ "u1=f(0);u2=f(1);u3=f(2);u4=f(3);u5=f(4);\n",
+ "u11=(u1+u3)/2\n",
+ "u12=(u2+u4)/2\n",
+ "u13=(u3+u5)/2\n",
+ "print \"u11=%0.2f\\t u12=%0.2f\\t u13=%0.2f\\t \\n\" %(u11,u12,u13)\n",
+ "u21=(u1+u12)/2.0\n",
+ "u22=(u11+u13)/2.0\n",
+ "u23=(u12+0)/2.0\n",
+ "print \"u21=%0.2f\\t u22=%0.2f\\t u23=%0.2f\\t \\n\" %(u21,u22,u23)\n",
+ "u31=(u1+u22)/2.0\n",
+ "u32=(u21+u23)/2.0\n",
+ "u33=(u22+u1)/2.0\n",
+ "print \"u31=%0.2f\\t u32=%0.2f\\t u33=%0.2f\\t \\n\" % (u31,u32,u33)\n",
+ "u41=(u1+u32)/2.0\n",
+ "u42=(u31+u33)/2.0\n",
+ "u43=(u32+u1)/2.0\n",
+ "print \"u41=%0.2f\\t u42=%0.2f\\t u43=%0.2f\\t \\n\" % (u41,u42,u43)\n",
+ "u51=(u1+u42)/2.0\n",
+ "u52=(u41+u43)/2.0\n",
+ "u53=(u42+u1)/2.0\n",
+ "print \"u51=%0.2f\\t u52=%0.2f\\t u53=%0.2f\\t \\n\" % (u51,u52,u53)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "u11=2.00\t u12=3.00\t u13=2.00\t \n",
+ "\n",
+ "u21=1.50\t u22=2.00\t u23=1.50\t \n",
+ "\n",
+ "u31=1.00\t u32=1.50\t u33=1.00\t \n",
+ "\n",
+ "u41=0.75\t u42=1.00\t u43=0.75\t \n",
+ "\n",
+ "u51=0.50\t u52=0.75\t u53=0.50\t \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 77
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.7:pg-363"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#bender-schimdt's formula and crank-nicolson formula\n",
+ "#example 9.7\n",
+ "#page 363\n",
+ "#bender -schimdt's formula\n",
+ "import math\n",
+ "from numpy import matrix\n",
+ "z=math.pi\n",
+ "def f(x,t):\n",
+ " return math.exp(z*z*t*-1)*sin(z*x)\n",
+ "#u=[f(0,0),f(0.2,0),f(0.4,0),f(0.6,0),f(0.8,0),f(1,0)]\n",
+ "u1=f(0,0)\n",
+ "u2=f(0.2,0)\n",
+ "u3=f(0.4,0)\n",
+ "u4=f(0.6,0)\n",
+ "u5=f(0.8,0)\n",
+ "u6=f(1.0,0)\n",
+ "u11=u3/2\n",
+ "u12=(u2+u4)/2\n",
+ "u13=u12\n",
+ "u14=u11\n",
+ "print \"u11=%f\\t u12=%f\\t u13=%f\\t u14=%f\\n\\n\" % (u11,u12,u13,u14)\n",
+ "u21=u12/2\n",
+ "u22=(u12+u14)/2\n",
+ "u23=u22\n",
+ "u24=u21\n",
+ "print \"u21=%f\\t u22=%f\\t u23=%f\\t u24=%f\\n\\n\" % (u21,u22,u23,u24)\n",
+ "print \"the error in the solution is: %f\\n\\n\" % (math.fabs(u22-f(0.6,0.04)))\n",
+ "#crank-nicolson formula\n",
+ "#by putting i=1,2,3,4 we obtain four equation\n",
+ "A=matrix([[4, -1, 0, 0] ,[-1, 4, -1, 0],[0, -1, 4, -1],[0, 0, -1, 4]])\n",
+ "C=matrix([[0.9510],[1.5388],[1.5388],[0.9510]])\n",
+ "X=A.I*C\n",
+ "print \"u00=%f\\t u10=%f\\t u20=%f\\t u30=%f\\t\\n\\n\" %(X[0][0],X[1][0],X[2][0],X[3][0])\n",
+ "print \"the error in the solution is: %f\\n\\n\" %(abs(X[1][0]-f(0.6,0.04)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "u11=0.475528\t u12=0.769421\t u13=0.769421\t u14=0.475528\n",
+ "\n",
+ "\n",
+ "u21=0.384710\t u22=0.622475\t u23=0.622475\t u24=0.384710\n",
+ "\n",
+ "\n",
+ "the error in the solution is: 0.018372\n",
+ "\n",
+ "\n",
+ "u00=0.399255\t u10=0.646018\t u20=0.646018\t u30=0.399255\t\n",
+ "\n",
+ "\n",
+ "the error in the solution is: 0.005172\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.8:pg-364"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#heat equation using crank-nicolson method\n",
+ "#example 9.8\n",
+ "#page 364\n",
+ "from numpy import matrix\n",
+ "import math\n",
+ "z=0.01878\n",
+ "#h=1/2 l=1/8,i=1\n",
+ "u01=0.0\n",
+ "u21=1.0/8.0\n",
+ "u11=(u21+u01)/6.0\n",
+ "print \" u11=%f\\n\\n\" % (u11)\n",
+ "print \"error is %f\\n\\n\" % (math.fabs(u11-z))\n",
+ "#h=1/4,l=1/8,i=1,2,3\n",
+ "A=matrix([[-3.0 ,-1.0 ,0.0],[1.0,-3.0,1.0],[0.0,1.0,-3.0]])\n",
+ "C=matrix([[0.0],[0.0],[-0.125]])\n",
+ "#here we found inverese of A then we multipy it with C\n",
+ "X=A.I*C\n",
+ "print \"u12=%f\\n\\n\" % (X[1][0])\n",
+ "print \"error is %f\\n\\n\" %(math.fabs(X[1][0]-z))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " u11=0.020833\n",
+ "\n",
+ "\n",
+ "error is 0.002053\n",
+ "\n",
+ "\n",
+ "u12=0.013889\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "error is 0.004891\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter1_8.ipynb b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter1_8.ipynb new file mode 100644 index 00000000..29a46a36 --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter1_8.ipynb @@ -0,0 +1,625 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:6ce091ab8e1fc1b8237507a6211c6c4c45a07ba8baa4f3364e4633c5bb15666c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter01:Errors in Numerical Calculations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.1:pg-7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 1.1\n",
+ "#rounding off\n",
+ "#page 7\n",
+ "a1=1.6583\n",
+ "a2=30.0567\n",
+ "a3=0.859378\n",
+ "a4=3.14159\n",
+ "print \"\\nthe numbers after rounding to 4 significant figures are given below\\n\"\n",
+ "print \" %f %.4g\\n'\" %(a1,a1)\n",
+ "print \" %f %.4g\\n\" %(a2,a2)\n",
+ "print \" %f %.4g\\n\" %(a3,a3)\n",
+ "print \" %f %.4g\\n\" %(a4,a4)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "the numbers after rounding to 4 significant figures are given below\n",
+ "\n",
+ " 1.658300 1.658\n",
+ "'\n",
+ " 30.056700 30.06\n",
+ "\n",
+ " 0.859378 0.8594\n",
+ "\n",
+ " 3.141590 3.142\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.2:pg-9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 1.2\n",
+ "#percentage accuracy\n",
+ "#page 9\n",
+ "import math\n",
+ "x=0.51 # the number given\n",
+ "n=2 #correcting upto 2 decimal places\n",
+ "d=math.pow(10,-n)\n",
+ "d=d/2.0\n",
+ "p=(d/x)*100 #percentage accuracy\n",
+ "print \"the percentage accuracy of %f after correcting to two decimal places is %f\" %(x,p)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the percentage accuracy of 0.510000 after correcting to two decimal places is 0.980392\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.3:pg-9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 1.3\n",
+ "#absolute and relative errors\n",
+ "#page 9\n",
+ "X=3.1428571 #approximate value of pi\n",
+ "T_X=3.1415926 # true value of pi\n",
+ "A_E=T_X-X #absolute error\n",
+ "R_E=A_E/T_X #relative error\n",
+ "print \"Absolute Error = %0.7f \\n Relative Error = %0.7f\" %(A_E,R_E)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Absolute Error = -0.0012645 \n",
+ " Relative Error = -0.0004025\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.4:pg-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 1.4\n",
+ "#best approximation\n",
+ "#page 10\n",
+ "X=1/3 #the actual number\n",
+ "X1=0.30\n",
+ "X2=0.33\n",
+ "X3=0.34\n",
+ "E1=abs(X-X1)\n",
+ "E2=abs(X-X2)\n",
+ "E3=abs(X-X3)\n",
+ "if E1<E2:\n",
+ " if E1<E3:\n",
+ " B_A=X1\n",
+ "elif E2<E1:\n",
+ " if E2<E3:\n",
+ " B_A=X2\n",
+ "elif E3<E2:\n",
+ " if E3<E1:\n",
+ " B_A=X3\n",
+ "print \"the best approximation of 1/3 is %f\" %(B_A)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the best approximation of 1/3 is 0.300000\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.5:pg-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#relative error\n",
+ "#example 1.5\n",
+ "#page 10\n",
+ "import math\n",
+ "n=8.6 # the corrected number\n",
+ "N=1 #the no is rounded to one decimal places\n",
+ "E_A=math.pow(10,-N)/2\n",
+ "E_R=E_A/n\n",
+ "print \"the relative error of the number is:%0.4f\" %(E_R)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the relative error of the number is:0.0058\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.6:pg-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 1.6\n",
+ "#absolute error and relative error\n",
+ "#page 10\n",
+ "import math\n",
+ "s=math.sqrt(3)+math.sqrt(5)+math.sqrt(7) #the sum square root of 3,5,7\n",
+ "n=4\n",
+ "Ea=3*(math.pow(10,-n)/2) #absolute error\n",
+ "R_E=Ea/s\n",
+ "print \"the sum of square roots is %0.4g \\n\" %(s)\n",
+ "print \"the absolute error is %f \\n\" %(Ea)\n",
+ "print \"the relative error is %f\" %(R_E)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the sum of square roots is 6.614 \n",
+ "\n",
+ "the absolute error is 0.000150 \n",
+ "\n",
+ "the relative error is 0.000023\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.7:pg-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#absolute error\n",
+ "#example 1.7\n",
+ "#page 10\n",
+ "n=[0.1532, 15.45, 0.0000354, 305.1, 8.12, 143.3, 0.0212, 0.643, 0.1734] #original numbers\n",
+ "#rounding all numbers to 2 decimal places\n",
+ "n=[305.1, 143.3, 0.15,15.45, 0.00, 8.12, 0.02, 0.64, 0.17] \n",
+ "sum=0;\n",
+ "#l=length(n);\n",
+ "for i in range(len(n)):\n",
+ " sum=sum+n[i];\n",
+ "\n",
+ "E_A=2*math.pow(10,-1)/2+7*math.pow(10,-2)/2\n",
+ "print \"the absolute error is:%0.2f\" %(E_A)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the absolute error is:0.14\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.8:pg-11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#difference in 3 significant figures\n",
+ "#example 1.8\n",
+ "#page 11\n",
+ "X1=math.sqrt(6.37)\n",
+ "X2=math.sqrt(6.36)\n",
+ "d=X1-X2 #difference between two numbers\n",
+ "print \"the difference corrected to 3 significant figures is %0.3g\" %(d)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the difference corrected to 3 significant figures is 0.00198\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.9:pg-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#relative error\n",
+ "#example 1.10\n",
+ "#page 12\n",
+ "a=6.54\n",
+ "b=48.64\n",
+ "c=13.5\n",
+ "da=0.01\n",
+ "db=0.02\n",
+ "dc=0.03\n",
+ "s=math.pow(a,2)*math.sqrt(b)/math.pow(c,3)\n",
+ "#disp(s,'s=')\n",
+ "print \"s=%f\" %(s)\n",
+ "r_err=2*(da/a)+(db/b)/2+3*(dc/c);\n",
+ "print \"the relative error is :%f\" %(r_err)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "s=0.121241\n",
+ "the relative error is :0.009930\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.11:pg-13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#relative error\n",
+ "#example 1.11\n",
+ "#page 13\n",
+ "import math\n",
+ "x=1\n",
+ "y=1\n",
+ "z=1\n",
+ "u=(5*x*math.pow(y,3))/math.pow(z,3)\n",
+ "dx=0.001\n",
+ "dy=0.001\n",
+ "dz=0.001\n",
+ "max=((5*math.pow(y,2))/math.pow(z,3))*dx+((10*x*y)/math.pow(z,3))*dy+((15*x*math.pow(y,2))/math.pow(z,4))*dz\n",
+ "e=max/u\n",
+ "print \" the relative error is :%f\" %(e)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " the relative error is :0.006000\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.12:pg-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#taylor series\n",
+ "#example 1.12\n",
+ "#page 12\n",
+ "import math\n",
+ "def f(x):\n",
+ " return math.pow(x,3)+5*x-10\n",
+ "def f1(x):\n",
+ " return 3*math.pow(x,2)-6*x+5\n",
+ "def f2(x):\n",
+ " return 6*x-6\n",
+ "def f3(x):\n",
+ " return 6\n",
+ "D=[0,f(0), f1(0), f2(0), f3(0)]\n",
+ "S1=0;\n",
+ "h=1;\n",
+ "for i in range(1,5):\n",
+ " S1=S1+math.pow(h,i-1)*D[i]/math.factorial(i-1)\n",
+ " \n",
+ "print \"the third order taylors series approximation of f(1) is :%d\" %(S1)\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the third order taylors series approximation of f(1) is :-7\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.13:pg-16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#taylor series\n",
+ "#example 1.13\n",
+ "#page 16\n",
+ "import math\n",
+ "def f(x):\n",
+ " return math.sin(x)\n",
+ "def f1(x):\n",
+ " return math.cos(x)\n",
+ "def f2(x):\n",
+ " return -1*math.sin(x)\n",
+ "def f3(x):\n",
+ " return -1*math.cos(x)\n",
+ "def f4(x):\n",
+ " return math.sin(x)\n",
+ "def f5(x):\n",
+ " return math.cos(x)\n",
+ "def f6(x):\n",
+ " return -1*math.sin(x)\n",
+ "def f7(x):\n",
+ " return -1*math.cos(x)\n",
+ "D=[0,f(math.pi/6), f1(math.pi/6), f2(math.pi/6), f3(math.pi/6), f4(math.pi/6), f5(math.pi/6), f6(math.pi/6), f7(math.pi/6)]\n",
+ "S1=0\n",
+ "h=math.pi/6\n",
+ "print \"order of approximation computed value of sin(pi/3) absolute eror\\n\\n\"\n",
+ "for j in range(1,10):\n",
+ " for i in range(1,j):\n",
+ " S1=S1+math.pow(h,i-1)*D[i]/math.factorial(i-1) \n",
+ " print \"%d %0.9f %0.9f\\n\" %(j,S1,abs(math.sin(math.pi/3)-S1))\n",
+ " S1=0\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "order of approximation computed value of sin(pi/3) absolute eror\n",
+ "\n",
+ "\n",
+ "1 0.000000000 0.866025404\n",
+ "\n",
+ "2 0.500000000 0.366025404\n",
+ "\n",
+ "3 0.953449841 0.087424437\n",
+ "\n",
+ "4 0.884910922 0.018885518\n",
+ "\n",
+ "5 0.864191614 0.001833790\n",
+ "\n",
+ "6 0.865757475 0.000267929\n",
+ "\n",
+ "7 0.866041490 0.000016087\n",
+ "\n",
+ "8 0.866027181 0.000001777\n",
+ "\n",
+ "9 0.866025327 0.000000077\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.14:pg-18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#maclaurins expansion\n",
+ "#example 1.14\n",
+ "#page 18\n",
+ "n=8 #correct to 8 decimal places\n",
+ "x=1\n",
+ "for i in range(1,50):\n",
+ " if x/math.factorial(i)<math.pow(10,-8)/2:\n",
+ " c=i\n",
+ " break \n",
+ "print \"no. of terms needed to correct to 8 decimal places is : %d \" %(c)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "no. of terms needed to correct to 8 decimal places is : 2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.15:pg-18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#series apprixamation\n",
+ "#example 1.15\n",
+ "#page 18\n",
+ "import math\n",
+ "x=.09090909 # 1/11 =.09090909\n",
+ "S1=0\n",
+ "for i in range(1,5,2):\n",
+ " S1=S1+math.pow(x,i)/i\n",
+ "print \"value of log(1.2) is : %0.8f\\n\\n\" %(2*S1)\n",
+ "c=0\n",
+ "for i in range(1,50):\n",
+ " if math.pow(.09090909,i)/i<2*math.pow(10,-7):\n",
+ " c=i\n",
+ " break\n",
+ "print \"min no of terms needed to get value wuth same accuracy is :%d\" %(c)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "value of log(1.2) is : 0.18231906\n",
+ "\n",
+ "\n",
+ "min no of terms needed to get value wuth same accuracy is :6\n"
+ ]
+ }
+ ],
+ "prompt_number": 74
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter2_8.ipynb b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter2_8.ipynb new file mode 100644 index 00000000..28b4e4b7 --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter2_8.ipynb @@ -0,0 +1,2189 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:94764108bd639936999bf8f1a90eec00a791efd63f93d38d5409d1902afe105b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter02:Solution of Algebric and Transcendental Equations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.1:pg-24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.1\n",
+ "#bisection method\n",
+ "#page 24\n",
+ "import math\n",
+ "def f(x):\n",
+ " return math.pow(x,3)-x-1\n",
+ "x1=1\n",
+ "x2=2 #f(1) is negative and f(2) is positive\n",
+ "d=0.0001 #for accuracy of root\n",
+ "c=1\n",
+ "print \"Succesive approximations \\t x1\\t \\tx2\\t \\tm\\t \\tf(m)\\n\"\n",
+ "while abs(x1-x2)>d:\n",
+ " \n",
+ " m=(x1+x2)/2.0\n",
+ " print \" \\t%f\\t%f\\t%f\\t%f\\n\" %(x1,x2,m,f(m))\n",
+ " if f(m)*f(x1)>0.0:\n",
+ " x1=m\n",
+ " else:\n",
+ " x2=m \n",
+ " c=c+1 # to count number of iterations \n",
+ "print \"the solution of equation after %i iteration is %g\" %(c,m)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Succesive approximations \t x1\t \tx2\t \tm\t \tf(m)\n",
+ "\n",
+ " \t1.000000\t2.000000\t1.500000\t0.875000\n",
+ "\n",
+ " \t1.000000\t1.500000\t1.250000\t-0.296875\n",
+ "\n",
+ " \t1.250000\t1.500000\t1.375000\t0.224609\n",
+ "\n",
+ " \t1.250000\t1.375000\t1.312500\t-0.051514\n",
+ "\n",
+ " \t1.312500\t1.375000\t1.343750\t0.082611\n",
+ "\n",
+ " \t1.312500\t1.343750\t1.328125\t0.014576\n",
+ "\n",
+ " \t1.312500\t1.328125\t1.320312\t-0.018711\n",
+ "\n",
+ " \t1.320312\t1.328125\t1.324219\t-0.002128\n",
+ "\n",
+ " \t1.324219\t1.328125\t1.326172\t0.006209\n",
+ "\n",
+ " \t1.324219\t1.326172\t1.325195\t0.002037\n",
+ "\n",
+ " \t1.324219\t1.325195\t1.324707\t-0.000047\n",
+ "\n",
+ " \t1.324707\t1.325195\t1.324951\t0.000995\n",
+ "\n",
+ " \t1.324707\t1.324951\t1.324829\t0.000474\n",
+ "\n",
+ " \t1.324707\t1.324829\t1.324768\t0.000214\n",
+ "\n",
+ "the solution of equation after 15 iteration is 1.32477'\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.2:pg-25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.2\n",
+ "#bisection method\n",
+ "#page 25\n",
+ "import math\n",
+ "def f(x):\n",
+ " return math.pow(x,3)-2*x-5\n",
+ "x1=2 \n",
+ "x2=3 #f(2) is negative and f(3) is positive\n",
+ "d=0.0001 #for accuracy of root\n",
+ "c=1\n",
+ "print \"Succesive approximations \\t x1\\t \\tx2\\t \\tm\\t \\tf(m)\\n\"\n",
+ "while abs(x1-x2)>d:\n",
+ " m=(x1+x2)/2.0\n",
+ " print \" \\t%f\\t%f\\t%f\\t%f\\n\" %(x1,x2,m,f(m))\n",
+ " if f(m)*f(x1)>0:\n",
+ " x1=m\n",
+ " else:\n",
+ " x2=m \n",
+ " c=c+1;# to count number of iterations \n",
+ "print \"the solution of equation after %i iteration is %0.4g\" %(c,m)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Succesive approximations \t x1\t \tx2\t \tm\t \tf(m)\n",
+ "\n",
+ " \t2.000000\t3.000000\t2.500000\t5.625000\n",
+ "\n",
+ " \t2.000000\t2.500000\t2.250000\t1.890625\n",
+ "\n",
+ " \t2.000000\t2.250000\t2.125000\t0.345703\n",
+ "\n",
+ " \t2.000000\t2.125000\t2.062500\t-0.351318\n",
+ "\n",
+ " \t2.062500\t2.125000\t2.093750\t-0.008942\n",
+ "\n",
+ " \t2.093750\t2.125000\t2.109375\t0.166836\n",
+ "\n",
+ " \t2.093750\t2.109375\t2.101562\t0.078562\n",
+ "\n",
+ " \t2.093750\t2.101562\t2.097656\t0.034714\n",
+ "\n",
+ " \t2.093750\t2.097656\t2.095703\t0.012862\n",
+ "\n",
+ " \t2.093750\t2.095703\t2.094727\t0.001954\n",
+ "\n",
+ " \t2.093750\t2.094727\t2.094238\t-0.003495\n",
+ "\n",
+ " \t2.094238\t2.094727\t2.094482\t-0.000771\n",
+ "\n",
+ " \t2.094482\t2.094727\t2.094604\t0.000592\n",
+ "\n",
+ " \t2.094482\t2.094604\t2.094543\t-0.000090\n",
+ "\n",
+ "the solution of equation after 15 iteration is 2.095\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.3:pg-26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.3\n",
+ "#bisection method\n",
+ "#page 26\n",
+ "import math\n",
+ "def f(x):\n",
+ " return math.pow(x,3)+math.pow(x,2)+x+7\n",
+ "x1=-3\n",
+ "x2=-2 #f(-3) is negative and f(-2) is positive\n",
+ "d=0.0001 #for accuracy of root\n",
+ "c=1\n",
+ "print \"Succesive approximations \\t x1\\t \\tx2\\t \\tm\\t \\tf(m)\\n\"\n",
+ "while abs(x1-x2)>d:\n",
+ " m=(x1+x2)/2.0\n",
+ " print \" \\t%f\\t%f\\t%f\\t%f\\n\" %(x1,x2,m,f(m))\n",
+ " if f(m)*f(x1)>0:\n",
+ " x1=m\n",
+ " else:\n",
+ " x2=m \n",
+ " c=c+1 # to count number of iterations \n",
+ "print \"the solution of equation after %i iteration is %0.4g\" %(c,m)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Succesive approximations \t x1\t \tx2\t \tm\t \tf(m)\n",
+ "\n",
+ " \t-3.000000\t-2.000000\t-2.500000\t-4.875000\n",
+ "\n",
+ " \t-2.500000\t-2.000000\t-2.250000\t-1.578125\n",
+ "\n",
+ " \t-2.250000\t-2.000000\t-2.125000\t-0.205078\n",
+ "\n",
+ " \t-2.125000\t-2.000000\t-2.062500\t0.417725\n",
+ "\n",
+ " \t-2.125000\t-2.062500\t-2.093750\t0.111481\n",
+ "\n",
+ " \t-2.125000\t-2.093750\t-2.109375\t-0.045498\n",
+ "\n",
+ " \t-2.109375\t-2.093750\t-2.101562\t0.033315\n",
+ "\n",
+ " \t-2.109375\t-2.101562\t-2.105469\t-0.006010\n",
+ "\n",
+ " \t-2.105469\t-2.101562\t-2.103516\t0.013673\n",
+ "\n",
+ " \t-2.105469\t-2.103516\t-2.104492\t0.003836\n",
+ "\n",
+ " \t-2.105469\t-2.104492\t-2.104980\t-0.001086\n",
+ "\n",
+ " \t-2.104980\t-2.104492\t-2.104736\t0.001376\n",
+ "\n",
+ " \t-2.104980\t-2.104736\t-2.104858\t0.000145\n",
+ "\n",
+ " \t-2.104980\t-2.104858\t-2.104919\t-0.000470\n",
+ "\n",
+ "the solution of equation after 15 iteration is -2.105\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.4:pg-26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.4\n",
+ "#bisection method\n",
+ "#page 26\n",
+ "import math\n",
+ "def f(x):\n",
+ " return x*math.exp(x)-1\n",
+ "x1=0 \n",
+ "x2=1 #f(0) is negative and f(1) is positive\n",
+ "d=0.0005 #maximun tolerance value\n",
+ "c=1\n",
+ "print \"Succesive approximations \\t x1\\t \\tx2\\t \\tm\\t \\ttol\\t \\tf(m)\\n\"\n",
+ "while abs((x2-x1)/x2)>d:\n",
+ " m=(x1+x2)/2.0 #tolerance value for each iteration\n",
+ " tol=((x2-x1)/x2)*100\n",
+ " print \" \\t%f\\t%f\\t%f\\t%f\\t%f\\n\" %(x1,x2,m,tol,f(m))\n",
+ " if f(m)*f(x1)>0:\n",
+ " x1=m\n",
+ " else:\n",
+ " x2=m \n",
+ " c=c+1 # to count number of iterations \n",
+ "print \"the solution of equation after %i iteration is %0.4g\" %(c,m)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Succesive approximations \t x1\t \tx2\t \tm\t \ttol\t \tf(m)\n",
+ "\n",
+ " \t0.000000\t1.000000\t0.500000\t100.000000\t-0.175639\n",
+ "\n",
+ " \t0.500000\t1.000000\t0.750000\t50.000000\t0.587750\n",
+ "\n",
+ " \t0.500000\t0.750000\t0.625000\t33.333333\t0.167654\n",
+ "\n",
+ " \t0.500000\t0.625000\t0.562500\t20.000000\t-0.012782\n",
+ "\n",
+ " \t0.562500\t0.625000\t0.593750\t10.000000\t0.075142\n",
+ "\n",
+ " \t0.562500\t0.593750\t0.578125\t5.263158\t0.030619\n",
+ "\n",
+ " \t0.562500\t0.578125\t0.570312\t2.702703\t0.008780\n",
+ "\n",
+ " \t0.562500\t0.570312\t0.566406\t1.369863\t-0.002035\n",
+ "\n",
+ " \t0.566406\t0.570312\t0.568359\t0.684932\t0.003364\n",
+ "\n",
+ " \t0.566406\t0.568359\t0.567383\t0.343643\t0.000662\n",
+ "\n",
+ " \t0.566406\t0.567383\t0.566895\t0.172117\t-0.000687\n",
+ "\n",
+ " \t0.566895\t0.567383\t0.567139\t0.086059\t-0.000013\n",
+ "\n",
+ "the solution of equation after 13 iteration is 0.5671\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.5:pg-27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.5\n",
+ "#bisection method\n",
+ "#page 27\n",
+ "import math\n",
+ "def f(x):\n",
+ " return 4*math.exp(-x)*math.sin(x)-1\n",
+ "x1=0 \n",
+ "x2=0.5 #f(0) is negative and f(1) is positive\n",
+ "d=0.0001 #for accuracy of root\n",
+ "c=1 \n",
+ "print \"Succesive approximations \\t x1\\t \\tx2\\t \\tm\\t \\t \\tf(m)\\n\"\n",
+ "while abs(x2-x1)>d:\n",
+ " m=(x1+x2)/2.0\n",
+ " print \" \\t%f\\t%f\\t%f\\t%f\\n\" %(x1,x2,m,f(m))\n",
+ " if f(m)*f(x1)>0:\n",
+ " x1=m\n",
+ " else:\n",
+ " x2=m \n",
+ " c=c+1 # to count number of iterations \n",
+ "print \"the solution of equation after %i iteration is %0.3g\" %(c,m)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Succesive approximations \t x1\t \tx2\t \tm\t \t \tf(m)\n",
+ "\n",
+ " \t0.000000\t0.500000\t0.250000\t-0.229286\n",
+ "\n",
+ " \t0.250000\t0.500000\t0.375000\t0.006941\n",
+ "\n",
+ " \t0.250000\t0.375000\t0.312500\t-0.100293\n",
+ "\n",
+ " \t0.312500\t0.375000\t0.343750\t-0.044068\n",
+ "\n",
+ " \t0.343750\t0.375000\t0.359375\t-0.017925\n",
+ "\n",
+ " \t0.359375\t0.375000\t0.367188\t-0.005334\n",
+ "\n",
+ " \t0.367188\t0.375000\t0.371094\t0.000842\n",
+ "\n",
+ " \t0.367188\t0.371094\t0.369141\t-0.002236\n",
+ "\n",
+ " \t0.369141\t0.371094\t0.370117\t-0.000694\n",
+ "\n",
+ " \t0.370117\t0.371094\t0.370605\t0.000075\n",
+ "\n",
+ " \t0.370117\t0.370605\t0.370361\t-0.000310\n",
+ "\n",
+ " \t0.370361\t0.370605\t0.370483\t-0.000118\n",
+ "\n",
+ " \t0.370483\t0.370605\t0.370544\t-0.000022\n",
+ "\n",
+ "the solution of equation after 14 iteration is 0.371\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.6:pg-28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.6\n",
+ "#false position method\n",
+ "#page 28\n",
+ "import math\n",
+ "def f(x):\n",
+ " return x**3-2*x-5\n",
+ "a=2.0\n",
+ "b=3.0 #f(2) is negative and f(3)is positive\n",
+ "d=0.00001\n",
+ "print \"succesive iterations \\ta\\t b\\t f(a)\\t f(b)\\t\\ x1\\n\"\n",
+ "for i in range(1,25):\n",
+ " x1=b*f(a)/(f(a)-f(b))+a*f(b)/(f(b)-f(a))\n",
+ " if(f(a)*f(x1))>0:\n",
+ " b=x1\n",
+ " else:\n",
+ " a=x1\n",
+ " if abs(f(x1))<d:\n",
+ " break\n",
+ " print \" \\t%f %f %f %f %f\\n\" %(a,b,f(a),f(b),x1)\n",
+ "print \"the root of the equation is %f\" %(x1)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "succesive iterations \ta\t b\t f(a)\t f(b)\t\\ x1\n",
+ "\n",
+ " \t2.000000 2.058824 -1.000000 -0.390800 2.058824\n",
+ "\n",
+ " \t2.096559 2.058824 0.022428 -0.390800 2.096559\n",
+ "\n",
+ " \t2.094511 2.058824 -0.000457 -0.390800 2.094511\n",
+ "\n",
+ "the root of the equation is 2.094552\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.7:pg-29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.7\n",
+ "#false position method\n",
+ "#page 29\n",
+ "def f(x):\n",
+ " return x**2.2-69\n",
+ "a=5.0\n",
+ "b=6.0 #f(5) is negative and f(6)is positive\n",
+ "d=0.00001\n",
+ "print \"succesive iterations \\ta\\t b\\t f(a)\\t f(b)\\t\\ x1\\n\"\n",
+ "for i in range(1,25):\n",
+ " x1=b*f(a)/(f(a)-f(b))+a*f(b)/(f(b)-f(a));\n",
+ " if(f(a)*f(x1))>0:\n",
+ " b=x1\n",
+ " else:\n",
+ " a=x1\n",
+ " if abs(f(x1))<d:\n",
+ " break\n",
+ " print \" \\t%f %f %f %f %f\\n\" %(a,b,f(a),f(b),x1)\n",
+ "print \"the root of the equation is %f\" %(x1)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "succesive iterations \ta\t b\t f(a)\t f(b)\t\\ x1\n",
+ "\n",
+ " \t7.027228 6.000000 3.933141 -17.485113 7.027228\n",
+ "\n",
+ " \t6.838593 6.000000 -0.304723 -17.485113 6.838593\n",
+ "\n",
+ " \t6.853467 6.000000 0.024411 -17.485113 6.853467\n",
+ "\n",
+ " \t6.852277 6.000000 -0.001950 -17.485113 6.852277\n",
+ "\n",
+ " \t6.852372 6.000000 0.000156 -17.485113 6.852372\n",
+ "\n",
+ " \t6.852365 6.000000 -0.000012 -17.485113 6.852365\n",
+ "\n",
+ "the root of the equation is 6.852365\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.8:pg-29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.8\n",
+ "#false position method\n",
+ "#page 29\n",
+ "import math\n",
+ "def f(x):\n",
+ " return 2*x-log10(x)-7\n",
+ "a=3.0\n",
+ "b=4.0 #f(3) is negative and f(4)is positive\n",
+ "d=0.00001\n",
+ "print \"succesive iterations \\ta \\t b\\t f(a)\\t f(b)\\t x1\\n\"\n",
+ "for i in range(1,25):\n",
+ " x1=b*f(a)/(f(a)-f(b))+a*f(b)/(f(b)-f(a))\n",
+ " if(f(a)*f(x1))>0:\n",
+ " b=x1\n",
+ " else:\n",
+ " a=x1\n",
+ " if abs(f(x1))<d:\n",
+ " break\n",
+ " print \" \\t%f %f %f %f %f\\n\" %(a,b,f(a),f(b),x1)\n",
+ "print \"the root of the equation is %0.4g\" %(x1)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "succesive iterations \ta \t b\t f(a)\t f(b)\t x1\n",
+ "\n",
+ " \t3.000000 3.787772 -1.477121 -0.002839 3.787772\n",
+ "\n",
+ " \t3.789289 3.787772 0.000021 -0.002839 3.789289\n",
+ "\n",
+ "the root of the equation is 3.789\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.9:pg-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.9\n",
+ "#false position method\n",
+ "#page 30\n",
+ "import math\n",
+ "def f(x):\n",
+ " return 4*math.exp(-x)*math.sin(x)-1\n",
+ "a=0.0\n",
+ "b=0.5 #f(0) is negative and f(0.5)is positive\n",
+ "d=0.00001\n",
+ "print \"succesive iterations \\ta\\t b\\t f(a)\\t f(b)\\t\\ x1\\n\"\n",
+ "for i in range(1,25):\n",
+ " x1=b*f(a)/(f(a)-f(b))+a*f(b)/(f(b)-f(a))\n",
+ " if(f(a)*f(x1))>0:\n",
+ " b=x1\n",
+ " else:\n",
+ " a=x1\n",
+ " if abs(f(x1))<d:\n",
+ " break\n",
+ " print \" \\t%f %f %f %f %f\\n\" %(a,b,f(a),f(b),x1)\n",
+ "print \"the root of the equation is %f\" %(x1)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "succesive iterations \ta\t b\t f(a)\t f(b)\t\\ x1\n",
+ "\n",
+ " \t0.429869 0.500000 0.084545 0.163145 0.429869\n",
+ "\n",
+ " \t0.354433 0.500000 -0.026054 0.163145 0.354433\n",
+ "\n",
+ " \t0.374479 0.500000 0.006132 0.163145 0.374479\n",
+ "\n",
+ " \t0.369577 0.500000 -0.001547 0.163145 0.369577\n",
+ "\n",
+ " \t0.370802 0.500000 0.000384 0.163145 0.370802\n",
+ "\n",
+ " \t0.370497 0.500000 -0.000096 0.163145 0.370497\n",
+ "\n",
+ " \t0.370573 0.500000 0.000024 0.163145 0.370573\n",
+ "\n",
+ "the root of the equation is 0.370554\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.10:pg-33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.10\n",
+ "#iteration method\n",
+ "#page 33\n",
+ "import math\n",
+ "def f(x):\n",
+ " return 1/(math.sqrt(x+1))\n",
+ "x1=0.75\n",
+ "x2=0.0\n",
+ "n=1\n",
+ "d=0.0001 #accuracy opto 10^-4\n",
+ "c=0 #to count no of iterations \n",
+ "print \"successive iterations \\t\\x01\\tf(x1)\\n\"\n",
+ "while abs(x1-x2)>d:\n",
+ " print \" \\t%f %f\\n\" %(x1,f(x1))\n",
+ " x2=x1\n",
+ " x1=f(x1)\n",
+ " c=c+1\n",
+ "print \" the root of the eqaution after %i iteration is %0.4g\" %(c,x1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t\u0001\tf(x1)\n",
+ "\n",
+ " \t0.750000 0.755929\n",
+ "\n",
+ " \t0.755929 0.754652\n",
+ "\n",
+ " \t0.754652 0.754926\n",
+ "\n",
+ " \t0.754926 0.754867\n",
+ "\n",
+ " the root of the eqaution after 4 iteration is 0.7549\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.11:pg-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.11\n",
+ "#iteration method\n",
+ "#page34\n",
+ "import math\n",
+ "def f(x):\n",
+ " return cos(x)/2.0+3.0/2.0\n",
+ "x1=1.5 # as roots lies between 3/2 and pi/2\n",
+ "x2=0\n",
+ "d=0.0001 # accuracy opto 10^-4\n",
+ "c=0 # to count no of iterations \n",
+ "print \"successive iterations \\t\\x01\\tf(x1)\\n\"\n",
+ "while abs(x2-x1)>d:\n",
+ " \n",
+ " print \" \\t%f %f\\n\" %(x1,f(x1))\n",
+ " x2=x1\n",
+ " x1=f(x1)\n",
+ " c=c+1\n",
+ "print \" the root of the eqaution after %i iteration is %0.4g\" %(c,x1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t\u0001\tf(x1)\n",
+ "\n",
+ " \t1.500000 1.535369\n",
+ "\n",
+ " \t1.535369 1.517710\n",
+ "\n",
+ " \t1.517710 1.526531\n",
+ "\n",
+ " \t1.526531 1.522126\n",
+ "\n",
+ " \t1.522126 1.524326\n",
+ "\n",
+ " \t1.524326 1.523227\n",
+ "\n",
+ " \t1.523227 1.523776\n",
+ "\n",
+ " \t1.523776 1.523502\n",
+ "\n",
+ " \t1.523502 1.523639\n",
+ "\n",
+ " \t1.523639 1.523570\n",
+ "\n",
+ " the root of the eqaution after 10 iteration is 1.524\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.12:pg-35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.12\n",
+ "#iteration method\n",
+ "#page 35\n",
+ "import math\n",
+ "def f(x):\n",
+ " return math.exp(-x)\n",
+ "x1=1.5 # as roots lies between 0 and 1\n",
+ "x2=0\n",
+ "d=0.0001 # accuracy opto 10^-4\n",
+ "c=0 # to count no of iterations \n",
+ "print \"successive iterations \\t x1 \\t f(x1)\\n\"\n",
+ "while abs(x2-x1)>d:\n",
+ " \n",
+ " print \" \\t%f %f\\n\" %(x1,f(x1))\n",
+ " x2=x1\n",
+ " x1=f(x1)\n",
+ " c=c+1\n",
+ "print \" the root of the eqaution after %i iteration is %0.4g\" %(c,x1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t x1 \t f(x1)\n",
+ "\n",
+ " \t1.500000 0.223130\n",
+ "\n",
+ " \t0.223130 0.800011\n",
+ "\n",
+ " \t0.800011 0.449324\n",
+ "\n",
+ " \t0.449324 0.638059\n",
+ "\n",
+ " \t0.638059 0.528317\n",
+ "\n",
+ " \t0.528317 0.589597\n",
+ "\n",
+ " \t0.589597 0.554551\n",
+ "\n",
+ " \t0.554551 0.574330\n",
+ "\n",
+ " \t0.574330 0.563082\n",
+ "\n",
+ " \t0.563082 0.569451\n",
+ "\n",
+ " \t0.569451 0.565836\n",
+ "\n",
+ " \t0.565836 0.567885\n",
+ "\n",
+ " \t0.567885 0.566723\n",
+ "\n",
+ " \t0.566723 0.567382\n",
+ "\n",
+ " \t0.567382 0.567008\n",
+ "\n",
+ " \t0.567008 0.567220\n",
+ "\n",
+ " \t0.567220 0.567100\n",
+ "\n",
+ " \t0.567100 0.567168\n",
+ "\n",
+ " the root of the eqaution after 18 iteration is 0.5672\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.13:pg-35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.13\n",
+ "#iteration method\n",
+ "#page 35\n",
+ "import math\n",
+ "def f(x):\n",
+ " return 1+math.sin(x)/10\n",
+ "x1=1.0 # as roots lies between 1 and pi evident from graph\n",
+ "x2=0\n",
+ "d=0.0001 # accuracy opto 10^-4\n",
+ "c=0 # to count no of iterations \n",
+ "print \"successive iterations \\t x1 \\t f(x1)\\n\"\n",
+ "while abs(x2-x1)>d:\n",
+ " print \" \\t%f %f\\n\" %(x1,f(x1))\n",
+ " x2=x1\n",
+ " x1=f(x1)\n",
+ " c=c+1\n",
+ "print \" the root of the eqaution after %i iteration is %0.4g\" %(c,x1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t x1 \t f(x1)\n",
+ "\n",
+ " \t1.000000 1.084147\n",
+ "\n",
+ " \t1.084147 1.088390\n",
+ "\n",
+ " \t1.088390 1.088588\n",
+ "\n",
+ " \t1.088588 1.088597\n",
+ "\n",
+ " the root of the eqaution after 4 iteration is 1.089\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.14:pg-36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.14\n",
+ "#aitken's process\n",
+ "#page 36\n",
+ "import math\n",
+ "def f(x):\n",
+ " return 1.5+math.cos(x)/2.0\n",
+ "x0=1.5\n",
+ "y=0\n",
+ "e=0.0001\n",
+ "c=0\n",
+ "print \"successive iterations \\t x0 \\t x1 \\t x2 \\t x3 \\t y\\n\"\n",
+ "for i in range(1,10):\n",
+ " x1=f(x0)\n",
+ " x2=f(x1)\n",
+ " x3=f(x2)\n",
+ " y=x3-((x3-x2)**2)/(x3-2*x2+x1)\n",
+ " d=y-x0\n",
+ " x0=y\n",
+ " if abs(f(x0))<e:\n",
+ " break\n",
+ " c=c+1\n",
+ " print \" \\t%f %f %f %f %f\\n\" %(x0,x1,x2,x3,y)\n",
+ "print \"the root of the equation after %i iteration is %f\" %(c,y)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t x0 \t x1 \t x2 \t x3 \t y\n",
+ "\n",
+ " \t1.523592 1.535369 1.517710 1.526531 1.523592\n",
+ "\n",
+ " \t1.523593 1.523593 1.523593 1.523593 1.523593\n",
+ "\n",
+ " \t1.523593 1.523593 1.523593 1.523593 1.523593\n",
+ "\n",
+ " \t1.523593 1.523593 1.523593 1.523593 1.523593\n",
+ "\n",
+ " \t1.523593 1.523593 1.523593 1.523593 1.523593\n",
+ "\n",
+ " \t1.523593 1.523593 1.523593 1.523593 1.523593\n",
+ "\n",
+ " \t1.523593 1.523593 1.523593 1.523593 1.523593\n",
+ "\n",
+ " \t1.523593 1.523593 1.523593 1.523593 1.523593\n",
+ "\n",
+ " \t1.523593 1.523593 1.523593 1.523593 1.523593\n",
+ "\n",
+ "the root of the equation after 9 iteration is 1.523593\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.15:pg-39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.15\n",
+ "#newton-raphson method\n",
+ "#page 39\n",
+ "def f(x):\n",
+ " return x**3-2*x-5\n",
+ "def f1(x):\n",
+ " return 3*x**2-2 # first derivative of the function\n",
+ "x0=2.0 # initial value\n",
+ "d=0.0001\n",
+ "c=0\n",
+ "n=1\n",
+ "print \"successive iterations \\t x0 \\t f(x0) \\t f1(x0)\\n\"\n",
+ "while n==1:\n",
+ " x2=x0\n",
+ " x1=x0-(f(x0)/f1(x0))\n",
+ " x0=x1\n",
+ " print \" \\t%f \\t%f \\t%f \\n\" %(x2,f(x1),f1(x1))\n",
+ " c=c+1\n",
+ " if abs(f(x0))<d:\n",
+ " break\n",
+ "print \"the root of %i iteration is:%f\" %(c,x0)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t x0 \t f(x0) \t f1(x0)\n",
+ "\n",
+ " \t2.000000 \t0.061000 \t11.230000 \n",
+ "\n",
+ " \t2.100000 \t0.000186 \t11.161647 \n",
+ "\n",
+ " \t2.094568 \t0.000000 \t11.161438 \n",
+ "\n",
+ "the root of 3 iteration is:2.094551\n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.16:pg-40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.16\n",
+ "#newton-raphson method\n",
+ "#page 40\n",
+ "import math\n",
+ "def f(x):\n",
+ " return x*math.sin(x)+math.cos(x)\n",
+ "def f1(x):\n",
+ " return x*math.cos(x) #first derivation of the function\n",
+ "x0=math.pi # initial value\n",
+ "d=0.0001\n",
+ "c=0 \n",
+ "n=1\n",
+ "print \"successive iterations \\tx0\\t f(x0)\\t f1(x0)\\n\"\n",
+ "while n==1:\n",
+ " x2=x0\n",
+ " x1=x0-(f(x0)/f1(x0))\n",
+ " x0=x1\n",
+ " print \" \\t%f \\t%f \\t%f\\n\" %(x2,f(x1),f1(x1))\n",
+ " c=c+1\n",
+ " if abs(f(x0))<d:\n",
+ " break\n",
+ "print \"the root of %i iteration is:%f\" %(c,x0)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \tx0\t f(x0)\t f1(x0)\n",
+ "\n",
+ " \t3.141593 \t-0.066186 \t-2.681457\n",
+ "\n",
+ " \t2.823283 \t-0.000564 \t-2.635588\n",
+ "\n",
+ " \t2.798600 \t-0.000000 \t-2.635185\n",
+ "\n",
+ "the root of 3 iteration is:2.798386\n"
+ ]
+ }
+ ],
+ "prompt_number": 46
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.17:pg-40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.17\n",
+ "#newton-raphson method\n",
+ "#page 40\n",
+ "import math\n",
+ "def f(x):\n",
+ " return x*math.exp(x)-1\n",
+ "def f1(x):\n",
+ " return math.exp(x)+x*math.exp(x) #first derivative of the function\n",
+ "x0=0 # initial value\n",
+ "d=0.0001 \n",
+ "c=0\n",
+ "n=1\n",
+ "print \"successive iterations \\tx0\\t f(x0)\\t f1(x0)\\n\"\n",
+ "while n==1:\n",
+ " x2=x0\n",
+ " x1=x0-(f(x0)/f1(x0))\n",
+ " x0=x1\n",
+ " print \" \\t%f \\t%f \\t%f\\n\" %(x2,f(x1),f1(x1))\n",
+ " c=c+1\n",
+ " if abs(f(x0))<d:\n",
+ " break\n",
+ "print \"the root of %i iteration is:%f\" %(c,x0)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \tx0\t f(x0)\t f1(x0)\n",
+ "\n",
+ " \t0.000000 \t1.718282 \t5.436564\n",
+ "\n",
+ " \t1.000000 \t0.355343 \t3.337012\n",
+ "\n",
+ " \t0.683940 \t0.028734 \t2.810232\n",
+ "\n",
+ " \t0.577454 \t0.000239 \t2.763614\n",
+ "\n",
+ " \t0.567230 \t0.000000 \t2.763223\n",
+ "\n",
+ "the root of 5 iteration is:0.567143\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.18:pg-41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.18\n",
+ "#newton-raphson method\n",
+ "#page 41\n",
+ "import math\n",
+ "def f(x):\n",
+ " return math.sin(x)-x/2.0\n",
+ "def f1(x):\n",
+ " return math.cos(x)-0.5\n",
+ "x0=math.pi/2.0 # initial value\n",
+ "d=0.0001\n",
+ "c=0\n",
+ "n=1\n",
+ "print \"successive iterations \\t x0 \\t f(x0)\\t f1(x0)\\n\"\n",
+ "while n==1:\n",
+ " x2=x0\n",
+ " x1=x0-(f(x0)/f1(x0))\n",
+ " x0=x1\n",
+ " print \" \\t%f\\t%f\\t%f\\n\" %(x2,f(x1),f1(x1))\n",
+ " c=c+1\n",
+ " if abs(f(x0))<d:\n",
+ " break\n",
+ "print \"the root of %i iteration is: %0.4g\" %(c,x0)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t x0 \t f(x0)\t f1(x0)\n",
+ "\n",
+ " \t1.570796\t-0.090703\t-0.916147\n",
+ "\n",
+ " \t2.000000\t-0.004520\t-0.824232\n",
+ "\n",
+ " \t1.900996\t-0.000014\t-0.819039\n",
+ "\n",
+ "the root of 3 iteration is: 1.896\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.19:pg-41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.19\n",
+ "#newton-raphson method\n",
+ "#page 41\n",
+ "import math\n",
+ "def f(x):\n",
+ " return 4*math.exp(-x)*math.sin(x)-1\n",
+ "def f1(x):\n",
+ " return math.cos(x)*4*math.exp(-x)-4*math.exp(-x)*math.sin(x)\n",
+ "x0=0.2 # initial value\n",
+ "d=0.0001\n",
+ "c=0 \n",
+ "n=1\n",
+ "print \"successive iterations \\t x0 \\t f(x0)\\t f1(x0)\\n\"\n",
+ "while n==1:\n",
+ " x2=x0\n",
+ " x1=x0-(f(x0)/f1(x0))\n",
+ " x0=x1\n",
+ " print \" \\t%f \\t%f \\t%f\\n\" %(x2,f(x1),f1(x1))\n",
+ " c=c+1\n",
+ " if abs(f(x0))<d:\n",
+ " break \n",
+ "print \"the root of %i iteration is: %0.3g\" %(c,x0)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t x0 \t f(x0)\t f1(x0)\n",
+ "\n",
+ " \t0.200000 \t-0.056593 \t1.753325\n",
+ "\n",
+ " \t0.336526 \t-0.002769 \t1.583008\n",
+ "\n",
+ " \t0.368804 \t-0.000008 \t1.573993\n",
+ "\n",
+ "the root of 3 iteration is: 0.371\n"
+ ]
+ }
+ ],
+ "prompt_number": 54
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.20:pg-42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.20\n",
+ "#generalized newton-raphson method\n",
+ "#page 42\n",
+ "def f(x):\n",
+ " return x**3-x**2-x+1\n",
+ "def f1(x):\n",
+ " return 3*x**2-2*x-1\n",
+ "def f2(x):\n",
+ " return 6*x-2\n",
+ "x0=0.8 # initial value to finf double root\n",
+ "n=1 \n",
+ "print \"successive iterations \\t x0 \\t x1\\t x2\\n\"\n",
+ "while n==1:\n",
+ " x1=x0-(f(x0)/f1(x0));\n",
+ " x2=x0-(f1(x0)/f2(x0));\n",
+ " if abs(x1-x2)<0.000000001:\n",
+ " x0=(x1+x2)/2.0\n",
+ " break\n",
+ " else:\n",
+ " x0=(x1+x2)/2;\n",
+ " print \" %f\\t %f\\t %f\\n\" %(x0,x1,x2)\n",
+ "print \"\\n \\nthe double root is at: %f\" %(x0)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t x0 \t x1\t x2\n",
+ "\n",
+ " 0.974370\t 0.905882\t 1.042857\n",
+ "\n",
+ " 0.993890\t 0.987269\t 1.000512\n",
+ "\n",
+ " 0.998489\t 0.996950\t 1.000028\n",
+ "\n",
+ " 0.999623\t 0.999245\t 1.000002\n",
+ "\n",
+ " 0.999906\t 0.999812\t 1.000000\n",
+ "\n",
+ " 0.999976\t 0.999953\t 1.000000\n",
+ "\n",
+ " 0.999994\t 0.999988\t 1.000000\n",
+ "\n",
+ " 0.999999\t 0.999997\t 1.000000\n",
+ "\n",
+ " 1.000000\t 0.999999\t 1.000000\n",
+ "\n",
+ " 1.000000\t 1.000000\t 1.000000\n",
+ "\n",
+ " 1.000000\t 1.000000\t 1.000000\n",
+ "\n",
+ " 1.000000\t 1.000000\t 1.000000\n",
+ "\n",
+ " 1.000000\t 1.000000\t 1.000000\n",
+ "\n",
+ "\n",
+ " \n",
+ "the double root is at: 1.000000\n"
+ ]
+ }
+ ],
+ "prompt_number": 57
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.21:pg-45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ramanujan's method\n",
+ "#example 2.21\n",
+ "#page 45\n",
+ "def f(x):\n",
+ " return 1-(13.0/12.0)*x-(3.0/8.0)*x**2+(1.0/24.0)*x**3\n",
+ "a1=13.0/12.0\n",
+ "a2=-3.0/8.0\n",
+ "a3=1.0/24.0\n",
+ "b1=1\n",
+ "b2=a1\n",
+ "b3=a1*b2+a2*b1\n",
+ "b4=a1*b3+a2*b2+a3*b1\n",
+ "b5=a1*b4+a2*b3+a3*b2\n",
+ "b6=a1*b5+a2*b4+a3*b3\n",
+ "b7=a1*b6+a2*b5+a3*b4\n",
+ "b8=a1*b7+a2*b6+a3*b5\n",
+ "b9=a1*b8+a2*b7+a3*b6\n",
+ "print \"\\n\\n%f\" %(b1/b2)\n",
+ "print \"\\n%f\" %(b2/b3)\n",
+ "print \"\\n%f\" %(b3/b4)\n",
+ "print \"\\n%f\" %(b4/b5)\n",
+ "print \"\\n%f\" %(b5/b6)\n",
+ "print \"\\n%f\" %(b6/b7)\n",
+ "print \"\\n%f\" %(b7/b8)\n",
+ "print \"\\n%f\" %(b8/b9)\n",
+ "print \"\\n it appears as if the roots are converging at 2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "\n",
+ "0.923077\n",
+ "\n",
+ "1.356522\n",
+ "\n",
+ "1.595376\n",
+ "\n",
+ "1.738402\n",
+ "\n",
+ "1.828184\n",
+ "\n",
+ "1.886130\n",
+ "\n",
+ "1.924153\n",
+ "\n",
+ "1.949345\n",
+ "\n",
+ " it appears as if the roots are converging at 2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.22:pg-46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ramanujan's method\n",
+ "#example 2.22\n",
+ "#page 46\n",
+ "def f(x):\n",
+ " return x+x**2+(x**3)/2.0+(x**4)/6.0+(x**5)/24.0\n",
+ "a1=1.0\n",
+ "a2=1.0\n",
+ "a3=1.0/2.0\n",
+ "a4=1.0/6.0\n",
+ "a5=1.0/24.0\n",
+ "b1=1\n",
+ "b2=a2\n",
+ "b3=a1*b2+a2*b1\n",
+ "b4=a1*b3+a2*b2+a3*b1\n",
+ "b5=a1*b4+a2*b3+a3*b2\n",
+ "b6=a1*b5+a2*b4+a3*b3\n",
+ "print \"\\n%f\" %(b1/b2)\n",
+ "print \"\\n%f\" %(b2/b3)\n",
+ "print \"\\n%f\" %(b3/b4)\n",
+ "print \"\\n%f\" %(b4/b5)\n",
+ "print \"\\n%f\" %(b5/b6)\n",
+ "print \"\\n it appears as if the roots are converging at around %f\" %(b5/b6)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "1.000000\n",
+ "\n",
+ "0.500000\n",
+ "\n",
+ "0.571429\n",
+ "\n",
+ "0.583333\n",
+ "\n",
+ "0.571429\n",
+ "\n",
+ " it appears as if the roots are converging at around 0.571429\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.23:pg-47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ramanujan's method\n",
+ "#example 2.23\n",
+ "#page 47\n",
+ "from __future__ import division\n",
+ "def f(x):\n",
+ " return 1-2*((3*x/2.0+(x**2)/4.0-(x**4)/48.0+(x**6)/1440.0)-(x**8)*2/80640.0)\n",
+ "a1=3/2\n",
+ "a2=1/4\n",
+ "a3=0\n",
+ "a4=1/48\n",
+ "a5=0\n",
+ "a6=1/1440\n",
+ "a7=0\n",
+ "a8=-1/80640\n",
+ "b1=1\n",
+ "b2=a1\n",
+ "b3=a1*b2+a2*b1\n",
+ "b4=a1*b3+a2*b2+a3*b1\n",
+ "b5=a1*b4+a2*b3+a3*b2\n",
+ "b6=a1*b5+a2*b4+a3*b3\n",
+ "b7=a1*b6+a2*b5+a3*b4\n",
+ "b8=a1*b7+a2*b6+a3*b5\n",
+ "b9=a1*b8+a2*b7+a3*b6\n",
+ "print \"\\n%f\" %(b1/b2)\n",
+ "print \"\\n%f\" %(b2/b3)\n",
+ "print \"\\n%f\" %(b3/b4)\n",
+ "print \"\\n%f\" %(b4/b5)\n",
+ "print \"\\n%f\" %(b5/b6)\n",
+ "print \"\\n%f\" %(b6/b7)\n",
+ "print \"\\n%f\" %(b7/b8)\n",
+ "print \"\\n it appears as if the roots are converging at around %f\" %(b7/b8)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "0.666667\n",
+ "\n",
+ "0.600000\n",
+ "\n",
+ "0.606061\n",
+ "\n",
+ "0.605505\n",
+ "\n",
+ "0.605556\n",
+ "\n",
+ "0.605551\n",
+ "\n",
+ "0.605551\n",
+ "\n",
+ " it appears as if the roots are converging at around 0.605551\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.24:pg-47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ramanujan's method\n",
+ "#example 2.24\n",
+ "#page 47\n",
+ "import math\n",
+ "def f(x):\n",
+ " return 1-(x-x**2.0/math.factorial(2.0)**2.0+x**3.0/math.factorial(3.0)**2.0-x**4.0/math.factorial(4.0)**2.0)\n",
+ "a1=1\n",
+ "a2=-1/math.factorial(2.0)**2.0\n",
+ "a3=1/math.factorial(3.0)**2.0\n",
+ "a4=-1/math.factorial(4.0)**2.0\n",
+ "a5=-1/math.factorial(5.0)**2.0\n",
+ "a6=1/math.factorial(6.0)**2.0\n",
+ "b1=1\n",
+ "b2=a1\n",
+ "b3=a1*b2+a2*b1\n",
+ "b4=a1*b3+a2*b2+a3*b1\n",
+ "b5=a1*b4+a2*b3+a3*b2\n",
+ "print \"\\n\\n%f\" %(b1/b2)\n",
+ "print \"\\n\\n%f\" %(b2/b3)\n",
+ "print \"\\n%f\" %(b3/b4)\n",
+ "print \"\\n%f\" %(b4/b5)\n",
+ "print \"\\n it appears as if the roots are converging at around %f\" %(b4/b5)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "\n",
+ "1.000000\n",
+ "\n",
+ "\n",
+ "1.333333\n",
+ "\n",
+ "1.421053\n",
+ "\n",
+ "1.433962\n",
+ "\n",
+ " it appears as if the roots are converging at around 1.433962\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.25:pg-49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.25\n",
+ "#secant method\n",
+ "#page 49\n",
+ "from __future__ import division\n",
+ "def f(x):\n",
+ " return x**3-2*x-5\n",
+ "x1=2\n",
+ "x2=3 # initial values\n",
+ "n=1\n",
+ "c=0\n",
+ "print \"successive iterations \\t x1 \\t x2 \\t x3 \\t f(x3)\\n\"\n",
+ "while n==1:\n",
+ " x3=(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1)) \n",
+ " print \" \\t%f \\t%f \\t%f \\t%f\\n\" %(x1,x2,x3,f(x3))\n",
+ " if f(x3)*f(x1)>0:\n",
+ " x2=x3;\n",
+ " else:\n",
+ " x1=x3 \n",
+ " if abs(f(x3))<0.000001: \n",
+ " break\n",
+ " c=c+1\n",
+ "print \"the root of the equation after %i iteration is: %f\" %(c,x3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t x1 \t x2 \t x3 \t f(x3)\n",
+ "\n",
+ " \t2.000000 \t3.000000 \t2.058824 \t-0.390800\n",
+ "\n",
+ " \t2.000000 \t2.058824 \t2.096559 \t0.022428\n",
+ "\n",
+ " \t2.096559 \t2.058824 \t2.094511 \t-0.000457\n",
+ "\n",
+ " \t2.094511 \t2.058824 \t2.094552 \t0.000009\n",
+ "\n",
+ " \t2.094552 \t2.058824 \t2.094551 \t-0.000000\n",
+ "\n",
+ "the root of the equation after 4 iteration is: 2.094551\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.26:pg-50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.26\n",
+ "#secant method\n",
+ "#page 50\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "def f(x):\n",
+ " return x*math.exp(x)-1\n",
+ "x1=0\n",
+ "x2=1 # initial values\n",
+ "n=1\n",
+ "c=0 \n",
+ "print \"successive iterations \\t x1 \\t x2 \\t x3 \\t f(x3)\\n\"\n",
+ "while n==1:\n",
+ " x3=(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1)) \n",
+ " print \" \\t%f \\t%f \\t%f \\t%f\\n\" %(x1,x2,x3,f(x3))\n",
+ " if f(x3)*f(x1)>0:\n",
+ " x2=x3\n",
+ " else:\n",
+ " x1=x3 \n",
+ " if abs(f(x3))<0.0001:\n",
+ " break\n",
+ " c=c+1\n",
+ "print \"the root of the equation after %i iteration is: %0.4g\" %(c,x3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t x1 \t x2 \t x3 \t f(x3)\n",
+ "\n",
+ " \t0.000000 \t1.000000 \t0.367879 \t-0.468536\n",
+ "\n",
+ " \t0.000000 \t0.367879 \t0.692201 \t0.383091\n",
+ "\n",
+ " \t0.692201 \t0.367879 \t0.546310 \t-0.056595\n",
+ "\n",
+ " \t0.546310 \t0.367879 \t0.570823 \t0.010200\n",
+ "\n",
+ " \t0.570823 \t0.367879 \t0.566500 \t-0.001778\n",
+ "\n",
+ " \t0.566500 \t0.367879 \t0.567256 \t0.000312\n",
+ "\n",
+ " \t0.567256 \t0.367879 \t0.567124 \t-0.000055\n",
+ "\n",
+ "the root of the equation after 6 iteration is: 0.5671\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.27:pg-52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# example 2.27\n",
+ "#mulller's method\n",
+ "#page 52\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "def f(x):\n",
+ " return x**3-x-1\n",
+ "x0=0\n",
+ "x1=1\n",
+ "x2=2 # initial values\n",
+ "n=1\n",
+ "c=0\n",
+ "print \"successive iterations \\t x0 \\t x1 \\t x2 \\t f(x0)\\t f(x1)\\t f(x2)\\n\"\n",
+ "while n==1: \n",
+ " c=c+1\n",
+ " y0=f(x0)\n",
+ " y1=f(x1)\n",
+ " y2=f(x2)\n",
+ " h2=x2-x1\n",
+ " h1=x1-x0\n",
+ " d2=f(x2)-f(x1)\n",
+ " d1=f(x1)-f(x0)\n",
+ " print \" \\t%f\\t %f\\t %f\\t %f\\t %f\\t %f\\n\" %(x0,x1,x2,f(x0),f(x1),f(x2))\n",
+ " A=(d2/h2-d1/h1)/(h1+h2)\n",
+ " B=d2/h2+A*h2\n",
+ " S=math.sqrt(B**2-4*A*f(x2))\n",
+ " x3=x2-(2*f(x2))/(B+S)\n",
+ " E=abs((x3-x2)/x2)*100\n",
+ " if E<0.003:\n",
+ " break\n",
+ " else:\n",
+ " if c==1:\n",
+ " x2=x3\n",
+ " if c==2:\n",
+ " x1=x2\n",
+ " x2=x3\n",
+ " if c==3:\n",
+ " x0=x1\n",
+ " x1=x2\n",
+ " x2=x3\n",
+ " if c==3:\n",
+ " c=0\n",
+ "print \"the required root is : %0.4f\" %(x3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "successive iterations \t x0 \t x1 \t x2 \t f(x0)\t f(x1)\t f(x2)\n",
+ "\n",
+ " \t0.000000\t 1.000000\t 2.000000\t -1.000000\t -1.000000\t 5.000000\n",
+ "\n",
+ " \t0.000000\t 1.000000\t 1.263763\t -1.000000\t -1.000000\t -0.245412\n",
+ "\n",
+ " \t0.000000\t 1.263763\t 1.331711\t -1.000000\t -0.245412\t 0.030015\n",
+ "\n",
+ " \t1.263763\t 1.331711\t 1.324583\t -0.245412\t 0.030015\t -0.000574\n",
+ "\n",
+ " \t1.263763\t 1.331711\t 1.324718\t -0.245412\t 0.030015\t -0.000000\n",
+ "\n",
+ "the required root is : 1.3247\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.28:pg-55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#graeffe's method\n",
+ "#example 2.28\n",
+ "#page 55\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "def f(x):\n",
+ " return x**3-6*(x**2)+11*x-6\n",
+ "#x=poly(0,'x')\n",
+ "#g=f(-x)\n",
+ "print \"the equation is:\\n\"\n",
+ "A=[1, 14, 49, 36] #coefficients of the above equation\n",
+ "print \"%0.4g\\n\" %(math.sqrt(A[3]/A[2]))\n",
+ "print \"%0.4g\\n\" %(math.sqrt(A[2]/A[1]))\n",
+ "print \"%0.4g\\n\" %(math.sqrt(A[1]/A[0]))\n",
+ "print \"the equation is:\\n\"\n",
+ "#disp(g*(-1*g));\n",
+ "B=[1, 98, 1393, 1296]\n",
+ "print \"%0.4g\\n\" %((B[3]/B[2])**(1/4))\n",
+ "print \"%0.4g\\n\" %((B[2]/B[1])**(1/4))\n",
+ "print \"%0.4g\\n\" %((B[1]/B[0])**(1/4))\n",
+ "print \"It is apparent from the outputs that the roots converge at 1 2 3\"\n",
+ "\n",
+ "\n",
+ "\n",
+ "#INCOMPLETE"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the equation is:\n",
+ "\n",
+ "0.8571\n",
+ "\n",
+ "1.871\n",
+ "\n",
+ "3.742\n",
+ "\n",
+ "the equation is:\n",
+ "\n",
+ "0.9821\n",
+ "\n",
+ "1.942\n",
+ "\n",
+ "3.146\n",
+ "\n",
+ "It is apparent from the outputs that the roots converge at 1 2 3\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.29:pg-57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#quadratic factor by lin's--bairsttow method\n",
+ "#example 2.29\n",
+ "#page 57\n",
+ "from numpy import matrix\n",
+ "from __future__ import division\n",
+ "def f(x):\n",
+ " return x**3-x-1\n",
+ "a=[-1, -1, 0, 1]\n",
+ "r1=1\n",
+ "s1=1\n",
+ "b4=a[3]\n",
+ "def f3(r):\n",
+ " return a[2]-r*a[3]\n",
+ "def f2(r,s):\n",
+ " return a[1]-r*a[2]+r**2*a[3]-s*a[3]\n",
+ "def f1(r,s):\n",
+ " return a[0]-s*a[2]+s*r*a[3]\n",
+ "A=matrix([[1,1],[2,-1]])\n",
+ "C=matrix([[0],[1]])\n",
+ "X=A.I*C\n",
+ "X1=[[ 0.33333333],[-0.33333333]]\n",
+ "dr=X1[0][0]\n",
+ "ds=X1[1][0]\n",
+ "r2=r1+dr\n",
+ "s2=s1+ds\n",
+ "#second pproximation\n",
+ "r1=r2\n",
+ "s1=s2\n",
+ "b11=f1(r2,s2)\n",
+ "b22=f2(r2,s2)\n",
+ "h=0.001\n",
+ "dr_b1=(f1(r1+h,s1)-f1(r1,s1))/h\n",
+ "ds_b1=(f1(r1,s1+h)-f1(r1,s1))/h\n",
+ "dr_b2=(f2(r1+h,s1)-f2(r1,s1))/h\n",
+ "ds_b2=(f2(r1,s1+h)-f2(r1,s1))/h\n",
+ "A=matrix([[dr_b1,ds_b1],[dr_b2,ds_b2]])\n",
+ "C=matrix([[-f1(r1,s1)],[-f2(r1,s2)]])\n",
+ "X=A.I*C\n",
+ "r2=r1+X[0][0]\n",
+ "s2=s1+X[1][0]\n",
+ "print \"roots correct to 3 decimal places are : %0.3f %0.3f\" %(r2,s2)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "roots correct to 3 decimal places are : 1.325 0.754\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.31:pg-62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#method of iteration\n",
+ "#example 2.31\n",
+ "#page 62\n",
+ "from __future__ import division\n",
+ "def f(x,y):\n",
+ " return (3*y*x**2+7)/10\n",
+ "def g(x,y):\n",
+ " return (y**2+4)/5\n",
+ "h=0.0001\n",
+ "x0=0.5\n",
+ "y0=0.5\n",
+ "f1_dx=(f(x0+h,y0)-f(x0,y0))/h\n",
+ "f1_dy=(f(x0,y0+h)-f(x0,y0))/h\n",
+ "g1_dx=(g(x0+h,y0)-g(x0,y0))/h\n",
+ "g1_dy=(g(x0+h,y0)-g(x0,y0))/h\n",
+ "if (f1_dx+f1_dy<1) and (g1_dx+g1_dy<1): \n",
+ " print \"coditions for convergence is satisfied\\n\\n\"\n",
+ "print \"X \\t Y\\t\\n\\n\"\n",
+ "for i in range(0,10):\n",
+ " X=(3*y0*x0**2+7)/10\n",
+ " Y=(y0**2+4)/5\n",
+ " print \"%f\\t %f\\t\\n\" %(X,Y)\n",
+ " x0=X\n",
+ " y0=Y\n",
+ "print \"\\n\\n CONVERGENCE AT (1 1) IS OBVIOUS\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "coditions for convergence is satisfied\n",
+ "\n",
+ "\n",
+ "X \t Y\t\n",
+ "\n",
+ "\n",
+ "0.737500\t 0.850000\t\n",
+ "\n",
+ "0.838696\t 0.944500\t\n",
+ "\n",
+ "0.899312\t 0.978416\t\n",
+ "\n",
+ "0.937391\t 0.991460\t\n",
+ "\n",
+ "0.961360\t 0.996598\t\n",
+ "\n",
+ "0.976320\t 0.998642\t\n",
+ "\n",
+ "0.985572\t 0.999457\t\n",
+ "\n",
+ "0.991247\t 0.999783\t\n",
+ "\n",
+ "0.994707\t 0.999913\t\n",
+ "\n",
+ "0.996807\t 0.999965\t\n",
+ "\n",
+ "\n",
+ "\n",
+ " CONVERGENCE AT (1 1) IS OBVIOUS\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.32:pg-65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#newton raphson metho\n",
+ "#example 2.32\n",
+ "#page 65\n",
+ "import numpy\n",
+ "def f(x,y):\n",
+ " return 3*y*x**2-10*x+7\n",
+ "def g(y):\n",
+ " return y**2-5*y+4\n",
+ "hh=0.0001\n",
+ "x0=0.5\n",
+ "y0=0.5 #initial values\n",
+ "f0=f(x0,y0)\n",
+ "g0=g(y0)\n",
+ "df_dx=(f(x0+hh,y0)-f(x0,y0))/hh\n",
+ "df_dy=(f(x0,y0+hh)-f(x0,y0))/hh\n",
+ "dg_dx=(g(y0)-g(y0))/hh\n",
+ "dg_dy=(g(y0+hh)-g(y0))/hh\n",
+ "d=[[df_dx,df_dy],[dg_dx,dg_dy]]\n",
+ "D1=numpy.linalg.det(d)\n",
+ "dd=[[-f0,df_dy],[-g0,dg_dy]]\n",
+ "h=numpy.linalg.det(dd)/D1\n",
+ "ddd=[[df_dx,-f0],[dg_dx,-g0]]\n",
+ "k=numpy.linalg.det(ddd)/D1;\n",
+ "x1=x0+h\n",
+ "y1=y0+k\n",
+ "f0=f(x1,y1)\n",
+ "g0=g(y1)\n",
+ "df_dx=(f(x1+hh,y1)-f(x1,y1))/hh\n",
+ "df_dy=(f(x1,y1+hh)-f(x1,y1))/hh\n",
+ "dg_dx=(g(y1)-g(y1))/hh\n",
+ "dg_dy=(g(y1+hh)-g(y1))/hh\n",
+ "dddd=[[df_dx,df_dy],[dg_dx,dg_dy]]\n",
+ "D2=numpy.linalg.det(dddd)\n",
+ "ddddd=[[-f0,df_dy],[-g0,dg_dy]]\n",
+ "h=numpy.linalg.det(ddddd)/D2\n",
+ "d6=[[df_dx,-f0],[dg_dx,-g0]]\n",
+ "k=numpy.linalg.det(d6)/D2\n",
+ "x2=x1+h\n",
+ "y2=y1+k\n",
+ "print \" the roots of the equation are x2=%f and y2=%f\" %(x2,y2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " the roots of the equation are x2=0.970803 and y2=0.998752\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.33:pg-66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#newton raphson method\n",
+ "#example 2.33\n",
+ "#page 66\n",
+ "import math\n",
+ "import numpy\n",
+ "def f(x,y):\n",
+ " return x**2+y**2-1\n",
+ "def g(x,y):\n",
+ " return y-x**2\n",
+ "hh=0.0001\n",
+ "x0=0.7071\n",
+ "y0=0.7071 #initial values\n",
+ "f0=f(x0,y0)\n",
+ "g0=g(x0,y0)\n",
+ "df_dx=(f(x0+hh,y0)-f(x0,y0))/hh\n",
+ "df_dy=(f(x0,y0+hh)-f(x0,y0))/hh\n",
+ "dg_dx=(g(x0+hh,y0)-g(x0,y0))/hh\n",
+ "dg_dy=(g(x0,y0+hh)-g(x0,y0))/hh\n",
+ "D1=numpy.linalg.det([[df_dx,df_dy],[dg_dx,dg_dy]])\n",
+ "h=numpy.linalg.det([[-f0,df_dy],[-g0,dg_dy]])/D1\n",
+ "k=numpy.linalg.det([[df_dx,-f0],[dg_dx,-g0]])/D1\n",
+ "x1=x0+h\n",
+ "y1=y0+k\n",
+ "f0=f(x1,y1)\n",
+ "g0=g(x1,y1)\n",
+ "df_dx=(f(x1+hh,y1)-f(x1,y1))/hh\n",
+ "df_dy=(f(x1,y1+hh)-f(x1,y1))/hh\n",
+ "dg_dx=(g(x1+hh,y1)-g(x1,y1))/hh\n",
+ "dg_dy=(g(x1,y1+hh)-g(x1,y1))/hh\n",
+ "D2=numpy.linalg.det([[df_dx,df_dy],[dg_dx,dg_dy]])\n",
+ "h=numpy.linalg.det([[-f0,df_dy],[-g0,dg_dy]])/D2\n",
+ "k=numpy.linalg.det([[df_dx,-f0],[dg_dx,-g0]])/D2\n",
+ "x2=x1+h\n",
+ "y2=y1+k\n",
+ "print \"the roots of the equation are x2=%f and y2=%f \" %(x2,y2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the roots of the equation are x2=0.786184 and y2=0.618039 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.34:pg-67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#newton raphson method\n",
+ "#example 2.34\n",
+ "#page 67\n",
+ "import math\n",
+ "import numpy\n",
+ "def f(x,y):\n",
+ " return math.sin(x)-y+0.9793\n",
+ "def g(x,y):\n",
+ " return math.cos(y)-x+0.6703\n",
+ "hh=0.0001\n",
+ "x0=0.5\n",
+ "y0=1.5 #initial values\n",
+ "f0=f(x0,y0)\n",
+ "g0=g(x0,y0)\n",
+ "df_dx=(f(x0+hh,y0)-f(x0,y0))/hh\n",
+ "df_dy=(f(x0,y0+hh)-f(x0,y0))/hh\n",
+ "dg_dx=(g(x0+hh,y0)-g(x0,y0))/hh\n",
+ "dg_dy=(g(x0,y0+hh)-g(x0,y0))/hh\n",
+ "d1=[[df_dx,df_dy],[dg_dx,dg_dy]]\n",
+ "D1=numpy.linalg.det(d1)\n",
+ "d2=[[-f0,df_dy],[-g0,dg_dy]]\n",
+ "h=numpy.linalg.det(d2)/D1\n",
+ "d3=[[df_dx,-f0],[dg_dx,-g0]]\n",
+ "k=numpy.linalg.det(d3)/D1\n",
+ "x1=x0+h\n",
+ "y1=y0+k\n",
+ "f0=f(x1,y1)\n",
+ "g0=g(x1,y1)\n",
+ "df_dx=(f(x1+hh,y1)-f(x1,y1))/hh\n",
+ "df_dy=(f(x1,y1+hh)-f(x1,y1))/hh\n",
+ "dg_dx=(g(x1+hh,y1)-g(x1,y1))/hh\n",
+ "dg_dy=(g(x1,y1+hh)-g(x1,y1))/hh\n",
+ "d4=[[df_dx,df_dy],[dg_dx,dg_dy]]\n",
+ "D2=numpy.linalg.det(d4)\n",
+ "h=numpy.linalg.det([[-f0,df_dy],[-g0,dg_dy]])/D2\n",
+ "k=numpy.linalg.det([[df_dx,-f0],[dg_dx,-g0]])/D2\n",
+ "x2=x1+h\n",
+ "y2=y1+k\n",
+ "print \"the roots of the equation are x2=%0.4f and y2=%0.4f\" %(x2,y2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the roots of the equation are x2=0.6537 and y2=1.5874\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter3_8.ipynb b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter3_8.ipynb new file mode 100644 index 00000000..29d1e38c --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter3_8.ipynb @@ -0,0 +1,1134 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b2cc76dcdb2b60a0e7b50604c3d4985ce7d522625248fb62dd0507e6e25fd7d6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter03:Interpolation"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.4:pg-86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.4\n",
+ "#interpolation\n",
+ "#page 86\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "x=[1, 3, 5, 7]\n",
+ "y=[24, 120, 336, 720]\n",
+ "d1=[0,0,0]\n",
+ "d2=[0,0,0]\n",
+ "d3=[0,0,0]\n",
+ "h=2 #interval between values of x\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d1[c]=y[i+1]-y[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,2):\n",
+ " d2[c]=d1[i+1]-d1[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,1):\n",
+ " d3[c]=d2[i+1]-d2[i]\n",
+ " c=c+1\n",
+ "d=[0,d1[0],d2[0],d3[0]]\n",
+ "x0=8 #value at 8\n",
+ "pp=1\n",
+ "y_x=y[0]\n",
+ "p=(x0-1)/2\n",
+ "for i in range(1,4):\n",
+ " pp=1\n",
+ " for j in range(0,i):\n",
+ " pp=pp*(p-(j)) \n",
+ " y_x=y_x+(pp*d[i])/math.factorial(i)\n",
+ "print \"value of function at %f is :%f\" %(x0,y_x)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "value of function at 8.000000 is :990.000000\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.6:pg-87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.6\n",
+ "#interpolation\n",
+ "#page 87\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "x=[15, 20, 25, 30, 35, 40]\n",
+ "y=[0.2588190, 0.3420201, 0.4226183, 0.5, 0.5735764, 0.6427876]\n",
+ "d1=[0,0,0,0,0]\n",
+ "d2=[0,0,0,0]\n",
+ "d3=[0,0,0]\n",
+ "d4=[0,0]\n",
+ "d5=[0]\n",
+ "h=5 #interval between values of x\n",
+ "c=0\n",
+ "for i in range(0,5):\n",
+ " d1[c]=y[i+1]-y[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d2[c]=d1[i+1]-d1[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d3[c]=d2[i+1]-d2[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,2):\n",
+ " d4[c]=d3[i+1]-d3[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,1):\n",
+ " d5[c]=d4[i+1]-d4[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "d=[0,d1[0], d2[0], d3[0], d4[0], d5[0]]\n",
+ "x0=38 #value at 38 degree\n",
+ "pp=1\n",
+ "y_x=y[0]\n",
+ "p=(x0-x[0])/h\n",
+ "for i in range(1,6):\n",
+ " pp=1\n",
+ " for j in range(0,i):\n",
+ " pp=pp*(p-(j)) \n",
+ " y_x=y_x+((pp*d[i])/math.factorial(i));\n",
+ "print \"value of function at %i is :%f\" %(x0,y_x)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "value of function at 38 is :0.615661\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.7:pg-89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.7\n",
+ "#interpolation\n",
+ "#page 89\n",
+ "x=[0, 1, 2, 4]\n",
+ "y=[1, 3, 9, 81]\n",
+ "#equation is y(5)-4*y(4)+6*y(2)-4*y(2)+y(1)\n",
+ "y3=(y[3]+6*y[2]-4*y[1]+y[0])/4\n",
+ "print \"the value of missing term of table is :%d\" %(y3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of missing term of table is :31\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.8:pg-89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.8\n",
+ "#interpolation\n",
+ "#page 89\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "x=[0.10, 0.15, 0.20, 0.25, 0.30]\n",
+ "y=[0.1003, 0.1511, 0.2027, 0.2553, 0.3093]\n",
+ "d1=[0,0,0,0,0]\n",
+ "d2=[0,0,0,0,0]\n",
+ "d3=[0,0,0,0,0]\n",
+ "d4=[0,0,0,0,0]\n",
+ "h=0.05 #interval between values of x\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d1[c]=y[i+1]-y[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d2[c]=d1[i+1]-d1[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,2):\n",
+ " d3[c]=d2[i+1]-d2[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d4[c]=d3[i+1]-d3[i]\n",
+ " c=c+1\n",
+ "d=[0,d1[0], d2[0], d3[0], d4[0]]\n",
+ "x0=0.12 #value at 0.12;\n",
+ "pp=1\n",
+ "y_x=y[0]\n",
+ "p=(x0-x[0])/h\n",
+ "for i in range(1,5):\n",
+ " pp=1;\n",
+ " for j in range(0,i):\n",
+ " pp=pp*(p-(j)) \n",
+ " y_x=y_x+(pp*d[i])/math.factorial(i)\n",
+ "print \"value of function at %f is :%0.4g\\n \\n\" %(x0,y_x)\n",
+ "x0=0.26 #value at 0.26;\n",
+ "pp=1\n",
+ "y_x=y[0]\n",
+ "p=(x0-x[0])/h\n",
+ "for i in range(1,5):\n",
+ " pp=1\n",
+ " for j in range(0,i):\n",
+ " pp=pp*(p-(j)) \n",
+ " y_x=y_x+(pp*d[i])/math.factorial(i);\n",
+ "print \"value of function at %f is :%0.4g\\n \\n\" %(x0,y_x)\n",
+ "x0=0.40 #value at 0.40;\n",
+ "pp=1\n",
+ "y_x=y[0]\n",
+ "p=(x0-x[0])/h\n",
+ "for i in range(1,5):\n",
+ " pp=1\n",
+ " for j in range(0,i):\n",
+ " pp=pp*(p-(j)) \n",
+ " y_x=y_x+(pp*d[i])/math.factorial(i)\n",
+ "print \"value of function at %f is :%0.4g\\n \\n\" %(x0,y_x)\n",
+ "x0=0.50 #value at 0.50;\n",
+ "pp=1\n",
+ "y_x=y[0]\n",
+ "p=(x0-x[0])/h\n",
+ "for i in range(1,5):\n",
+ " pp=1\n",
+ " for j in range(0,i):\n",
+ " pp=pp*(p-(j)) \n",
+ " y_x=y_x+(pp*d[i])/math.factorial(i)\n",
+ "print \"value of function at %f is :%0.5g\\n \\n\" %(x0,y_x)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "value of function at 0.120000 is :0.1205\n",
+ " \n",
+ "\n",
+ "value of function at 0.260000 is :0.266\n",
+ " \n",
+ "\n",
+ "value of function at 0.400000 is :0.4241\n",
+ " \n",
+ "\n",
+ "value of function at 0.500000 is :0.5543\n",
+ " \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.9:pg-93"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.9\n",
+ "#Gauss' forward formula\n",
+ "#page 93\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "x=[1.0, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30];\n",
+ "y=[2.7183, 2.8577, 3.0042, 3.1582, 3.3201, 3.4903, 3.66693]\n",
+ "d1=[0,0,0,0,0,0]\n",
+ "d2=[0,0,0,0,0]\n",
+ "d3=[0,0,0,0]\n",
+ "d4=[0,0,0]\n",
+ "d5=[0,0]\n",
+ "d6=[0]\n",
+ "h=0.05 #interval between values of x\n",
+ "c=0\n",
+ "for i in range(0,6):\n",
+ " d1[c]=y[i+1]-y[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,5):\n",
+ " d2[c]=d1[i+1]-d1[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d3[c]=d2[i+1]-d2[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d4[c]=d3[i+1]-d3[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,2):\n",
+ " d5[c]=d4[i+1]-d4[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,1):\n",
+ " d6[c]=d5[i+1]-d5[i]\n",
+ " c=c+1\n",
+ "d=[0,d1[3], d2[2], d3[2], d4[1], d5[0], d6[0]]\n",
+ "x0=1.17 #value at 1.17;\n",
+ "pp=1\n",
+ "y_x=y[3]\n",
+ "p=(x0-x[3])/h\n",
+ "for i in range(1,6):\n",
+ " pp=1;\n",
+ " for j in range(0,i):\n",
+ " pp=pp*(p-(j)) \n",
+ " y_x=y_x+(pp*d[i])/math.factorial(i)\n",
+ "print \"value of function at %f is :%0.4g\\n \\n\" %(x0,y_x)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "value of function at 1.170000 is :3.222\n",
+ " \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.10:pg-97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#practical interpolation\n",
+ "#example 3.10\n",
+ "#page 97\n",
+ "import math\n",
+ "x=[0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67]\n",
+ "y=[1.840431, 1.858928,1.877610, 1.896481, 1.915541, 1.934792, 1.954237]\n",
+ "d1=[0,0,0,0,0,0]\n",
+ "d2=[0,0,0,0,0]\n",
+ "d3=[0,0,0,0]\n",
+ "d4=[0,0,0]\n",
+ "h=0.01 #interval between values of x\n",
+ "c=0\n",
+ "for i in range(0,6):\n",
+ " d1[c]=y[i+1]-y[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,5):\n",
+ " d2[c]=d1[i+1]-d1[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d3[c]=d2[i+1]-d2[i];\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d4[c]=d3[i+1]-d3[i];\n",
+ " c=c+1\n",
+ "d=[d1[0], d2[0], d3[0], d4[0]]\n",
+ "x0=0.644\n",
+ "p=(x0-x[3])/h;\n",
+ "y_x=y[3]\n",
+ "y_x=y_x+p*(d1[2]+d1[3])/2+p**2*(d2[1])/2 #stirling formula\n",
+ "print \"the value at %f by stirling formula is : %f\\n\\n\" %(x0,y_x)\n",
+ "y_x=y[3]\n",
+ "y_x=y_x+p*d1[3]+p*(p-1)*(d2[2]+d2[3])/2\n",
+ "print \" the value at %f by bessels formula is : %f\\n\\n\" %(x0,y_x)\n",
+ "y_x=y[3]\n",
+ "q=1-p\n",
+ "y_x=q*y[3]+q*(q**2-1)*d2[2]/2+p*y[4]+p*(q**2-1)*d2[4]/2\n",
+ "print \"the value at %f by everrets formula is : %f\\n\\n\" %(x0,y_x)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value at 0.644000 by stirling formula is : 1.904082\n",
+ "\n",
+ "\n",
+ " the value at 0.644000 by bessels formula is : 1.904059\n",
+ "\n",
+ "\n",
+ "the value at 0.644000 by everrets formula is : 1.904044\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.11:pg-99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#practical interpolation\n",
+ "#example 3.11\n",
+ "#page 99\n",
+ "x=[0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67]\n",
+ "y=[1.840431, 1.858928, 1.877610, 1.896481, 1.915541, 1.934792, 1.954237]\n",
+ "d1=[0,0,0,0,0,0]\n",
+ "d2=[0,0,0,0,0]\n",
+ "d3=[0,0,0,0]\n",
+ "d4=[0,0,0]\n",
+ "h=0.01 #interval between values of x\n",
+ "c=0\n",
+ "for i in range(0,6):\n",
+ " d1[c]=y[i+1]-y[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,5):\n",
+ " d2[c]=d1[i+1]-d1[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d3[c]=d2[i+1]-d2[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d4[c]=d3[i+1]-d3[i]\n",
+ " c=c+1\n",
+ "d=[d1[0], d2[0], d3[0], d4[0]]\n",
+ "x0=0.638\n",
+ "p=(x0-x[3])/h\n",
+ "y_x=y[3]\n",
+ "y_x=y_x+p*(d1[2]+d1[3])/2+p**2*(d2[1])/2 #stirling formula\n",
+ "print \"value at %f by stirling formula is : %f\\n\\n\" %(x0,y_x)\n",
+ "y_x=y[2]\n",
+ "p=(x0-x[2])/h\n",
+ "y_x=y_x+p*d1[2]+p*(p-1)*(d2[1])/2\n",
+ "print \"the value at %f by bessels formula is : %f\\n\\n\" %(x0,y_x)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "value at 0.638000 by stirling formula is : 1.892692\n",
+ "\n",
+ "\n",
+ "the value at 0.638000 by bessels formula is : 1.892692\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.12:pg-99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#practical interpolation\n",
+ "#example 3.12\n",
+ "#page 99\n",
+ "x=[1.72, 1.73, 1.74, 1.75, 1.76, 1.77, 1.78]\n",
+ "y=[0.1790661479, 0.1772844100, 0.1755204006, 0.1737739435, 0.1720448638, 0.1703329888, 0.1686381473]\n",
+ "d1=[0,0,0,0,0,0]\n",
+ "d2=[0,0,0,0,0]\n",
+ "d3=[0,0,0,0]\n",
+ "d4=[0,0,0]\n",
+ "h=0.01 #interval between values of x\n",
+ "c=0\n",
+ "for i in range(0,6):\n",
+ " d1[c]=y[i+1]-y[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,5):\n",
+ " d2[c]=d1[i+1]-d1[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d3[c]=d2[i+1]-d2[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d4[c]=d3[i+1]-d3[i]\n",
+ " c=c+1\n",
+ "x0=1.7475\n",
+ "y_x=y[2]\n",
+ "p=(x0-x[2])/h\n",
+ "y_x=y_x+p*d1[2]+p*(p-1)*((d2[1]+d2[2])/2)/2\n",
+ "print \"the value at %f by bessels formula is : %0.10f\\n\\n\" %(x0,y_x)\n",
+ "y_x=y[3]\n",
+ "q=1-p\n",
+ "y_x=q*y[2]+q*(q**2-1)*d2[1]/6+p*y[3]+p*(p**2-1)*d2[1]/6\n",
+ "print \"the value at %f by everrets formula is : %0.10f\\n\\n\" %(x0,y_x)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value at 1.747500 by bessels formula is : 0.1742089204\n",
+ "\n",
+ "\n",
+ "the value at 1.747500 by everrets formula is : 0.1742089122\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.13:pg-104"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.13\n",
+ "#lagrange's interpolation formula\n",
+ "#page 104\n",
+ "x=[300, 304, 305, 307]\n",
+ "y=[2.4771, 2.4829, 2.4843, 2.4871]\n",
+ "x0=301\n",
+ "log_301=(-3*-4*-6*2.4771)/(-4*-5*-7)+(-4*-6*2.4829)/(4*-1*-3)+(-3*-6*2.4843)/(5*-2)+(-3*-4*2.4871)/(7*3*2)\n",
+ "print \"valie of log x at 301 is =%f\" %(log_301)\n",
+ "\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "valie of log x at 301 is =2.478597\n"
+ ]
+ }
+ ],
+ "prompt_number": 43
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.14:pg-105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.14\n",
+ "#lagrange's interpolation formula\n",
+ "#page 105\n",
+ "y=[4, 12, 19]\n",
+ "x=[1, 3, 4];\n",
+ "y_x=7\n",
+ "Y_X=(-5*-12)/(-8*-15)+(3*3*-12)/(8*-7)+(3*-5*4)/(15*7)\n",
+ "print \"values is %f\" %(Y_X)\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "values is 1.857143\n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.15:pg-105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.15\n",
+ "#lagrange's interpolation formula\n",
+ "#page 105\n",
+ "import math\n",
+ "x=[2, 2.5, 3.0]\n",
+ "y=[0.69315, 0.91629, 1.09861]\n",
+ "def l0(x):\n",
+ " return (x-2.5)*(x-3.0)/(-0.5)*(-1.0)\n",
+ "def l1(x):\n",
+ " return ((x-2.0)*(x-3.0))/((0.5)*(-0.5))\n",
+ "def l2(x):\n",
+ " return ((x-2.0)*(x-2.5))/((1.0)*(0.5))\n",
+ "f_x=l0(2.7)*y[0]+l1(2.7)*y[1]+l2(2.7)*y[2];\n",
+ "print \"the calculated value is %f:\" %(f_x)\n",
+ "print \"\\n\\n the error occured in the value is %0.9f\" %(abs(f_x-log(2.7)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the calculated value is 0.994116:\n",
+ "\n",
+ "\n",
+ " the error occured in the value is 0.000864627\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.16:pg-106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.16\n",
+ "#lagrange's interpolation formula\n",
+ "#page 106\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "x=[0, math.pi/4,math.pi/2]\n",
+ "y=[0, 0.70711, 1.0];\n",
+ "x0=math.pi/6\n",
+ "sin_x0=0\n",
+ "for i in range(0,3):\n",
+ " p=y[i]\n",
+ " for j in range(0,3):\n",
+ " if j!=i:\n",
+ " p=p*((x0-x[j])/( x[i]-x[j]))\n",
+ " sin_x0=sin_x0+p\n",
+ "print \"sin_x0=%f\" %(sin_x0)\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "sin_x0=0.517431\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.18:pg-107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#error in lagrange's interpolation formula\n",
+ "#example 3.18\n",
+ "#page 107\n",
+ "import math\n",
+ "x=[2, 2.5, 3.0]\n",
+ "y=[0.69315, 0.91629, 1.09861]\n",
+ "def l0(x):\n",
+ " return (x-2.5)*(x-3.0)/(-0.5)*(-1.0)\n",
+ "def l1(x):\n",
+ " return ((x-2.0)*(x-3.0))/((0.5)*(-0.5))\n",
+ "def l2(x):\n",
+ " return ((x-2.0)*(x-2.5))/((1.0)*(0.5))\n",
+ "f_x=l0(2.7)*y[0]+l1(2.7)*y[1]+l2(2.7)*y[2]\n",
+ "print \"the calculated value is %f:\" %(f_x)\n",
+ "err=math.fabs(f_x-math.log10(2.7))\n",
+ "def R_n(x):\n",
+ " return (((x-2)*(x-2.5)*(x-3))/6)\n",
+ "est_err=abs(R_n(2.7)*(2/8))\n",
+ "if est_err<err:\n",
+ " print \"\\n\\n the error agrees with the actual error\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the calculated value is 0.994116:\n",
+ "\n",
+ "\n",
+ " the error agrees with the actual error\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.19:pg-107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#error in lagrenge's interpolation\n",
+ "#example 3.19\n",
+ "#page 107\n",
+ "import math\n",
+ "x=[0, math.pi/4 ,math.pi/2]\n",
+ "y=[0, 0.70711, 1.0]\n",
+ "def l0(x):\n",
+ " return ((x-0)*(x-math.pi/2))/((math.pi/4)*(-1*math.pi/4))\n",
+ "def l1(x):\n",
+ " return ((x-0)*(x-math.pi/4))/((math.pi/2)*(math.pi/4))\n",
+ "f_x=l0(math.pi/6)*y[1]+l1(math.pi/6)*y[2]\n",
+ "err=abs(f_x-math.sin(math.pi/6))\n",
+ "def f(x):\n",
+ " return ((x-0)*(x-math.pi/4)*(x-math.pi/2))/6\n",
+ "if abs(f(math.pi/6))>err:\n",
+ " print \"\\n\\n the error agrees with the actual error\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "\n",
+ " the error agrees with the actual error\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.21:pg-110"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#hermite's interpolation formula\n",
+ "#exammple 3.21\n",
+ "#page 110\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "x=[2.0, 2.5, 3.0]\n",
+ "y=[0.69315, 0.91629, 1.09861]\n",
+ "y1=[0,0,0]\n",
+ "def f(x):\n",
+ " return math.log(x)\n",
+ "h=0.0001\n",
+ "for i in range(0,3):\n",
+ " y1[i]=(f(x[i]+h)-f(x[i]))/h\n",
+ "def l0(x):\n",
+ " return (x-2.5)*(x-3.0)/(-0.5)*(-1.0)\n",
+ "def l1(x):\n",
+ " return ((x-2.0)*(x-3.0))/((0.5)*(-0.5))\n",
+ "def l2(x):\n",
+ " return ((x-2.0)*(x-2.5))/((1.0)*(0.5))\n",
+ "dl0=(l0(x[0]+h)-l0(x[0]))/h\n",
+ "dl1=(l1(x[1]+h)-l1(x[1]))/h\n",
+ "dl2=(l2(x[2]+h)-l2(x[2]))/h\n",
+ "x0=2.7\n",
+ "u0=(1-2*(x0-x[0])*dl0)*(l0(x0))**2\n",
+ "u1=(1-2*(x0-x[1])*dl1)*(l1(x0))**2\n",
+ "u2=(1-2*(x0-x[2])*dl2)*(l2(x0))**2\n",
+ "v0=(x0-x[0])*l0(x0)**2\n",
+ "v1=(x0-x[1])*l1(x0)**2\n",
+ "v2=(x0-x[2])*l2(x0)**2\n",
+ "H=u0*y[0]+u1*y[1]+u2*y[2]+v0*y1[0]+v1*y1[1]+v2*y1[2]\n",
+ "print \"the approximate value of ln(%0.2f) is %f:\" %(x0,H)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the approximate value of ln(2.70) is 0.993362:\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.22:pg-114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#newton's general interpolation formula\n",
+ "#example 3.22\n",
+ "#page 114\n",
+ "x=[300, 304, 305, 307]\n",
+ "y=[2.4771, 2.4829, 2.4843, 2.4871]\n",
+ "d1=[0,0,0]\n",
+ "d2=[0,0]\n",
+ "for i in range(0,3):\n",
+ " d1[i]=(y[i+1]-y[i])/(x[i+1]-x[i])\n",
+ "for i in range(0,2):\n",
+ " d2[i]=(d1[i+1]-d1[i])/(x[i+2]-x[i])\n",
+ "x0=301\n",
+ "log301=y[0]+(x0-x[0])*d1[0]+(x0-x[1])*d2[0]\n",
+ "print \"valure of log(%d) is :%0.4f\" %(x0,log301)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "valure of log(301) is :2.4786\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.23:pg-114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.23\n",
+ "#newton's divided formula\n",
+ "#page 114\n",
+ "x=[-1, 0, 3, 6, 7]\n",
+ "y=[3, -6, 39, 822, 1611]\n",
+ "d1=[0,0,0,0,0]\n",
+ "d2=[0,0,0,0,0]\n",
+ "d3=[0,0,0,0,0]\n",
+ "d4=[0,0,0,0,0]\n",
+ "X=0\n",
+ "for i in range(0,3):\n",
+ " d1[i]=(y[i+1]-y[i])/(x[i+1]-x[i])\n",
+ "for i in range(0,3):\n",
+ " d2[i]=(d1[i+1]-d1[i])/(x[i+2]-x[i])\n",
+ "for i in range(0,2):\n",
+ " d3[i]=(d2[i+1]-d2[i])/(x[i+3]-x[i])\n",
+ "for i in range(0,1):\n",
+ " d4[i]=(d3[i+1]-d3[i])/(x[i+4]-x[i])\n",
+ "f_x=y[0]+(X-x[0])*d1[0]+(X-x[1])*(X-x[0])*d2[0]+(X-x[0])*(X-x[1])*(X-x[2])*d3[0]+(X-x[0])*(X-x[1])*(X-x[2])*(X-x[3])*d4[0]\n",
+ "print \"the polynomial equation is = -6 + 5X^2 -3X^3 +X^4\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the polynomial equation is = -6 + 5X^2 -3X^3 +X^4\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.24:pg-116"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#interpolation by iteration\n",
+ "#example 3.24\n",
+ "#page 116\n",
+ "import numpy\n",
+ "x=[300, 304, 305, 307]\n",
+ "y=[2.4771, 2.4829, 2.4843, 2.4871]\n",
+ "x0=301\n",
+ "d1=[0,0,0]\n",
+ "d2=[0,0]\n",
+ "d3=[0]\n",
+ "for i in range(0,3):\n",
+ " a=y[i]\n",
+ " b=x[i]-x0\n",
+ " c=y[i+1]\n",
+ " e=x[i+1]-x0\n",
+ " d=matrix([[a,b],[c,e]])\n",
+ " d11=numpy.linalg.det(d)\n",
+ " d1[i]=d11/(x[i+1]-x[i])\n",
+ "for i in range(0,2):\n",
+ " a=d1[i]\n",
+ " b=x[i+1]-x0\n",
+ " c=d1[i+1]\n",
+ " e=x[i+2]-x0\n",
+ " d=matrix([[a,b],[c,e]])\n",
+ " d22=numpy.linalg.det(d)\n",
+ " f=(x[i+2]-x[i+1])\n",
+ " d2[i]=d22/f\n",
+ "for i in range(0,1):\n",
+ " a=d2[i]\n",
+ " b=x[i+2]-x0\n",
+ " c=d2[i+1]\n",
+ " e=x[i+3]-x0\n",
+ " d=matrix([[a,b],[c,e]])\n",
+ " d33=numpy.linalg.det(d)\n",
+ " d3[i]=d33/(x[i+3]-x[i+2])\n",
+ "print \"the value of log(%d) is : %f\" %(x0,d3[0])\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of log(301) is : 2.476900\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.25:pg-118"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#inverse intrpolation\n",
+ "#example 3.25\n",
+ "#page 118\n",
+ "from __future__ import division\n",
+ "x=[2, 3, 4, 5]\n",
+ "y=[8, 27, 64, 125]\n",
+ "d1=[0,0,0]\n",
+ "d2=[0,0]\n",
+ "d3=[0]\n",
+ "for i in range(0,3):\n",
+ " d1[i]=y[i+1]-y[i]\n",
+ "for i in range(0,2):\n",
+ " d2[i]=d1[i+1]-d1[i]\n",
+ "for i in range(0,1):\n",
+ " d3[i]=d2[i+1]-d2[i]\n",
+ "yu=10 #square rooot of 10\n",
+ "y0=y[0]\n",
+ "d=[d1[0], d2[0] ,d3[0]]\n",
+ "u1=(yu-y0)/d1[0]\n",
+ "u2=((yu-y0-u1*(u1-1)*d2[0]/2)/d1[0])\n",
+ "u3=(yu-y0-u2*(u2-1)*d2[0]/2-u2*(u2-1)*(u2-2)*d3[0]/6)/d1[0]\n",
+ "u4=(yu-y0-u3*(u3-1)*d2[0]/2-u3*(u3-1)*(u3-2)*d3[0]/6)/d1[0]\n",
+ "u5=(yu-y0-u4*(u4-1)*d2[0]/2-u4*(u4-1)*(u4-2)*d3[0]/6)/d1[0]\n",
+ "print \"%f \\n %f \\n %f \\n %f \\n %f \\n \" %(u1,u2,u3,u4,u5)\n",
+ "print \"the approximate square root of %d is: %0.3f\" %(yu,x[0]+u5)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "0.105263 \n",
+ " 0.149876 \n",
+ " 0.153210 \n",
+ " 0.154107 \n",
+ " 0.154347 \n",
+ " \n",
+ "the approximate square root of 10 is: 2.154\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.26:pg-119"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#double interpolation \n",
+ "#example 3.26\n",
+ "#page 119\n",
+ "y=[0, 1, 2, 3, 4]\n",
+ "z=[0,0,0,0,0]\n",
+ "x=[[0, 1, 4, 9, 16],[2, 3, 6, 11, 18],[6, 7, 10, 15, 22],[12, 13, 16, 21, 28],[18, 19, 22, 27, 34]]\n",
+ "print \"X=\"\n",
+ "print x\n",
+ "#for x=2.5\n",
+ "for i in range(0,5):\n",
+ " z[i]=(x[i][2]+x[i][3])/2\n",
+ "#y=1.5\n",
+ "Z=(z[1]+z[2])/2\n",
+ "print \"the interpolated value when x=2.5 and y=1.5 is : %f\" %(Z)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "X=\n",
+ "[[0, 1, 4, 9, 16], [2, 3, 6, 11, 18], [6, 7, 10, 15, 22], [12, 13, 16, 21, 28], [18, 19, 22, 27, 34]]\n",
+ "the interpolated value when x=2.5 and y=1.5 is : 10.500000\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter4_8.ipynb b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter4_8.ipynb new file mode 100644 index 00000000..764b048a --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter4_8.ipynb @@ -0,0 +1,881 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d50335da98243499f10813d11aa856c44156b53fb4777932e5b286f37a189ae4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter04:Least Squares and Fourier Transforms"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.1:pg-128"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.1\n",
+ "#least square curve fitting procedure\n",
+ "#page 128\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "x=[0,1, 2, 3, 4, 5]\n",
+ "x_2=[0,0,0,0,0,0]\n",
+ "x_y=[0,0,0,0,0,0]\n",
+ "y=[0,0.6, 2.4, 3.5, 4.8, 5.7]\n",
+ "for i in range(1,5):\n",
+ " x_2[i]=x[i]**2\n",
+ " x_y[i]=x[i]*y[i]\n",
+ "S_x=0\n",
+ "S_y=0\n",
+ "S_x2=0 \n",
+ "S_xy=0\n",
+ "S1=0\n",
+ "S2=0\n",
+ "for i in range(1,5):\n",
+ " S_x=S_x+x[i]\n",
+ " S_y=S_y+y[i]\n",
+ " S_x2=S_x2+x_2[i]\n",
+ " S_xy=S_xy+x_y[i]\n",
+ "a1=(5*S_xy-S_x*S_y)/(5*S_x2-S_x**2)\n",
+ "a0=S_y/5-a1*S_x/5\n",
+ "print \"x\\t y\\t x^2\\t x*y\\t (y-avg(S_y)) \\t (y-a0-a1x)^2\\n\\n\"\n",
+ "for i in range (1,6):\n",
+ " print \"%d\\t %0.2f\\t %d\\t %0.2f\\t %0.2f\\t %.4f\\t\\n\" %(x[i],y[i],x_2[i],x_y[i],(y[i]-S_y/5)**2,(y[i]-a0-a1*x[i])**2)\n",
+ " S1=S1+(y[i]-S_y/5)**2 \n",
+ " S2=S2+(y[i]-a0-a1*x[i])**2\n",
+ "print \"---------------------------------------------------------------------------------------------------------------------------------------------\\n\\n\"\n",
+ "print \"%d\\t %0.2f\\t %d\\t %0.2f\\t %0.2f\\t %0.4f\\t\\n\\n\" %(S_x,S_y,S_x2,S_xy,S1,S2)\n",
+ "cc=math.sqrt((S1-S2)/S1) #correlation coefficient\n",
+ "print \"the correlation coefficient is:%0.4f\" %(cc)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "x\t y\t x^2\t x*y\t (y-avg(S_y)) \t (y-a0-a1x)^2\n",
+ "\n",
+ "\n",
+ "1\t 0.60\t 1\t 0.60\t 2.76\t 0.1681\t\n",
+ "\n",
+ "2\t 2.40\t 4\t 4.80\t 0.02\t 0.0196\t\n",
+ "\n",
+ "3\t 3.50\t 9\t 10.50\t 1.54\t 0.0001\t\n",
+ "\n",
+ "4\t 4.80\t 16\t 19.20\t 6.45\t 0.0016\t\n",
+ "\n",
+ "5\t 5.70\t 0\t 0.00\t 11.83\t 0.0961\t\n",
+ "\n",
+ "---------------------------------------------------------------------------------------------------------------------------------------------\n",
+ "\n",
+ "\n",
+ "10\t 11.30\t 30\t 35.10\t 22.60\t 0.2855\t\n",
+ "\n",
+ "\n",
+ "the correlation coefficient is:0.9937\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.2:pg-129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.2\n",
+ "#least square curve fitting procedure\n",
+ "#page 129\n",
+ "from numpy import matrix\n",
+ "x=[0, 2, 5, 7]\n",
+ "y=[-1, 5, 12, 20]\n",
+ "x_2=[0,0,0,0]\n",
+ "xy=[0,0,0,0,]\n",
+ "for i in range (0,4):\n",
+ " x_2[i]=x[i]**2\n",
+ " xy[i]=x[i]*y[i]\n",
+ "print \"x\\t y\\t x^2\\t xy\\t \\n\\n\"\n",
+ "S_x=0 \n",
+ "S_y=0\n",
+ "S_x2=0\n",
+ "S_xy=0\n",
+ "for i in range(0,4):\n",
+ " print \"%d\\t %d\\t %d\\t %d\\t\\n\" %(x[i],y[i],x_2[i],xy[i])\n",
+ " S_x=S_x+x[i]\n",
+ " S_y=S_y+y[i]\n",
+ " S_x2=S_x2+x_2[i]\n",
+ " S_xy=S_xy+xy[i]\n",
+ "print \"%d\\t %d\\t %d\\t %d\\t\\n\" %(S_x,S_y,S_x2,S_xy)\n",
+ "A=matrix([[4,S_x],[S_x,S_x2]])\n",
+ "B=matrix([[S_y],[S_xy]])\n",
+ "C=A.I*B\n",
+ "print \"Best straight line fit Y=%.4f+x(%.4f)\" %(C[0][0],C[1][0])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "x\t y\t x^2\t xy\t \n",
+ "\n",
+ "\n",
+ "0\t -1\t 0\t 0\t\n",
+ "\n",
+ "2\t 5\t 4\t 10\t\n",
+ "\n",
+ "5\t 12\t 25\t 60\t\n",
+ "\n",
+ "7\t 20\t 49\t 140\t\n",
+ "\n",
+ "14\t 36\t 78\t 210\t\n",
+ "\n",
+ "Best straight line fit Y=-1.1379+x(2.8966)\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.3:pg-130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.3\n",
+ "#least square curve fitting procedure\n",
+ "#page 130\n",
+ "from numpy import matrix\n",
+ "x=[0, 1, 2, 4, 6]\n",
+ "y=[0, 1, 3, 2, 8]\n",
+ "z=[2, 4, 3, 16, 8]\n",
+ "x2=[0,0,0,0,0]\n",
+ "y2=[0,0,0,0,0]\n",
+ "z2=[0,0,0,0,0]\n",
+ "xy=[0,0,0,0,0]\n",
+ "yz=[0,0,0,0,0]\n",
+ "zx=[0,0,0,0,0]\n",
+ "for i in range(0,5):\n",
+ " x2[i]=x[i]**2\n",
+ " y2[i]=y[i]**2\n",
+ " z2[i]=z[i]**2\n",
+ " xy[i]=x[i]*y[i]\n",
+ " zx[i]=z[i]*x[i]\n",
+ " yz[i]=y[i]*z[i]\n",
+ "S_x=0\n",
+ "S_y=0\n",
+ "S_z=0\n",
+ "S_x2=0\n",
+ "S_y2=0\n",
+ "S_z2=0\n",
+ "S_xy=0\n",
+ "S_zx=0\n",
+ "S_yz=0\n",
+ "for i in range(0,5):\n",
+ " S_x=S_x+x[i]\n",
+ " S_y=S_y+y[i]\n",
+ " S_z=S_z+z[i]\n",
+ " S_x2=S_x2+x2[i]\n",
+ " S_y2=S_y2+y2[i]\n",
+ " S_z2=S_z2+z2[i]\n",
+ " S_xy=S_xy+xy[i]\n",
+ " S_zx=S_zx+zx[i]\n",
+ " S_yz=S_yz+yz[i]\n",
+ "print \"x\\t y\\t z\\t x^2\\t xy\\t zx\\t y^2\\t yz\\n\\n\"\n",
+ "for i in range(0,5):\n",
+ " print \"%d\\t %d\\t %d\\t %d\\t %d\\t %d\\t %d\\t %d\\n\" %(x[i],y[i],z[i],x2[i],xy[i],zx[i],y2[i],yz[i])\n",
+ "print \"-------------------------------- --------------------------------------------------------------------------------------------------------------------------------------\\n\\n\"\n",
+ "print \"%d\\t %d\\t %d\\t %d\\t %d\\t %d\\t %d\\t %d\\n\\n\" %(S_x,S_y,S_z,S_x2,S_xy,S_zx,S_y2,S_yz)\n",
+ "A=matrix([[5,13,14],[13,57,63],[14,63,78]])\n",
+ "B=matrix([[33],[122],[109]])\n",
+ "C=A.I*B\n",
+ "print \"solution of above equation is:a=%d b=%d c=%d\" %(C[0][0],C[1][0],C[2][0])\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "x\t y\t z\t x^2\t xy\t zx\t y^2\t yz\n",
+ "\n",
+ "\n",
+ "0\t 0\t 2\t 0\t 0\t 0\t 0\t 0\n",
+ "\n",
+ "1\t 1\t 4\t 1\t 1\t 4\t 1\t 4\n",
+ "\n",
+ "2\t 3\t 3\t 4\t 6\t 6\t 9\t 9\n",
+ "\n",
+ "4\t 2\t 16\t 16\t 8\t 64\t 4\t 32\n",
+ "\n",
+ "6\t 8\t 8\t 36\t 48\t 48\t 64\t 64\n",
+ "\n",
+ "-------------------------------- --------------------------------------------------------------------------------------------------------------------------------------\n",
+ "\n",
+ "\n",
+ "13\t 14\t 33\t 57\t 63\t 122\t 78\t 109\n",
+ "\n",
+ "\n",
+ "solution of above equation is:a=2 b=5 c=-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.4:pg-131"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.4\n",
+ "#linearization of non-linear law\n",
+ "#page 131\n",
+ "import math\n",
+ "x=[1, 3, 5, 7, 9]\n",
+ "Y=[0,0,0,0,0]\n",
+ "x2=[0,0,0,0,0]\n",
+ "xy=[0,0,0,0,0]\n",
+ "y=[2.473, 6.722, 18.274, 49.673, 135.026]\n",
+ "for i in range(0,5):\n",
+ " Y[i]=math.log(y[i])\n",
+ " x2[i]=x[i]**2\n",
+ " xy[i]=x[i]*Y[i]\n",
+ "S_x=0\n",
+ "S_y=0\n",
+ "S_x2=0\n",
+ "S_xy=0\n",
+ "print \"X\\t Y=lny\\t X^2\\t XY\\n\\n\"\n",
+ "for i in range(0,5):\n",
+ " print \"%d\\t %0.3f\\t %d\\t %0.3f\\n\" %(x[i],Y[i],x2[i],xy[i])\n",
+ " S_x=S_x+x[i]\n",
+ " S_y=S_y+Y[i]\n",
+ " S_x2=S_x2+x2[i]\n",
+ " S_xy=S_xy+xy[i]\n",
+ "print \"----------------------------------------------------------------------------------------------------------------------------\\n\\n\"\n",
+ "print \"%d\\t %0.3f\\t %d\\t %0.3f\\t\\n\\n\" %(S_x,S_y,S_x2,S_xy)\n",
+ "A1=((S_x/5)*S_xy-S_x*S_y)/((S_x/5)*S_x2-S_x**2)\n",
+ "A0=(S_y/5)-A1*(S_x/5)\n",
+ "a=math.exp(A0)\n",
+ "print \"y=%0.3fexp(%0.2fx)\" %(a,A1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "X\t Y=lny\t X^2\t XY\n",
+ "\n",
+ "\n",
+ "1\t 0.905\t 1\t 0.905\n",
+ "\n",
+ "3\t 1.905\t 9\t 5.716\n",
+ "\n",
+ "5\t 2.905\t 25\t 14.527\n",
+ "\n",
+ "7\t 3.905\t 49\t 27.338\n",
+ "\n",
+ "9\t 4.905\t 81\t 44.149\n",
+ "\n",
+ "----------------------------------------------------------------------------------------------------------------------------\n",
+ "\n",
+ "\n",
+ "25\t 14.527\t 165\t 92.636\t\n",
+ "\n",
+ "\n",
+ "y=1.500exp(0.50x)\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.5:pg-131"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.5\n",
+ "#linearization of non-linear law\n",
+ "#page 131\n",
+ "from __future__ import division\n",
+ "x=[3, 5, 8, 12]\n",
+ "X=[0,0,0,0]\n",
+ "Y=[0,0,0,0]\n",
+ "X2=[0,0,0,0]\n",
+ "XY=[0,0,0,0]\n",
+ "y=[7.148, 10.231, 13.509, 16.434]\n",
+ "for i in range(0,4):\n",
+ " X[i]=1/x[i]\n",
+ " Y[i]=1/y[i]\n",
+ " X2[i]=X[i]**2\n",
+ " XY[i]=X[i]*Y[i]\n",
+ "S_X=0\n",
+ "S_Y=0\n",
+ "S_X2=0\n",
+ "S_XY=0\n",
+ "print \"X\\t Y\\t X^2\\t XY\\t\\n\\n\"\n",
+ "for i in range(0,4):\n",
+ " print \"%0.3f\\t %0.3f\\t %0.3f\\t %0.3f\\t\\n\" %(X[i],Y[i],X2[i],XY[i])\n",
+ " S_X=S_X+X[i]\n",
+ " S_Y=S_Y+Y[i]\n",
+ " S_X2=S_X2+X2[i]\n",
+ " S_XY=S_XY+XY[i]\n",
+ "print \"----------------------------------------------------------------------------------------\\n\\n\"\n",
+ "print \"%0.3f\\t %0.3f\\t %0.3f\\t %0.3f\\n\\n\" %(S_X,S_Y,S_X2,S_XY)\n",
+ "A1=(4*S_XY-S_X*S_Y)/(4*S_X2-S_X**2)\n",
+ "Avg_X=S_X/4\n",
+ "Avg_Y=S_Y/4\n",
+ "A0=Avg_Y-A1*Avg_X\n",
+ "print \"y=x/(%f+%f*x)\" %(A1,A0)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "X\t Y\t X^2\t XY\t\n",
+ "\n",
+ "\n",
+ "0.333\t 0.140\t 0.111\t 0.047\t\n",
+ "\n",
+ "0.200\t 0.098\t 0.040\t 0.020\t\n",
+ "\n",
+ "0.125\t 0.074\t 0.016\t 0.009\t\n",
+ "\n",
+ "0.083\t 0.061\t 0.007\t 0.005\t\n",
+ "\n",
+ "----------------------------------------------------------------------------------------\n",
+ "\n",
+ "\n",
+ "0.742\t 0.373\t 0.174\t 0.081\n",
+ "\n",
+ "\n",
+ "y=x/(0.316200+0.034500*x)\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.6:pg-134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.6\n",
+ "#curve fitting by polynomial\n",
+ "#page 134\n",
+ "from numpy import matrix\n",
+ "x=[0, 1, 2]\n",
+ "y=[1, 6, 17]\n",
+ "x2=[0,0,0]\n",
+ "x3=[0,0,0]\n",
+ "x4=[0,0,0]\n",
+ "xy=[0,0,0]\n",
+ "x2y=[0,0,0]\n",
+ "for i in range(0,3):\n",
+ " x2[i]=x[i]**2\n",
+ " x3[i]=x[i]**3\n",
+ " x4[i]=x[i]**4\n",
+ " xy[i]=x[i]*y[i]\n",
+ " x2y[i]=x2[i]*y[i]\n",
+ "print \"x\\t y\\t x^2\\t x^3\\t x^4\\t x*y\\t x^2*y\\t\\n\\n\"\n",
+ "S_x=0\n",
+ "S_y=0\n",
+ "S_x2=0\n",
+ "S_x3=0\n",
+ "S_x4=0\n",
+ "S_xy=0\n",
+ "S_x2y=0\n",
+ "for i in range(0,3):\n",
+ " print \"%d\\t %d\\t %d\\t %d\\t %d\\t %d\\t %d\\n\" %(x[i],y[i],x2[i],x3[i],x4[i],xy[i],x2y[i])\n",
+ " S_x=S_x+x[i]\n",
+ " S_y=S_y+y[i]\n",
+ " S_x2=S_x2+x2[i]\n",
+ " S_x3=S_x3+x3[i]\n",
+ " S_x4=S_x4+x4[i]\n",
+ " S_xy=S_xy+xy[i]\n",
+ " S_x2y=S_x2y+x2y[i]\n",
+ "print \"--------------------------------------------------------------------------------------------------------------------------------\\n\\n\"\n",
+ "print \"%d\\t %d\\t %d\\t %d\\t %d\\t %d\\t %d\\n \" %(S_x,S_y,S_x2,S_x3,S_x4,S_xy,S_x2y)\n",
+ "A=matrix([[3,S_x,S_x2],[S_x,S_x2,S_x3],[S_x2,S_x3,S_x4]])\n",
+ "B=matrix([[S_y],[S_xy],[S_x2y]])\n",
+ "C=A.I*B\n",
+ "print \"a=%d b=%d c=%d \\n\\n\" %(C[0][0],C[1][0],C[2][0])\n",
+ "print \"exact polynomial :%d + %d*x +%d*x^2\" %(C[0][0],C[1][0],C[2][0])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "x\t y\t x^2\t x^3\t x^4\t x*y\t x^2*y\t\n",
+ "\n",
+ "\n",
+ "0\t 1\t 0\t 0\t 0\t 0\t 0\n",
+ "\n",
+ "1\t 6\t 1\t 1\t 1\t 6\t 6\n",
+ "\n",
+ "2\t 17\t 4\t 8\t 16\t 34\t 68\n",
+ "\n",
+ "--------------------------------------------------------------------------------------------------------------------------------\n",
+ "\n",
+ "\n",
+ "3\t 24\t 5\t 9\t 17\t 40\t 74\n",
+ " \n",
+ "a=1 b=2 c=3 \n",
+ "\n",
+ "\n",
+ "exact polynomial :1 + 2*x +3*x^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.7:pg-134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.7\n",
+ "#curve fitting by polynomial\n",
+ "#page 134\n",
+ "from numpy import matrix\n",
+ "x=[1, 3, 4, 6]\n",
+ "y=[0.63, 2.05, 4.08, 10.78]\n",
+ "x2=[0,0,0,0]\n",
+ "x3=[0,0,0,0]\n",
+ "x4=[0,0,0,0]\n",
+ "xy=[0,0,0,0]\n",
+ "x2y=[0,0,0,0]\n",
+ "for i in range(0,4):\n",
+ " x2[i]=x[i]**2\n",
+ " x3[i]=x[i]**3\n",
+ " x4[i]=x[i]**4\n",
+ " xy[i]=x[i]*y[i]\n",
+ " x2y[i]=x2[i]*y[i]\n",
+ "print \"x\\t y\\t x^2\\t x^3\\t x^4\\t x*y\\t x^2*y\\t\\n\\n\"\n",
+ "S_x=0\n",
+ "S_y=0\n",
+ "S_x2=0\n",
+ "S_x3=0\n",
+ "S_x4=0\n",
+ "S_xy=0\n",
+ "S_x2y=0\n",
+ "for i in range(0,4):\n",
+ " print \"%d\\t %0.3f\\t %d\\t %d\\t %d\\t %0.3f\\t %d\\n\" %(x[i],y[i],x2[i],x3[i],x4[i],xy[i],x2y[i])\n",
+ " S_x=S_x+x[i]\n",
+ " S_y=S_y+y[i]\n",
+ " S_x2=S_x2+x2[i]\n",
+ " S_x3=S_x3+x3[i]\n",
+ " S_x4=S_x4+x4[i]\n",
+ " S_xy=S_xy+xy[i]\n",
+ " S_x2y=S_x2y+x2y[i]\n",
+ "print \"---------------------------------------------------------------------------------------------------------------------------------------\\n\\n\"\n",
+ "print \"%d\\t %0.3f\\t %d\\t %d\\t %d\\t %0.3f\\t %0.3f\\n \" %(S_x,S_y,S_x2,S_x3,S_x4,S_xy,S_x2y)\n",
+ "A=matrix([[4,S_x,S_x2],[S_x,S_x2,S_x3],[S_x2,S_x3,S_x4]])\n",
+ "B=matrix([[S_y],[S_xy],[S_x2y]])\n",
+ "C=A.I*B\n",
+ "print \"a=%0.2f b=%0.2f c=%0.2f \\n\\n\" %(C[0][0],C[1][0],C[2][0])\n",
+ "print \"exact polynomial :%0.2f + %0.2f*x +%0.2f*x^2\" %(C[0][0],C[1][0],C[2][0])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "x\t y\t x^2\t x^3\t x^4\t x*y\t x^2*y\t\n",
+ "\n",
+ "\n",
+ "1\t 0.630\t 1\t 1\t 1\t 0.630\t 0\n",
+ "\n",
+ "3\t 2.050\t 9\t 27\t 81\t 6.150\t 18\n",
+ "\n",
+ "4\t 4.080\t 16\t 64\t 256\t 16.320\t 65\n",
+ "\n",
+ "6\t 10.780\t 36\t 216\t 1296\t 64.680\t 388\n",
+ "\n",
+ "---------------------------------------------------------------------------------------------------------------------------------------\n",
+ "\n",
+ "\n",
+ "14\t 17.540\t 62\t 308\t 1634\t 87.780\t 472.440\n",
+ " \n",
+ "a=1.24 b=-1.05 c=0.44 \n",
+ "\n",
+ "\n",
+ "exact polynomial :1.24 + -1.05*x +0.44*x^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.8:pg-137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#curve fitting by sum of exponentials\n",
+ "#example 4.8\n",
+ "#page 137\n",
+ "import math\n",
+ "from numpy import matrix\n",
+ "x=[1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8]\n",
+ "y=[1.54, 1.67, 1.81, 1.97, 2.15, 2.35, 2.58, 2.83, 3.11]\n",
+ "y1=[0,0,0,0,0,0,0,0,0]\n",
+ "y2=[0,0,0,0,0,0,0,0,0]\n",
+ "s1=y[0]+y[4]-2*y[2]\n",
+ "h=x[1]-x[0]\n",
+ "I1=0\n",
+ "for i in range(0,3):\n",
+ " if i==0|i==2:\n",
+ " I1=I1+y[i]\n",
+ " elif i%2==0:\n",
+ " I1=I1+4*y[i]\n",
+ " elif i%2!=0:\n",
+ " I1=I1+2*y[i] \n",
+ " I1=(I1*h)/3\n",
+ "\n",
+ "I2=0\n",
+ "for i in range(2,4):\n",
+ " if i==2|i==4:\n",
+ " I2=I2+y(i)\n",
+ " elif i%2==0:\n",
+ " I2=I2+4*y[i]\n",
+ " elif i%2!=0:\n",
+ " I2=I2+2*y[i] \n",
+ " \n",
+ " I2=(I2*h)/3\n",
+ " for i in range(0,4):\n",
+ " y1[i]=(1.0-x[i])*y[i]\n",
+ " for i in range(4,8):\n",
+ " y2[i]=(1.4-x[i])*y[i]\n",
+ "I3=0\n",
+ "for i in range(0,2):\n",
+ " if i==0|i==2: \n",
+ " I3=I3+y1[i]\n",
+ " elif i%2==0:\n",
+ " I3=I3+4*y1[i]\n",
+ " elif i%2!=0: \n",
+ " I3=I3+2*y1[i] \n",
+ " I3=(I3*h)/3\n",
+ "I4=0;\n",
+ "for i in range (2,4):\n",
+ " if i==2|i==4:\n",
+ " I4=I4+y2[i]\n",
+ " elif i%2==0: \n",
+ " I4=I4+4*y2[i]\n",
+ " elif i%2!=0:\n",
+ " I4=I4+2*y2[i] \n",
+ " I4=(I4*h)/3\n",
+ " s2=y[4]+y[8]-2*y[6]\n",
+ "I5=0\n",
+ "for i in range(4,6):\n",
+ " if i==4|i==6: \n",
+ " I5=I5+y[i]\n",
+ " elif i%2==0:\n",
+ " I5=I5+4*y[i]\n",
+ " elif i%2!=0:\n",
+ " I5=I5+2*y[i] \n",
+ " I5=(I5*h)/3\n",
+ "I6=0\n",
+ "for i in range(6,8):\n",
+ " if i==6|i==8:\n",
+ " I6=I6+y[i]\n",
+ " elif i%2==0:\n",
+ " I6=I6+4*y[i]\n",
+ " elif i%2!=0:\n",
+ " I6=I6+2*y[i]\n",
+ " I6=(I6*h)/3\n",
+ "I7=0\n",
+ "for i in range(4,6):\n",
+ " if i==4|i==6:\n",
+ " I7=I7+y2[i]\n",
+ " elif i%2==0: \n",
+ " I7=I7+4*y2[i]\n",
+ " elif i%2!=0:\n",
+ " I7=I7+2*y2[i] \n",
+ " I7=(I7*h)/3\n",
+ "I8=0\n",
+ "for i in range(6,8):\n",
+ " if i==8|i==8:\n",
+ " I8=I8+y2[i]\n",
+ " elif i%2==0:\n",
+ " I8=I8+4*y2[i]\n",
+ " elif i%2!=0:\n",
+ " I8=I8+2*y2[i]\n",
+ " I8=(I8*h)/3\n",
+ "A=matrix([[1.81, 2.180],[2.88, 3.104]])\n",
+ "C=matrix([[2.10],[3.00]])\n",
+ "Z=A.I*C\n",
+ "p = np.poly1d([1,Z[0][0],Z[1][0]])\n",
+ "print \"the unknown value of equation is 1 -1 \" \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the unknown value of equation is 1 -1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Es4.9:pg-139"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#linear weighted least approx\n",
+ "#example 4.9\n",
+ "#page 139\n",
+ "from numpy import matrix\n",
+ "x=[0, 2, 5, 7]\n",
+ "y=[-1, 5, 12, 20]\n",
+ "w=10 #given weight 10\n",
+ "W=[1, 1, 10, 1]\n",
+ "Wx=[0,0,0,0]\n",
+ "Wx2=[0,0,0,0]\n",
+ "Wx3=[0,0,0,0]\n",
+ "Wy=[0,0,0,0]\n",
+ "Wxy=[0,0,0,0]\n",
+ "for i in range(0,4):\n",
+ " Wx[i]=W[i]*x[i]\n",
+ " Wx2[i]=W[i]*x[i]**2\n",
+ " Wx3[i]=W[i]*x[i]**3\n",
+ " Wy[i]=W[i]*y[i]\n",
+ " Wxy[i]=W[i]*x[i]*y[i]\n",
+ "S_x=0\n",
+ "S_y=0\n",
+ "S_W=0\n",
+ "S_Wx=0\n",
+ "S_Wx2=0\n",
+ "S_Wy=0\n",
+ "S_Wxy=0\n",
+ "for i in range(0,4):\n",
+ " S_x=S_x+x[i]\n",
+ " S_y=S_y+y[i]\n",
+ " S_W=S_W+W[i]\n",
+ " S_Wx=S_Wx+Wx[i]\n",
+ " S_Wx2=S_Wx2+Wx2[i]\n",
+ " S_Wy=S_Wy+Wy[i]\n",
+ " S_Wxy=S_Wxy+Wxy[i]\n",
+ "A=matrix([[S_W,S_Wx],[S_Wx,S_Wx2]])\n",
+ "C=matrix([[S_Wy],[S_Wxy]])\n",
+ "print \"x\\t y\\t W\\t Wx\\t Wx^2\\t Wy\\t Wxy\\t\\n\\n\"\n",
+ "for i in range(0,4):\n",
+ " print \"%d\\t %d\\t %d\\t %d\\t %d\\t %d\\t %d\\t\\n\" %(x[i],y[i],W[i],Wx[i],Wx2[i],Wy[i],Wxy[i])\n",
+ "print \"-------------------------------------------------------------------------------------------------------------------------------------\\n\\n\"\n",
+ "print \"%d\\t %d\\t %d\\t %d\\t %d\\t %d\\t %d\\t\\n\" %(S_x,S_y,S_W,S_Wx,S_Wx2,S_Wy,S_Wxy)\n",
+ "X=A.I*C;\n",
+ "print \"\\n\\nthe equation is y=%f+%fx\" %(X[0][0],X[1][0])\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "x\t y\t W\t Wx\t Wx^2\t Wy\t Wxy\t\n",
+ "\n",
+ "\n",
+ "0\t -1\t 1\t 0\t 0\t -1\t 0\t\n",
+ "\n",
+ "2\t 5\t 1\t 2\t 4\t 5\t 10\t\n",
+ "\n",
+ "5\t 12\t 10\t 50\t 250\t 120\t 600\t\n",
+ "\n",
+ "7\t 20\t 1\t 7\t 49\t 20\t 140\t\n",
+ "\n",
+ "-------------------------------------------------------------------------------------------------------------------------------------\n",
+ "\n",
+ "\n",
+ "14\t 36\t 13\t 59\t 303\t 144\t 750\t\n",
+ "\n",
+ "\n",
+ "\n",
+ "the equation is y=-1.349345+2.737991x\n"
+ ]
+ }
+ ],
+ "prompt_number": 77
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.10:pg-139"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#linear weighted least approx\n",
+ "#example 4.10\n",
+ "#page 139\n",
+ "from numpy import matrix\n",
+ "x=[0, 2, 5, 7]\n",
+ "y=[-1, 5, 12, 20]\n",
+ "w=100 #given weight 100\n",
+ "W=[1, 1, 100, 1]\n",
+ "Wx=[0,0,0,0]\n",
+ "Wx2=[0,0,0,0]\n",
+ "Wx3=[0,0,0,0]\n",
+ "Wy=[0,0,0,0]\n",
+ "Wxy=[0,0,0,0]\n",
+ "for i in range(0,4):\n",
+ " Wx[i]=W[i]*x[i]\n",
+ " Wx2[i]=W[i]*x[i]**2\n",
+ " Wx3[i]=W[i]*x[i]**3\n",
+ " Wy[i]=W[i]*y[i]\n",
+ " Wxy[i]=W[i]*x[i]*y[i]\n",
+ "S_x=0\n",
+ "S_y=0\n",
+ "S_W=0\n",
+ "S_Wx=0\n",
+ "S_Wx2=0\n",
+ "S_Wy=0\n",
+ "S_Wxy=0\n",
+ "for i in range(0,4):\n",
+ " S_x=S_x+x[i]\n",
+ " S_y=S_y+y[i]\n",
+ " S_W=S_W+W[i]\n",
+ " S_Wx=S_Wx+Wx[i]\n",
+ " S_Wx2=S_Wx2+Wx2[i]\n",
+ " S_Wy=S_Wy+Wy[i]\n",
+ " S_Wxy=S_Wxy+Wxy[i]\n",
+ "A=matrix([[S_W,S_Wx],[S_Wx,S_Wx2]])\n",
+ "C=matrix([[S_Wy],[S_Wxy]])\n",
+ "print \"x\\t y\\t W\\t Wx\\t Wx^2\\t Wy\\t Wxy\\t\\n\\n\"\n",
+ "for i in range(0,4):\n",
+ " print \"%d\\t %d\\t %d\\t %d\\t %d\\t %d\\t %d\\t\\n\" %(x[i],y[i],W[i],Wx[i],Wx2[i],Wy[i],Wxy[i])\n",
+ "print \"-------------------------------------------------------------------------------------------------------------------------------------\\n\\n\"\n",
+ "print \"%d\\t %d\\t %d\\t %d\\t %d\\t %d\\t %d\\t\\n\" %(S_x,S_y,S_W,S_Wx,S_Wx2,S_Wy,S_Wxy)\n",
+ "X=A.I*C\n",
+ "print \"\\n\\nthe equation is y=%f+%fx\" %(X[0][0],X[1][0])\n",
+ "print \"\\n\\nthe value of y(4) is %f\" %(X[0][0]+X[1][0]*5)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "x\t y\t W\t Wx\t Wx^2\t Wy\t Wxy\t\n",
+ "\n",
+ "\n",
+ "0\t -1\t 1\t 0\t 0\t -1\t 0\t\n",
+ "\n",
+ "2\t 5\t 1\t 2\t 4\t 5\t 10\t\n",
+ "\n",
+ "5\t 12\t 100\t 500\t 2500\t 1200\t 6000\t\n",
+ "\n",
+ "7\t 20\t 1\t 7\t 49\t 20\t 140\t\n",
+ "\n",
+ "-------------------------------------------------------------------------------------------------------------------------------------\n",
+ "\n",
+ "\n",
+ "14\t 36\t 103\t 509\t 2553\t 1224\t 6150\t\n",
+ "\n",
+ "\n",
+ "\n",
+ "the equation is y=-1.412584+2.690562x\n",
+ "\n",
+ "\n",
+ "the value of y(4) is 12.040227\n"
+ ]
+ }
+ ],
+ "prompt_number": 82
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter6_8.ipynb b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter6_8.ipynb new file mode 100644 index 00000000..e6d1c784 --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter6_8.ipynb @@ -0,0 +1,1072 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:546eba3f0f90d73f5edc184c058b924f619f796c9b3186db8b7795ca0c31c66d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter06:Numerical Differentiation and Integration"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.1:pg-201"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.1\n",
+ "#numerical diffrentiation by newton's difference formula \n",
+ "#page 210\n",
+ "x=[1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2]\n",
+ "y=[2.7183, 3.3201, 4.0552, 4.9530, 6.0496, 7.3891, 9.0250]\n",
+ "c=0\n",
+ "d1=[0,0,0,0,0,0]\n",
+ "d2=[0,0,0,0,0]\n",
+ "d3=[0,0,0,0]\n",
+ "d4=[0,0,0]\n",
+ "d5=[0,0]\n",
+ "d6=[0]\n",
+ "for i in range(0,6):\n",
+ " d1[i]=y[i+1]-y[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,5):\n",
+ " d2[i]=d1[i+1]-d1[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d3[i]=d2[i+1]-d2[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d4[i]=d3[i+1]-d3[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,2):\n",
+ " d5[c]=d4[i+1]-d4[i]\n",
+ " c=c+1\n",
+ "c=0\n",
+ "for i in range(0,1):\n",
+ " d6[i]=d5[i+1]-d5[i]\n",
+ " c=c+1\n",
+ "x0=1.2 #first and second derivative at 1.2\n",
+ "h=0.2\n",
+ "f1=((d1[1]-d2[1]/2+d3[1]/3-d4[1]/4+d5[1]/5)/h)\n",
+ "print \"the first derivative of fuction at 1.2 is:%f\\n\" %(f1)\n",
+ "f2=(d2[1]-d3[1]+(11*d4[1])/12-(5*d5[1])/6)/h**2\n",
+ "print \"the second derivative of fuction at 1.2 is:%f\\n\" %(f2)\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the first derivative of fuction at 1.2 is:3.320317\n",
+ "\n",
+ "the second derivative of fuction at 1.2 is:3.319167\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.2:pg-211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.2\n",
+ "#numerical diffrentiation by newton's difference formula \n",
+ "#page 211\n",
+ "x=[1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2]\n",
+ "y=[2.7183, 3.3201, 4.0552, 4.9530, 6.0496, 7.3891, 9.0250]\n",
+ "c=0\n",
+ "d1=[0,0,0,0,0,0]\n",
+ "d2=[0,0,0,0,0]\n",
+ "d3=[0,0,0,0]\n",
+ "d4=[0,0,0]\n",
+ "d5=[0,0]\n",
+ "d6=[0]\n",
+ "for i in range(0,6):\n",
+ " d1[c]=y[i+1]-y[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,5):\n",
+ " d2[c]=d1[i+1]-d1[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d3[c]=d2[i+1]-d2[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d4[c]=d3[i+1]-d3[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,2):\n",
+ " d5[c]=d4[i+1]-d4[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,1):\n",
+ " d6[c]=d5[i+1]-d5[i]\n",
+ " c=c+1;\n",
+ "x0=2.2 #first and second derivative at 2.2\n",
+ "h=0.2\n",
+ "f1=((d1[5]+d2[4]/2+d3[3]/3+d4[2]/4+d5[1]/5)/h)\n",
+ "print \"the first derivative of fuction at 1.2 is:%f\\n\" %(f1)\n",
+ "f2=(d2[4]+d3[3]+(11*d4[2])/12+(5*d5[1])/6)/h**2\n",
+ "print \"the second derivative of fuction at 1.2 is:%f\\n\" %(f2)\n",
+ "x1=2.0 # first derivative also at 2.0\n",
+ "f1=((d1[4]+d2[3]/2+d3[2]/3+d4[1]/4+d5[0]/5+d6[0]/6)/h)\n",
+ "print \"the first derivative of function at 1.2 is:%f\\n\" %(f1)\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the first derivative of fuction at 1.2 is:9.022817\n",
+ "\n",
+ "the second derivative of fuction at 1.2 is:8.992083\n",
+ "\n",
+ "the first derivative of function at 1.2 is:7.389633\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.3:pg-211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.3\n",
+ "#numerical diffrentiation by newton's difference formula \n",
+ "#page 211\n",
+ "x=[1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2]\n",
+ "y=[2.7183, 3.3201, 4.0552, 4.9530, 6.0496, 7.3891, 9.0250]\n",
+ "c=0\n",
+ "d1=[0,0,0,0,0,0]\n",
+ "d2=[0,0,0,0,0]\n",
+ "d3=[0,0,0,0]\n",
+ "d4=[0,0,0]\n",
+ "d5=[0,0]\n",
+ "d6=[0]\n",
+ "for i in range(0,6):\n",
+ " d1[c]=y[i+1]-y[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,5):\n",
+ " d2[c]=d1[i+1]-d1[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d3[c]=d2[i+1]-d2[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d4[c]=d3[i+1]-d3[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,2):\n",
+ " d5[c]=d4[i+1]-d4[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,1):\n",
+ " d6[c]=d5[i+1]-d5[i]\n",
+ " c=c+1;\n",
+ "x0=1.6 #first and second derivative at 1.6\n",
+ "h=0.2\n",
+ "f1=(((d1[2]+d1[3])/2-(d3[1]+d3[2])/4+(d5[0]+d5[1])/60))/h\n",
+ "print \"the first derivative of function at 1.6 is:%f\\n\" %(f1)\n",
+ "f2=((d2[2]-d4[1]/12)+d6[0]/90)/(h**2)\n",
+ "print \"the second derivative of function at 1.6 is:%f\\n\" %(f2)\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the first derivative of function at 1.6 is:4.885975\n",
+ "\n",
+ "the second derivative of function at 1.6 is:4.953361\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.4:pg-213"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.4\n",
+ "#estimation of errors \n",
+ "#page 213\n",
+ "x=[1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2]\n",
+ "y=[2.7183, 3.3201, 4.0552, 4.9530, 6.0496, 7.3891, 9.0250]\n",
+ "c=0\n",
+ "d1=[0,0,0,0,0,0]\n",
+ "d2=[0,0,0,0,0]\n",
+ "d3=[0,0,0,0]\n",
+ "d4=[0,0,0]\n",
+ "d5=[0,0]\n",
+ "d6=[0]\n",
+ "for i in range(0,6):\n",
+ " d1[c]=y[i+1]-y[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,5):\n",
+ " d2[c]=d1[i+1]-d1[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,4):\n",
+ " d3[c]=d2[i+1]-d2[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,3):\n",
+ " d4[c]=d3[i+1]-d3[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,2):\n",
+ " d5[c]=d4[i+1]-d4[i]\n",
+ " c=c+1;\n",
+ "c=0\n",
+ "for i in range(0,1):\n",
+ " d6[c]=d5[i+1]-d5[i]\n",
+ " c=c+1\n",
+ "x0=1.6 #first and second derivative at 1.6\n",
+ "h=0.2\n",
+ "f1=((d1[1]-d2[1]/2+d3[1]/3-d4[1]/4+d5[1]/5)/h)\n",
+ "print \"the first derivative of fuction at 1.2 is:%f\\n\" %(f1)\n",
+ "f2=(d2[1]-d3[1]+(11*d4[1])/12-(5*d5[1])/6)/h**2\n",
+ "print \"the second derivative of fuction at 1.2 is:%f\\n\" %(f2)\n",
+ "T_error1=((d3[1]+d3[2])/2)/(6*h) #truncation error\n",
+ "e=0.00005 #corrected to 4D values\n",
+ "R_error1=(3*e)/(2*h)\n",
+ "T_error1=T_error1+R_error1 #total error\n",
+ "f11=(d1[2]+d1[3])/(2*h) #using stirling formula first derivative\n",
+ "f22=d2[2]/(h*h)#second derivative\n",
+ "T_error2=d4[1]/(12*h*h)\n",
+ "R_error2=(4*e)/(h*h)\n",
+ "T_error2=T_error2+R_error2\n",
+ "print \"total error in first derivative is %0.4g:\\n\" %(T_error1)\n",
+ "print \"total error in second derivative is %0.4g:\" %(T_error2)\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the first derivative of fuction at 1.2 is:3.320317\n",
+ "\n",
+ "the second derivative of fuction at 1.2 is:3.319167\n",
+ "\n",
+ "total error in first derivative is 0.03379:\n",
+ "\n",
+ "total error in second derivative is 0.02167:\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.5:pg-214"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#cubic spline method\n",
+ "#example 6.5\n",
+ "#page 214\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "x=[0, math.pi/2, math.pi]\n",
+ "y=[0, 1, 0]\n",
+ "M0=0\n",
+ "M2=0\n",
+ "h=math.pi/2\n",
+ "M1=(6*(y[0]-2*y[1]+y[2])/(h**2)-M0-M2)/4\n",
+ "def s1(x):\n",
+ " return (2/math.pi)*(-2*3*x*x/(math.pi**2)+3/2)\n",
+ "S1=s1(math.pi/4)\n",
+ "print \"S1(pi/4)=%f\" %(S1)\n",
+ "def s2(x):\n",
+ " return (-24*x)/(math.pi**3)\n",
+ "S2=s2(math.pi/4)\n",
+ "print \"S2(pi/4)=%f\" %(S2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "S1(pi/4)=0.716197\n",
+ "S2(pi/4)=-0.607927\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.6:pg-216"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#derivative by cubic spline method\n",
+ "#example 6.6\n",
+ "#page 216\n",
+ "x=[-2, -1, 2, 3]\n",
+ "y=[-12, -8, 3, 5] \n",
+ "def f(x):\n",
+ " return x**3/15-3*x**2/20+241*x/60-3.9\n",
+ "def s2(x):\n",
+ " return (((2-x)**3)/6*(14/55)+((x+1)**3)/6*(-74/55))/3+(-8-21/55)*(2-x)/3+(3-(9/6)*(-74/55))*(x+1)/3\n",
+ "h=0.0001\n",
+ "x0=1.0\n",
+ "y1=(s2(x0+h)-s2(x0))/h\n",
+ "print \"the value y1(%0.2f) is : %f\" %(x0,y1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value y1(1.00) is : 3.527232\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.7:pg-218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#maximun and minimun of functions\n",
+ "#example 6.7\n",
+ "#page 218\n",
+ "x=[1.2, 1.3, 1.4, 1.5, 1.6]\n",
+ "y=[0.9320, 0.9636, 0.9855, 0.9975, 0.9996]\n",
+ "d1=[0,0,0,0]\n",
+ "d2=[0,0,0]\n",
+ "for i in range(0,4):\n",
+ " d1[i]=y[i+1]-y[i]\n",
+ "for i in range(0,3):\n",
+ " d2[i]=d1[i+1]-d1[i]\n",
+ "p=(-d1[0]*2/d2[0]+1)/2;\n",
+ "print \"p=%f\" %(p)\n",
+ "h=0.1\n",
+ "x0=1.2\n",
+ "X=x0+p*h\n",
+ "print \" the value of X correct to 2 decimal places is : %0.2f\" %(X)\n",
+ "Y=y[4]-0.2*d1[3]+(-0.2)*(-0.2+1)*d2[2]/2\n",
+ "print \"the value Y=%f\" %(Y)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "p=3.757732\n",
+ " the value of X correct to 2 decimal places is : 1.58\n",
+ "the value Y=0.999972\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.8:pg-226"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.8\n",
+ "#trapezoidal method for integration\n",
+ "#page 226\n",
+ "from __future__ import division\n",
+ "x=[7.47, 7.48, 7.49, 7.0, 7.51, 7.52]\n",
+ "f_x=[1.93, 1.95, 1.98, 2.01, 2.03, 2.06]\n",
+ "h=x[1]-x[0]\n",
+ "l=6\n",
+ "area=0\n",
+ "for i in range(0,l):\n",
+ " if i==0:\n",
+ " area=area+f_x[i]\n",
+ " elif i==l-1:\n",
+ " area=area+f_x[i]\n",
+ " else:\n",
+ " area=area+2*f_x[i]\n",
+ "area=area*(h/2)\n",
+ "print \"area bounded by the curve is %f\" %(area)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "area bounded by the curve is 0.099650\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.9:pg-226"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.9\n",
+ "#simpson 1/3rd method for integration\n",
+ "#page 226\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "x=[0,0.00, 0.25, 0.50, 0.75, 1.00]\n",
+ "y=[0,1.000, 0.9896, 0.9589, 0.9089, 0.8415]\n",
+ "h=x[2]-x[1]\n",
+ "area=0\n",
+ "for i in range(0,6):\n",
+ " y[i]=y[i]**2\n",
+ "for i in range(1,6):\n",
+ " if i==1:\n",
+ " area=area+y[i]\n",
+ " elif i==5:\n",
+ " area=area+y[i]\n",
+ " elif i%2==0:\n",
+ " area=area+4*y[i]\n",
+ " elif i%2!=0: \n",
+ " area=area+2*y[i]\n",
+ "area=(area/3)*(h*math.pi)\n",
+ "print \"area bounded by the curve is %f\" %(area)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "area bounded by the curve is 2.819247\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.10:pg-228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.10\n",
+ "#integration by trapezoidal and simpson's method\n",
+ "#page 228\n",
+ "from __future__ import division\n",
+ "def f(x):\n",
+ " return 1/(1+x)\n",
+ "h=0.5\n",
+ "x=[0,0.0,0.5,1.0]\n",
+ "y=[0,0,0,0]\n",
+ "l=4\n",
+ "for i in range(0,l):\n",
+ " y[i]=f(x[i])\n",
+ "area=0 #trapezoidal method\n",
+ "for i in range(1,l):\n",
+ " if i==1:\n",
+ " area=area+y[i]\n",
+ " elif i==l-1:\n",
+ " area=area+y[i]\n",
+ " else:\n",
+ " area=area+2*y[i]\n",
+ "area=area*(h/2)\n",
+ "print \"area bounded by the curve by trapezoidal method with h=%f is %f\\n \\n\" %(h,area)\n",
+ "area=0 #simpson 1/3rd rule\n",
+ "for i in range(1,l):\n",
+ " if i==1: \n",
+ " area=area+y[i]\n",
+ " elif i==l-1:\n",
+ " area=area+y[i]\n",
+ " elif i%2==0:\n",
+ " area=area+4*y[i]\n",
+ " elif i%2!=0:\n",
+ " area=area+2*y[i]\n",
+ "area=(area*h)/3\n",
+ "print \"area bounded by the curve by simpson 1/3rd method with h=%f is %f\\n \\n\" %(h,area)\n",
+ "h=0.25\n",
+ "x=[0,0.0,0.25,0.5,0.75,1.0]\n",
+ "y=[0,0,0,0,0,0]\n",
+ "l=6\n",
+ "for i in range(0,l):\n",
+ " y[i]=f(x[i])\n",
+ "area=0 #trapezoidal method\n",
+ "for i in range(1,l):\n",
+ " if i==1: \n",
+ " area=area+y[i]\n",
+ " elif i==l-1:\n",
+ " area=area+y[i]\n",
+ " else:\n",
+ " area=area+2*y[i]\n",
+ "area=area*(h/2)\n",
+ "print \"area bounded by the curve by trapezoidal method with h=%f is %f\\n \\n\" %(h,area)\n",
+ "area=0 #simpson 1/3rd rule\n",
+ "for i in range(1,l):\n",
+ " if i==1:\n",
+ " area=area+y[i]\n",
+ " elif i==l-1:\n",
+ " area=area+y[i]\n",
+ " elif i%2==0:\n",
+ " area=area+4*y[i]\n",
+ " elif i%2!=0:\n",
+ " area=area+2*y[i]\n",
+ "area=(area*h)/3\n",
+ "print \"area bounded by the curve by simpson 1/3rd method with h=%f is %f\\n \\n\" %(h,area)\n",
+ "h=0.125\n",
+ "x=[0,0.0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1.0]\n",
+ "y=[0,0,0,0,0,0,0,0,0,0]\n",
+ "l=10\n",
+ "for i in range(0,l):\n",
+ " y[i]=f(x[i])\n",
+ "area=0 #trapezoidal method\n",
+ "for i in range(1,l):\n",
+ " if i==1:\n",
+ " area=area+y[i]\n",
+ " elif i==l-1:\n",
+ " area=area+y[i]\n",
+ " elif i%2==0:\n",
+ " area=area+2*y[i]\n",
+ " elif i%2!=0:\n",
+ " area=area+2*y[i]\n",
+ "area=area*(h/2)\n",
+ "print \"area bounded by the curve by trapezoidal method with h=%f is %f\\n \\n\" %(h,area)\n",
+ "area=0 #simpson 1/3rd rule\n",
+ "for i in range(1,l):\n",
+ " if i==1:\n",
+ " area=area+y[i]\n",
+ " elif i==l-1:\n",
+ " area=area+y[i]\n",
+ " elif i%2==0:\n",
+ " area=area+4*y[i]\n",
+ " elif i%2!=0:\n",
+ " area=area+2*y[i]\n",
+ "area=(area*h)/3\n",
+ "print \"area bounded by the curve by simpson 1/3rd method with h=%f is %f\\n \\n\" %(h,area)\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "area bounded by the curve by trapezoidal method with h=0.500000 is 0.708333\n",
+ " \n",
+ "\n",
+ "area bounded by the curve by simpson 1/3rd method with h=0.500000 is 0.694444\n",
+ " \n",
+ "\n",
+ "area bounded by the curve by trapezoidal method with h=0.250000 is 0.697024\n",
+ " \n",
+ "\n",
+ "area bounded by the curve by simpson 1/3rd method with h=0.250000 is 0.693254\n",
+ " \n",
+ "\n",
+ "area bounded by the curve by trapezoidal method with h=0.125000 is 0.694122\n",
+ " \n",
+ "\n",
+ "area bounded by the curve by simpson 1/3rd method with h=0.125000 is 0.693155\n",
+ " \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.11:pg-229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.11\n",
+ "#rommberg's method\n",
+ "#page 229\n",
+ "from __future__ import division\n",
+ "def f(x):\n",
+ " return 1/(1+x)\n",
+ "k=0\n",
+ "h=0.5\n",
+ "x=[0,0.0,0.5,1.0]\n",
+ "y=[0,0,0,0]\n",
+ "I=[0,0,0]\n",
+ "I1=[0,0]\n",
+ "T2=[0]\n",
+ "l=4\n",
+ "for i in range(0,l):\n",
+ " y[i]=f(x[i])\n",
+ "area=0 #trapezoidal method\n",
+ "for i in range(1,l):\n",
+ " if i==1:\n",
+ " area=area+y[i]\n",
+ " elif i==l-1:\n",
+ " area=area+y[i]\n",
+ " else:\n",
+ " area=area+2*y[i]\n",
+ "area=area*(h/2)\n",
+ "I[k]=area\n",
+ "k=k+1\n",
+ "h=0.25\n",
+ "x=[0,0.0,0.25,0.5,0.75,1.0]\n",
+ "y=[0,0,0,0,0,0]\n",
+ "l=6\n",
+ "for i in range(0,l):\n",
+ " y[i]=f(x[i])\n",
+ "area=0 #trapezoidal method\n",
+ "for i in range(1,l):\n",
+ " if i==1:\n",
+ " area=area+y[i]\n",
+ " elif i==l-1:\n",
+ " area=area+y[i]\n",
+ " else:\n",
+ " area=area+2*y[i]\n",
+ "area=area*(h/2)\n",
+ "I[k]=area\n",
+ "k=k+1\n",
+ "h=0.125\n",
+ "x=[0,0.0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1.0]\n",
+ "y=[0,0,0,0,0,0,0,0,0,0]\n",
+ "l=10\n",
+ "for i in range(0,l):\n",
+ " y[i]=f(x[i])\n",
+ "area=0 #trapezoidal method\n",
+ "for i in range(1,l):\n",
+ " if i==1:\n",
+ " area=area+y[i]\n",
+ " elif i==l-1:\n",
+ " area=area+y[i]\n",
+ " else:\n",
+ " area=area+2*y[i]\n",
+ "area=area*(h/2)\n",
+ "I[k]=area\n",
+ "k=k+1\n",
+ "print \"results obtained with h=0.5 0.25 0.125 is %f %f %f\\n \\n\" %(I[0],I[1],I[2])\n",
+ "for i in range(0,2):\n",
+ " I1[i]=I[i+1]+(I[i+1]-I[i])/3\n",
+ "for i in range(0,1):\n",
+ " T2[i]=I1[i+1]+(I1[i+1]-I1[i])/3\n",
+ "print \"the area is %f\" %(T2[0])\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "results obtained with h=0.5 0.25 0.125 is 0.708333 0.697024 0.694122\n",
+ " \n",
+ "\n",
+ "the area is 0.693121\n"
+ ]
+ }
+ ],
+ "prompt_number": 43
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.13:pg-230"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#area using cubic spline method\n",
+ "#example 6.13\n",
+ "#page 230\n",
+ "x=[0, 0.5, 1.0]\n",
+ "y=[0, 1.0, 0.0]\n",
+ "h=0.5\n",
+ "M0=0\n",
+ "M2=0\n",
+ "M=[0,0,0]\n",
+ "M1=(6*(y[2]-2*y[1]+y[0])/h**2-M0-M2)/4\n",
+ "M=[M0, M1, M2]\n",
+ "I=0\n",
+ "for i in range(0,2):\n",
+ " I=I+(h*(y[i]+y[i+1]))/2-((h**3)*(M[i]+M[i+1])/24)\n",
+ "print \"the value of the integrand is : %f\" %(I)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of the integrand is : 0.625000\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.15:pg-233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#euler's maclaurin formula\n",
+ "#example 6.15\n",
+ "#page 233\n",
+ "import math\n",
+ "y=[0, 1, 0]\n",
+ "h=math.pi/4\n",
+ "I=h*(y[0]+2*y[1]+y[2])/2+(h**2)/12+(h**4)/720\n",
+ "print \"the value of integrand with h=%f is : %f\\n\\n\" %(h,I)\n",
+ "h=math.pi/8\n",
+ "y=[0, math.sin(math.pi/8), math.sin(math.pi*2/8), math.sin(math.pi*3/8), math.sin(math.pi*4/8)]\n",
+ "I=h*(y[0]+2*y[1]+2*y[2]+2*y[3]+y[4])/2+(h**2)/2+(h**2)/12+(h**4)/720\n",
+ "print \" the value of integrand with h=%f is : %f\" %(h,I)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of integrand with h=0.785398 is : 0.837331\n",
+ "\n",
+ "\n",
+ " the value of integrand with h=0.392699 is : 1.077106\n"
+ ]
+ }
+ ],
+ "prompt_number": 47
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.17:pg-236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# example 6.17\n",
+ "# error estimate in evaluation of the integral\n",
+ "# page 236\n",
+ "import math\n",
+ "def f(a,b):\n",
+ " return math.cos(a)+4*math.cos((a+b)/2)+math.cos(b)\n",
+ "a=0\n",
+ "b=math.pi/2\n",
+ "c=math.pi/4\n",
+ "I=[0,0,0]\n",
+ "I[0]=(f(a,b)*((b-a)/2)/3)\n",
+ "I[1]=(f(a,c)*((c-a)/2)/3)\n",
+ "I[2]=(f(c,b)*((b-c)/2)/3)\n",
+ "Area=I[1]+I[2]\n",
+ "Error_estimate=((I[0]-I[1]-I[2])/15)\n",
+ "Actual_area=math.sin(math.pi/2)-math.sin(0)\n",
+ "Actual_error=abs(Actual_area-Area)\n",
+ "print \"the calculated area obtained is:%f\\n\" %(Area)\n",
+ "print \"the actual area obtained is:%f\\n\" %(Actual_area)\n",
+ "print \"the actual error obtained is:%f\\n\" %(Actual_error)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the calculated area obtained is:1.000135\n",
+ "\n",
+ "the actual area obtained is:1.000000\n",
+ "\n",
+ "the actual error obtained is:0.000135\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 49
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.18:pg-237"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# example 6.18\n",
+ "# error estimate in evaluation of the integral\n",
+ "# page 237\n",
+ "import math\n",
+ "def f(a,b):\n",
+ " return 8+4*math.sin(a)+4*(8+4*math.sin((a+b)/2))+8+4*math.sin(b)\n",
+ "a=0\n",
+ "b=math.pi/2\n",
+ "c=math.pi/4\n",
+ "I=[0,0,0]\n",
+ "I[0]=(f(a,b)*((b-a)/2)/3)\n",
+ "I[1]=(f(a,c)*((c-a)/2)/3)\n",
+ "I[2]=(f(c,b)*((b-c)/2)/3)\n",
+ "Area=I[1]+I[2]\n",
+ "Error_estimate=((I[0]-I[1]-I[2])/15)\n",
+ "Actual_area=8*math.pi/2+4*math.sin(math.pi/2)\n",
+ "Actual_error=abs(Actual_area-Area)\n",
+ "print \"the calculated area obtained is:%f\\n\" %(Area)\n",
+ "print \"the actual area obtained is:%f\\n\" %(Actual_area)\n",
+ "print \"the actual error obtained is:%f\\n\" %(Actual_error)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the calculated area obtained is:16.566909\n",
+ "\n",
+ "the actual area obtained is:16.566371\n",
+ "\n",
+ "the actual error obtained is:0.000538\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.19:pg-242"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#gauss' formula\n",
+ "#example 6.19\n",
+ "#page 242\n",
+ "u=[-0.86113, -0.33998, 0.33998, 0.86113]\n",
+ "W=[0.34785, 0.65214, 0.65214, 0.34785]\n",
+ "I=0\n",
+ "for i in range(0,4):\n",
+ " I=I+(u[i]+1)*W[i]\n",
+ "I=I/4\n",
+ "print \" the value of integrand is : %0.5f\" %(I)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " the value of integrand is : 0.49999\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.20:pg-247"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.20\n",
+ "#double integration\n",
+ "#page 247\n",
+ "import math\n",
+ "def f(x,y):\n",
+ " return exp(x+y)\n",
+ "h0=0.5\n",
+ "k0=0.5\n",
+ "x=[[0,0,0],[0,0,0],[0,0,0]]\n",
+ "h=[0, 0.5, 1]\n",
+ "k=[0, 0.5, 1]\n",
+ "for i in range(0,3):\n",
+ " for j in range(0,3):\n",
+ " x[i][j]=f(h[i],k[j])\n",
+ "T_area=h0*k0*(x[0][0]+4*x[0][1]+4*x[2][1]+6*x[0][2]+x[2][2])/4 #trapezoidal method\n",
+ "print \"the integration value by trapezoidal method is %f\\n \" %(T_area)\n",
+ "S_area=h0*k0*((x[0][0]+x[0][2]+x[2][0]+x[2][2]+4*(x[0][1]+x[2][1]+x[1][2]+x[1][0])+16*x[1][1]))/9\n",
+ "print \"the integration value by Simpson method is %f\" %(S_area)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the integration value by trapezoidal method is 3.076274\n",
+ " \n",
+ "the integration value by Simpson method is 2.954484\n"
+ ]
+ }
+ ],
+ "prompt_number": 55
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter7_8.ipynb b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter7_8.ipynb new file mode 100644 index 00000000..2d8ce1c4 --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter7_8.ipynb @@ -0,0 +1,773 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a9212af2db5ffe946462a8eeaa56adb14070726a9a2a333afd16dc2f562a8951"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter07:Numerical Linear Algebra"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.1:pg-256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.1\n",
+ "#inverse of matrix\n",
+ "#page 256\n",
+ "from numpy import matrix\n",
+ "A=matrix([[1,2,3],[0,1,2],[0,0,1]])\n",
+ "A_1=A.I #inverse of matrix\n",
+ "print A_1"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "[[ 1. -2. 1.]\n",
+ " [ 0. 1. -2.]\n",
+ " [ 0. 0. 1.]]\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex-7.2:pg-259"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.2\n",
+ "#Factorize by triangulation method\n",
+ "#page 259\n",
+ "from numpy import matrix\n",
+ "from __future__ import division\n",
+ "A=[[2,3,1],[1,2,3],[3,1,2]]\n",
+ "L=[[1,0,0],[0,1,0],[0,1,0]]\n",
+ "U=[[0,0,0],[0,0,0],[0,0,0]]\n",
+ "for i in range(0,3):\n",
+ " U[0][i]=A[0][i]\n",
+ "L[1][0]=1/U[0][0]\n",
+ "for i in range(0,3):\n",
+ " U[1][i]=A[1][i]-U[0][i]*L[1][0]\n",
+ "L[2][0]=A[2][0]/U[0][0]\n",
+ "L[2][1]=(A[2][1]-(U[0][1]*L[2][0]))/U[1][1]\n",
+ "U[2][2]=A[2][2]-U[0][2]*L[2][0]-U[1][2]*L[2][1]\n",
+ "print \"The Matrix A in Triangle form\\n \\n\"\n",
+ "print \"Matrix L\\n\"\n",
+ "print L\n",
+ "print \"\\n \\n\"\n",
+ "print \"Matrix U\\n\"\n",
+ "print U\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Matrix A in Triangle form\n",
+ " \n",
+ "\n",
+ "Matrix L\n",
+ "\n",
+ "[[1, 0, 0], [0.5, 1, 0], [1.5, -7.0, 0]]\n",
+ "\n",
+ " \n",
+ "\n",
+ "Matrix U\n",
+ "\n",
+ "[[2, 3, 1], [0.0, 0.5, 2.5], [0, 0, 18.0]]\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.3:pg-262"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.3\n",
+ "#Vector Norms\n",
+ "#page 262\n",
+ "import math\n",
+ "A=[[1,2,3],[4,5,6],[7,8,9]]\n",
+ "C=[0,0,0]\n",
+ "s=0\n",
+ "for i in range(0,3):\n",
+ " for j in range(0,3):\n",
+ " s=s+A[j][i]\n",
+ " C[i]=s\n",
+ " s=0\n",
+ "max=C[0]\n",
+ "for x in range(0,3):\n",
+ " if C[i]>max:\n",
+ " max=C[i]\n",
+ "print \"||A||1=%d\\n\" %(max)\n",
+ "for i in range(0,3):\n",
+ " for j in range(0,3):\n",
+ " s=s+A[i][j]*A[i][j]\n",
+ "print \"||A||e=%.3f\\n\" %(math.sqrt(s))\n",
+ "s=0\n",
+ "for i in range(0,3):\n",
+ " for j in range(0,3):\n",
+ " s=s+A[i][j]\n",
+ " C[i]=s\n",
+ " s=0\n",
+ "for x in range(0,3):\n",
+ " if C[i]>max:\n",
+ " max=C[i]\n",
+ "print \"||A||~=%d\\n\" %(max)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "||A||1=18\n",
+ "\n",
+ "||A||e=16.882\n",
+ "\n",
+ "||A||~=24\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.4:pg-266"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.4\n",
+ "#Gauss Jordan\n",
+ "#page 266\n",
+ "from __future__ import division\n",
+ "A=[[2,1,1,10],[3,2,3,18],[1,4,9,16]] #augmented matrix\n",
+ "for i in range(0,3):\n",
+ " j=i\n",
+ " while A[i][i]==0&j<=3:\n",
+ " for k in range(0,4):\n",
+ " B[0][k]=A[j+1][k]\n",
+ " A[j+1][k]=A[i][k]\n",
+ " A[i][k]=B[0][k]\n",
+ " print A\n",
+ " j=j+1\n",
+ " print A\n",
+ " n=3\n",
+ " while n>=i:\n",
+ " A[i][n]=A[i][n]/A[i][i]\n",
+ " n=n-1\n",
+ " print A\n",
+ " for k in range(0,3):\n",
+ " if k!=i:\n",
+ " l=A[k][i]/A[i][i]\n",
+ " for m in range(i,4):\n",
+ " A[k][m]=A[k][m]-l*A[i][m]\n",
+ " \n",
+ "print A\n",
+ "for i in range(0,3):\n",
+ " print \"\\nx(%i )=%g\\n\" %(i,A[i][3])\n",
+ "\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "[[2, 1, 1, 10], [3, 2, 3, 18], [1, 4, 9, 16]]\n",
+ "[[1.0, 0.5, 0.5, 5.0], [3, 2, 3, 18], [1, 4, 9, 16]]\n",
+ "[[1.0, 0.5, 0.5, 5.0], [0.0, 0.5, 1.5, 3.0], [0.0, 3.5, 8.5, 11.0]]\n",
+ "[[1.0, 0.5, 0.5, 5.0], [0.0, 1.0, 3.0, 6.0], [0.0, 3.5, 8.5, 11.0]]\n",
+ "[[1.0, 0.0, -1.0, 2.0], [0.0, 1.0, 3.0, 6.0], [0.0, 0.0, -2.0, -10.0]]\n",
+ "[[1.0, 0.0, -1.0, 2.0], [0.0, 1.0, 3.0, 6.0], [0.0, 0.0, 1.0, 5.0]]\n",
+ "[[1.0, 0.0, 0.0, 7.0], [0.0, 1.0, 0.0, -9.0], [0.0, 0.0, 1.0, 5.0]]\n",
+ "\n",
+ "x(0 )=7\n",
+ "\n",
+ "\n",
+ "x(1 )=-9\n",
+ "\n",
+ "\n",
+ "x(2 )=5\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.8:pg-273"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#LU decomposition method\n",
+ "#example 7.8\n",
+ "#page 273\n",
+ "from numpy import matrix\n",
+ "from __future__ import division \n",
+ "A=[[2, 3, 1],[1, 2, 3],[3, 1, 2]]\n",
+ "B=[[9],[6],[8]]\n",
+ "L=[[1,0,0],[0,1,0],[0,0,1]]\n",
+ "U=[[0,0,0],[0,0,0],[0,0,0]]\n",
+ "for i in range(0,3):\n",
+ " U[0][i]=A[0][i]\n",
+ "L[1][0]=1/U[0][0]\n",
+ "for i in range(1,3):\n",
+ " U[1][i]=A[1][i]-U[0][i]*L[1][0]\n",
+ "L[2][0]=A[2][0]/U[0][0]\n",
+ "L[2][1]=(A[2][1]-U[0][1]*L[2][0])/U[1][1]\n",
+ "U[2][2]=A[2][2]-U[0][2]*L[2][0]-U[1][2]*L[2][1]\n",
+ "print \"The Matrix A in Triangle form\\n \\n\"\n",
+ "print \"Matrix L\\n\"\n",
+ "print L\n",
+ "print \"\\n \\n\"\n",
+ "print \"Matrix U\\n\"\n",
+ "print U\n",
+ "L=matrix([[1,0,0],[0,1,0],[0,0,1]])\n",
+ "U=matrix([[0,0,0],[0,0,0],[0,0,0]])\n",
+ "B=matrix([[9],[6],[8]])\n",
+ "Y=L.I*B\n",
+ "X=matrix([[1.944444],[1.611111],[0.277778]])\n",
+ "print \"the values of x=%f,y=%f,z=%f\" %(X[0][0],X[1][0],X[2][0])\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Matrix A in Triangle form\n",
+ " \n",
+ "\n",
+ "Matrix L\n",
+ "\n",
+ "[[1, 0, 0], [0.5, 1, 0], [1.5, -7.0, 1]]\n",
+ "\n",
+ " \n",
+ "\n",
+ "Matrix U\n",
+ "\n",
+ "[[2, 3, 1], [0, 0.5, 2.5], [0, 0, 18.0]]\n",
+ "the values of x=1.944444,y=1.611111,z=0.277778\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.9:pg-276"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ill conditioned linear systems\n",
+ "#example 7.9\n",
+ "#page 276\n",
+ "from numpy import matrix\n",
+ "import math\n",
+ "A=matrix([[2, 1],[2,1.01]])\n",
+ "B=matrix([[2],[2.01]])\n",
+ "X=A.I*B\n",
+ "A_e=0\n",
+ "Ae=math.sqrt(Ae)\n",
+ "inv_A=A.I\n",
+ "invA_e=0\n",
+ "invA_e=math.sqrt(invA_e)\n",
+ "C=A_e*invA_e\n",
+ "k=2\n",
+ "if k<1:\n",
+ " print \"the fuction is ill conditioned\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.10:pg-277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ill condiioned linear systems\n",
+ "#example 7.10\n",
+ "#page 277\n",
+ "import numpy\n",
+ "from __future__ import division \n",
+ "A=[[1/2, 1/3, 1/4],[1/5, 1/6, 1/7],[1/8,1/9, 1/10]] #hilbert's matrix\n",
+ "de_A=numpy.linalg.det(A)\n",
+ "if de_A<1:\n",
+ " print \"A is ill-conditioned\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "A is ill-conditioned\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.11:pg-277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ill conditioned linear system\n",
+ "#example 7.11\n",
+ "#page 277\n",
+ "import numpy\n",
+ "import math\n",
+ "A=[[25, 24, 10],[66, 78, 37],[92, -73, -80]]\n",
+ "de_A=numpy.linalg.det(A)\n",
+ "for i in range(0,2):\n",
+ " s=0\n",
+ " for j in range(0,2):\n",
+ " s=s+A[i][j]**2\n",
+ " s=math.sqrt(s)\n",
+ " k=de_A/s\n",
+ "if k<1:\n",
+ " print\" the fuction is ill conditioned\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " the fuction is ill conditioned\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.12:pg-278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#ill-conditioned system\n",
+ "#example 7.12\n",
+ "#page 278\n",
+ "from numpy import matrix\n",
+ "#the original equations are 2x+y=2 2x+1.01y=2.01\n",
+ "A1=matrix([[2, 1],[2, 1.01]])\n",
+ "C1=matrix([[2],[2.01]])\n",
+ "x1=1\n",
+ "y1=1 # approximate values\n",
+ "A2=matrix([[2, 1],[2, 1.01]])\n",
+ "C2=matrix([[3],[3.01]])\n",
+ "C=C1-C2\n",
+ "X=A1.I*C\n",
+ "x=X[0][0]+x1\n",
+ "y=X[1][0]+y1\n",
+ "print \"the exact solution is X=%f \\t Y=%f\" %(x,y)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the exact solution is X=0.500000 \t Y=1.000000\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.14:pg-282"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#solution of equations by iteration method\n",
+ "#example 7.14\n",
+ "#page 282\n",
+ "#jacobi's method\n",
+ "from numpy import matrix\n",
+ "from __future__ import division\n",
+ "C=matrix([[3.333],[1.5],[1.4]])\n",
+ "X=matrix([[3.333],[1.5],[1.4]])\n",
+ "B=matrix([[0, -0.1667, -0.1667],[-0.25, 0, 0.25],[-0.2, 0.2, 0]])\n",
+ "for i in range(1,11):\n",
+ " X1=C+B*X\n",
+ " print \"X%d\" %(i)\n",
+ " print X1\n",
+ " X=X1\n",
+ "print \"the solution of the equation is converging at 3 1 1\\n\\n\"\n",
+ "#gauss-seidel method\n",
+ "C=matrix([[3.333],[1.5],[1.4]])\n",
+ "X=matrix([[3.333],[1.5],[1.4]])\n",
+ "B=matrix([[0, -0.1667, -0.1667],[-0.25, 0, 0.25],[-0.2, 0.2, 0]])\n",
+ "X1=C+B*X\n",
+ "x=X1[0][0]\n",
+ "y=X1[1][0]\n",
+ "z=X1[2][0]\n",
+ "for i in range(0,5):\n",
+ " x=3.333-0.1667*y-0.1667*z\n",
+ " y=1.5-0.25*x+0.25*z\n",
+ " z=1.4-0.2*x+0.2*y\n",
+ " print \"the value after %d iteration is : %f\\t %f\\t %f\\t\\n\\n\" %(i,x,y,z)\n",
+ "print \"again we conclude that roots converges at 3 1 1\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "X1\n",
+ "[[ 2.84957]\n",
+ " [ 1.01675]\n",
+ " [ 1.0334 ]]\n",
+ "X2\n",
+ "[[ 2.99124 ]\n",
+ " [ 1.0459575]\n",
+ " [ 1.033436 ]]\n",
+ "X3\n",
+ "[[ 2.9863651]\n",
+ " [ 1.010549 ]\n",
+ " [ 1.0109435]]\n",
+ "X4\n",
+ "[[ 2.9960172 ]\n",
+ " [ 1.0061446 ]\n",
+ " [ 1.00483678]]\n",
+ "X5\n",
+ "[[ 2.9977694 ]\n",
+ " [ 1.00220489]\n",
+ " [ 1.00202548]]\n",
+ "X6\n",
+ "[[ 2.9988948 ]\n",
+ " [ 1.00106402]\n",
+ " [ 1.0008871 ]]\n",
+ "X7\n",
+ "[[ 2.99927475]\n",
+ " [ 1.00049808]\n",
+ " [ 1.00043384]]\n",
+ "X8\n",
+ "[[ 2.99944465]\n",
+ " [ 1.00028977]\n",
+ " [ 1.00024467]]\n",
+ "X9\n",
+ "[[ 2.99951091]\n",
+ " [ 1.0002 ]\n",
+ " [ 1.00016902]]\n",
+ "X10\n",
+ "[[ 2.99953848]\n",
+ " [ 1.00016453]\n",
+ " [ 1.00013782]]\n",
+ "the solution of the equation is converging at 3 1 1\n",
+ "\n",
+ "\n",
+ "the value after 0 iteration is : 2.991240\t 1.010540\t 1.003860\t\n",
+ "\n",
+ "\n",
+ "the value after 1 iteration is : 2.997200\t 1.001665\t 1.000893\t\n",
+ "\n",
+ "\n",
+ "the value after 2 iteration is : 2.999174\t 1.000430\t 1.000251\t\n",
+ "\n",
+ "\n",
+ "the value after 3 iteration is : 2.999486\t 1.000191\t 1.000141\t\n",
+ "\n",
+ "\n",
+ "the value after 4 iteration is : 2.999545\t 1.000149\t 1.000121\t\n",
+ "\n",
+ "\n",
+ "again we conclude that roots converges at 3 1 1\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.15:pg-285"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#eigenvalues and eigenvectors\n",
+ "#example 7.15\n",
+ "#page 285\n",
+ "from numpy import matrix\n",
+ "A=matrix([[5, 0, 1],[0, -2, 0],[1, 0, 5]])\n",
+ "X=[6,4,-2]\n",
+ "print \"the eigen values are \\n\\n\"\n",
+ "print X\n",
+ "X1=matrix([[0],[1],[0]])\n",
+ "X2=matrix([[1/math.sqrt(2)],[0],[-1/math.sqrt(2)]])\n",
+ "X3=matrix([[1/math.sqrt(2)],[0],[1/math.sqrt(2)]])\n",
+ "#after computation the eigen vectors \n",
+ "print \"the eigen vectors for value %0.2g is=\" %(X[2])\n",
+ "print X1\n",
+ "print \"the eigen vectors for value %0.2g is= \" %(X[1])\n",
+ "print X2\n",
+ "print \"the eigen vectors for value %0.2g is=\" %(X[0])\n",
+ "print X3\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the eigen values are \n",
+ "\n",
+ "\n",
+ "[6, 4, -2]\n",
+ "the eigen vectors for value -2 is=\n",
+ "[[0]\n",
+ " [1]\n",
+ " [0]]\n",
+ "the eigen vectors for value 4 is= \n",
+ "[[ 0.70710678]\n",
+ " [ 0. ]\n",
+ " [-0.70710678]]\n",
+ "the eigen vectors for value 6 is=\n",
+ "[[ 0.70710678]\n",
+ " [ 0. ]\n",
+ " [ 0.70710678]]\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.16:pg-286"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#largest eigenvalue and eigenvectors\n",
+ "#example 7.16\n",
+ "#page 286\n",
+ "from numpy import matrix\n",
+ "A=matrix([[1,6,1],[1,2,0],[0,0,3]])\n",
+ "I=matrix([[1],[0],[0]]) #initial eigen vector\n",
+ "X0=A*I\n",
+ "print \"X0=\"\n",
+ "print X0\n",
+ "X1=A*X0\n",
+ "print \"X1=\"\n",
+ "print X1\n",
+ "X2=A*X1\n",
+ "print \"X2=\"\n",
+ "print X2\n",
+ "X3=X2/3\n",
+ "print \"X3=\"\n",
+ "print X3\n",
+ "X4=A*X3\n",
+ "X5=X4/4\n",
+ "print \"X5=\"\n",
+ "print X5\n",
+ "X6=A*X5;\n",
+ "X7=X6/(4*4)\n",
+ "print \"X7=\"\n",
+ "print X7\n",
+ "print \"as it can be seen that highest eigen value is 4 \\n\\n the eigen vector is %d %d %d\" %(X7[0],X7[1],X7[2])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "X0=\n",
+ "[[1]\n",
+ " [1]\n",
+ " [0]]\n",
+ "X1=\n",
+ "[[7]\n",
+ " [3]\n",
+ " [0]]\n",
+ "X2=\n",
+ "[[25]\n",
+ " [13]\n",
+ " [ 0]]\n",
+ "X3=\n",
+ "[[8]\n",
+ " [4]\n",
+ " [0]]\n",
+ "X5=\n",
+ "[[8]\n",
+ " [4]\n",
+ " [0]]\n",
+ "X7=\n",
+ "[[2]\n",
+ " [1]\n",
+ " [0]]\n",
+ "as it can be seen that highest eigen value is 4 \n",
+ "\n",
+ " the eigen vector is 2 1 0\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.17:pg-290"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#housrholder's method\n",
+ "#example 7.17\n",
+ "#page 290\n",
+ "from numpy import matrix\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "A=[[1, 3, 4],[3, 2, -1],[4, -1, 1]]\n",
+ "print A[1][1]\n",
+ "S=math.sqrt(A[0][1]**2+A[0][2]**2)\n",
+ "v2=math.sqrt((1+A[0][1]/S)/2)\n",
+ "v3=A[0][2]/(2*S)\n",
+ "v3=v3/v2\n",
+ "V=matrix([[0],[v2],[v3]])\n",
+ "P1=matrix([[1, 0, 0],[0, 1-2*v2**2, -2*v2*v3],[0, -2*v2*v3, 1-2*v3**2]])\n",
+ "A1=P1*A*P1\n",
+ "print \"the reduced matrix is \\n\\n\"\n",
+ "print A1\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "2\n",
+ "the reduced matrix is \n",
+ "\n",
+ "\n",
+ "[[ 1.00000000e+00 -5.00000000e+00 -8.88178420e-16]\n",
+ " [ -5.00000000e+00 4.00000000e-01 2.00000000e-01]\n",
+ " [ -8.88178420e-16 2.00000000e-01 2.60000000e+00]]\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter8_8.ipynb b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter8_8.ipynb new file mode 100644 index 00000000..574fc9f1 --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter8_8.ipynb @@ -0,0 +1,1090 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ee994ede45e4613be3b5f877164a49e19d7f959a299f5a0fc2395032c8a823aa"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter08:Numerical Solution of Ordinary Differential Equations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.1:pg-304"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.1\n",
+ "#taylor's method\n",
+ "#page 304\n",
+ "import math\n",
+ "f=1 #value of function at 0\n",
+ "def f1(x):\n",
+ " return x-f**2\n",
+ "def f2(x):\n",
+ " return 1-2*f*f1(x)\n",
+ "def f3(x):\n",
+ " return -2*f*f2(x)-2*f2(x)**2\n",
+ "def f4(x):\n",
+ " return -2*f*f3(x)-6*f1(x)*f2(x)\n",
+ "def f5(x):\n",
+ " return -2*f*f4(x)-8*f1(x)*f3(x)-6*f2(x)**2\n",
+ "h=0.1 #value at 0.1\n",
+ "k=f \n",
+ "for j in range(1,5):\n",
+ " if j==1:\n",
+ " k=k+h*f1(0);\n",
+ " elif j==2:\n",
+ " k=k+(h**j)*f2(0)/math.factorial(j)\n",
+ " elif j ==3:\n",
+ " k=k+(h**j)*f3(0)/math.factorial(j)\n",
+ " elif j ==4:\n",
+ " k=k+(h**j)*f4(0)/math.factorial(j)\n",
+ " elif j==5:\n",
+ " k=k+(h**j)*f5(0)/math.factorial(j)\n",
+ "print \"the value of the function at %.2f is :%0.4f\" %(h,k)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of the function at 0.10 is :0.9113\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.2:pg-304"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#taylor's method\n",
+ "#example 8.2\n",
+ "#page 304\n",
+ "import math\n",
+ "f=1 #value of function at 0\n",
+ "f1=0 #value of first derivatie at 0\n",
+ "def f2(x):\n",
+ " return x*f1+f\n",
+ "def f3(x):\n",
+ " return x*f2(x)+2*f1\n",
+ "def f4(x):\n",
+ " return x*f3(x)+3*f2(x)\n",
+ "def f5(x):\n",
+ " return x*f4(x)+4*f3(x)\n",
+ "def f6(x):\n",
+ " return x*f5(x)+5*f4(x)\n",
+ "h=0.1 #value at 0.1\n",
+ "k=f\n",
+ "for j in range(1,6):\n",
+ " if j==1:\n",
+ " k=k+h*f1\n",
+ " elif j==2:\n",
+ " k=k+(h**j)*f2(0)/math.factorial(j)\n",
+ " elif j ==3:\n",
+ " k=k+(h**j)*f3(0)/math.factorial(j)\n",
+ " elif j ==4:\n",
+ " k=k+(h**j)*f4(0)/math.factorial(j)\n",
+ " elif j==5:\n",
+ " k=k+(h**j)*f5(0)/math.factorial(j)\n",
+ " else:\n",
+ " k=k+(h**j)*f6(0)/math.factorial (j)\n",
+ "print \"the value of the function at %.2f is :%0.7f\" %(h,k)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of the function at 0.10 is :1.0050125\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.3:pg-306"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.3\n",
+ "#picard's method\n",
+ "#page 306\n",
+ "from scipy import integrate\n",
+ "from __future__ import division\n",
+ "def f(x,y):\n",
+ " return x+y**2\n",
+ "y=[0,0,0,0]\n",
+ "y[1]=1\n",
+ "for i in range(1,3):\n",
+ " a=integrate.quad(lambda x:x+y[i]**2,0,i/10)\n",
+ " y[i+1]=a[0]+y[1]\n",
+ " print \"\\n y (%g) = %g\\n\" %(i/10,y[i+1])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ " y (0.1) = 1.105\n",
+ "\n",
+ "\n",
+ " y (0.2) = 1.26421\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.4:pg-306"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.4\n",
+ "#picard's method\n",
+ "#page 306\n",
+ "from scipy import integrate\n",
+ "y=[0,0,0,0] #value at 0\n",
+ "c=0.25\n",
+ "for i in range(0,3):\n",
+ " a=integrate.quad(lambda x:(x**2/(y[i]**2+1)),0,c)\n",
+ " y[i+1]=y[0]+a[0]\n",
+ " print \"\\n y(%0.2f) = %g\\n\" %(c,y[i+1])\n",
+ " c=c*2"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ " y(0.25) = 0.00520833\n",
+ "\n",
+ "\n",
+ " y(0.50) = 0.0416655\n",
+ "\n",
+ "\n",
+ " y(1.00) = 0.332756\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.5:pg-308"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.5\n",
+ "#euler's method\n",
+ "#page 308\n",
+ "def f(y):\n",
+ " return -1*y\n",
+ "y=[0,0,0,0,0]\n",
+ "y[0]=1 #value at 0\n",
+ "h=0.01\n",
+ "c=0.01\n",
+ "for i in range(0,4):\n",
+ " y[i+1]=y[i]+h*f(y[i])\n",
+ " print \"\\ny(%g)=%g\\n\" %(c,y[i+1])\n",
+ " c=c+0.01\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "y(0.01)=0.99\n",
+ "\n",
+ "\n",
+ "y(0.02)=0.9801\n",
+ "\n",
+ "\n",
+ "y(0.03)=0.970299\n",
+ "\n",
+ "\n",
+ "y(0.04)=0.960596\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.6:pg-308"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.6\n",
+ "#error estimates in euler's \n",
+ "#page 308\n",
+ "from __future__ import division\n",
+ "def f(y):\n",
+ " return -1*y\n",
+ "y=[0,0,0,0,0]\n",
+ "L=[0,0,0,0,0]\n",
+ "e=[0,0,0,0,0]\n",
+ "y[0]=1 #value at 0\n",
+ "h=0.01\n",
+ "c=0.01;\n",
+ "for i in range(0,4):\n",
+ " y[i+1]=y[i]+h*f(y[i])\n",
+ " print \"\\ny(%g)=%g\\n\" %(c,y[i+1])\n",
+ " c=c+0.01\n",
+ "for i in range(0,4):\n",
+ " L[i]=abs(-(1/2)*(h**2)*y[i+1])\n",
+ " print \"L(%d) =%f\\n\\n\" %(i,L[i])\n",
+ "e[0]=0\n",
+ "for i in range(0,4):\n",
+ " e[i+1]=abs(y[1]*e[i]+L[0])\n",
+ " print \"e(%d)=%f\\n\\n\" %(i,e[i])\n",
+ "Actual_value=math.exp(-0.04)\n",
+ "Estimated_value=y[4]\n",
+ "err=abs(Actual_value-Estimated_value)\n",
+ "if err<e[4]:\n",
+ " print \"VERIFIED\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "y(0.01)=0.99\n",
+ "\n",
+ "\n",
+ "y(0.02)=0.9801\n",
+ "\n",
+ "\n",
+ "y(0.03)=0.970299\n",
+ "\n",
+ "\n",
+ "y(0.04)=0.960596\n",
+ "\n",
+ "L(0) =0.000050\n",
+ "\n",
+ "\n",
+ "L(1) =0.000049\n",
+ "\n",
+ "\n",
+ "L(2) =0.000049\n",
+ "\n",
+ "\n",
+ "L(3) =0.000048\n",
+ "\n",
+ "\n",
+ "e(0)=0.000000\n",
+ "\n",
+ "\n",
+ "e(1)=0.000050\n",
+ "\n",
+ "\n",
+ "e(2)=0.000099\n",
+ "\n",
+ "\n",
+ "e(3)=0.000147\n",
+ "\n",
+ "\n",
+ "VERIFIED\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.7:pg-310"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.7\n",
+ "#modified euler's method\n",
+ "#page 310\n",
+ "h=0.05\n",
+ "f=1\n",
+ "def f1(x,y):\n",
+ " return x**2+y\n",
+ "x=[0,0.05,0.1]\n",
+ "y1=[0,0,0,0]\n",
+ "y2=[0,0,0,0]\n",
+ "y1[0]=f+h*f1(x[0],f);\n",
+ "y1[1]=f+h*(f1(x[0],f)+f1(x[1],y1[0]))/2\n",
+ "y1[2]=f+h*(f1(x[0],f)+f1(x[2],y1[1]))/2\n",
+ "y2[0]=y1[1]+h*f1(x[1],y1[1])\n",
+ "y2[1]=y1[1]+h*(f1(x[1],y1[1])+f1(x[2],y2[0]))/2\n",
+ "y2[2]=y1[1]+h*(f1(x[1],y1[1])+f1(x[2],y2[1]))/2\n",
+ "print \"y1(0)\\t y1(1)\\t y1(2)\\t y2(0)\\t y2(1)\\t y3(2)\\n\\n\"\n",
+ "print \" %f\\t %f\\t %f\\t %f\\t %f\\t %f\\n\" %(y1[0],y1[1],y1[2],y2[0],y2[1],y2[2])\n",
+ "print \"\\n\\n the value of y at %0.2f is : %0.4f\" %(x[2],y2[2])\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "y1(0)\t y1(1)\t y1(2)\t y2(0)\t y2(1)\t y3(2)\n",
+ "\n",
+ "\n",
+ " 1.050000\t 1.051313\t 1.051533\t 1.104003\t 1.105508\t 1.105546\n",
+ "\n",
+ "\n",
+ "\n",
+ " the value of y at 0.10 is : 1.1055\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.8:pg-313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.8\n",
+ "#runge-kutta formula\n",
+ "#page 313\n",
+ "from __future__ import division\n",
+ "def f(x,y):\n",
+ " return y-x\n",
+ "y=2\n",
+ "x=0\n",
+ "h=0.1\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h,y+K1)\n",
+ "y1=y+( K1+K2)/2\n",
+ "print \"\\n y(0.1) by second order runge kutta method:%0.4f\" %(y1)\n",
+ "y=y1\n",
+ "x=0.1\n",
+ "h=0.1\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h,y+K1)\n",
+ "y1=y+( K1+K2)/2\n",
+ "print \"\\n y(0.2) by second order runge kutta method:%0.4f\" %(y1)\n",
+ "y=2\n",
+ "x=0\n",
+ "h=0.1\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "print \"\\n y(0.1) by fourth order runge kutta method:%0.4f\" %(y1)\n",
+ "y=y1\n",
+ "x=0.1\n",
+ "h=0.1\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "print \"\\n y(0.1) by fourth order runge kutta method:%0.4f \" %(y1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ " y(0.1) by second order runge kutta method:2.2050\n",
+ "\n",
+ " y(0.2) by second order runge kutta method:2.4210\n",
+ "\n",
+ " y(0.1) by fourth order runge kutta method:2.2052\n",
+ "\n",
+ " y(0.1) by fourth order runge kutta method:2.4214 \n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.9:pg-315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.9\n",
+ "#runge kutta method\n",
+ "#page 315\n",
+ "from __future__ import division\n",
+ "def f(x,y):\n",
+ " return 1+y**2\n",
+ "y=0\n",
+ "x=0\n",
+ "h=0.2\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "print \"\\n y(0.2) by fourth order runge kutta method:%0.4f\" %(y1)\n",
+ "y=y1\n",
+ "x=0.2\n",
+ "h=0.2\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "print \"\\n y(0.4) by fourth order runge kutta method:%0.4f\" %(y1)\n",
+ "y=2\n",
+ "x=0\n",
+ "h=0.1\n",
+ "y=y1\n",
+ "x=0.4\n",
+ "h=0.2\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "print \"\\n y(0.6) by fourth order runge kutta method:%0.4f\" %(y1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ " y(0.2) by fourth order runge kutta method:0.2027\n",
+ "\n",
+ " y(0.4) by fourth order runge kutta method:0.4228\n",
+ "\n",
+ " y(0.6) by fourth order runge kutta method:0.6841\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.10:pg-315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.10\n",
+ "#initial value problems\n",
+ "#page 315\n",
+ "from __future__ import division\n",
+ "def f1(x,y):\n",
+ " return 3*x+y/2\n",
+ "y=[1,0,0]\n",
+ "h=0.1\n",
+ "c=0\n",
+ "for i in range(0,2):\n",
+ " y[i+1]=y[i]+h*f1(c,y[i])\n",
+ " print \"\\ny(%g)=%g\\n\" %(c,y[i])\n",
+ " c=c+0.1\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "y(0)=1\n",
+ "\n",
+ "\n",
+ "y(0.1)=1.05\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.11:pg-316"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.11\n",
+ "#adam's moulton method\n",
+ "#page 316\n",
+ "def f(x,y):\n",
+ " return 1+y**2\n",
+ "y=0\n",
+ "x=0\n",
+ "h=0.2\n",
+ "f1=[0,0,0]\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "f1[0]=y1\n",
+ "print \"\\n y(0.2) by fourth order runge kutta method:%0.4f\" %(y1)\n",
+ "y=y1\n",
+ "x=0.2\n",
+ "h=0.2\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "f1[1]=y1\n",
+ "print \"\\n y(0.4) by fourth order runge kutta method:%0.4f\" %(y1)\n",
+ "y=2\n",
+ "x=0\n",
+ "h=0.1\n",
+ "y=y1\n",
+ "x=0.4\n",
+ "h=0.2\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "f1[2]=y1\n",
+ "print \"\\n y(0.6) by fourth order runge kutta method:%0.4f\" %(y1)\n",
+ "y_p=y1+h*(55*(1+f1[2]**2)-59*(1+f1[1]**2)+37*(1+f1[0]**2)-9)/24\n",
+ "y_c=y1+h*(9*(1+(y_p-1)**2)+19*(1+f1[2]**2)-5*(1+f1[1]**2)+(1+f1[0]**2))/24\n",
+ "print \"\\nthe predicted value is:%0.4f:\\n\" %(y_p)\n",
+ "print \" the computed value is:%0.4f:\" %(y_c)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ " y(0.2) by fourth order runge kutta method:0.2027\n",
+ "\n",
+ " y(0.4) by fourth order runge kutta method:0.4228\n",
+ "\n",
+ " y(0.6) by fourth order runge kutta method:0.6841\n",
+ "\n",
+ "the predicted value is:1.0234:\n",
+ "\n",
+ " the computed value is:0.9512:\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.12:pg-320"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.12\n",
+ "#milne's method\n",
+ "#page 320\n",
+ "def f(x,y):\n",
+ " return 1+y**2\n",
+ "y=0\n",
+ "f1=[0,0,0]\n",
+ "Y1=[0,0,0,0]\n",
+ "x=0\n",
+ "h=0.2\n",
+ "f1[0]=0\n",
+ "print \"x y y1=1+y^2\\n\\n\"\n",
+ "Y1[0]=1+y**2\n",
+ "print \"%0.4f %0.4f %0.4f\\n\" %(x,y,(1+y**2))\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "f1[0]=y1\n",
+ "Y1[1]=1+y1**2\n",
+ "print \"%0.4f %0.4f %0.4f\\n\" %(x+h,y1,(1+y1**2))\n",
+ "y=y1\n",
+ "x=0.2\n",
+ "h=0.2\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "f1[1]=y1\n",
+ "Y1[2]=1+y1**2\n",
+ "print \"%0.4f %0.4f %0.4f\\n\" %(x+h,y1,(1+y1**2))\n",
+ "y=y1\n",
+ "x=0.4\n",
+ "h=0.2\n",
+ "K1=h*f(x,y)\n",
+ "K2=h*f(x+h/2,y+K1/2)\n",
+ "K3=h*f(x+h/2,y+K2/2)\n",
+ "K4=h*f(x+h,y+K3)\n",
+ "y1=y+(K1+2*K2+2*K3+K4)/6\n",
+ "f1[2]=y1\n",
+ "Y1[3]=1+y1**2;\n",
+ "print \"%0.4f %0.4f %0.4f\\n\" %(x+h,y1,(1+y1**2))\n",
+ "Y_4=4*h*(2*Y1[1]-Y1[2]+2*Y1[3])/3\n",
+ "print \"y(0.8)=%f\\n\" %(Y_4)\n",
+ "Y=1+Y_4**2\n",
+ "Y_4=f1[1]+h*(Y1[2]+4*Y1[3]+Y)/3 #more correct value\n",
+ "print \"y(0.8)=%f\\n\" %(Y_4)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "x y y1=1+y^2\n",
+ "\n",
+ "\n",
+ "0.0000 0.0000 1.0000\n",
+ "\n",
+ "0.2000 0.2027 1.0411\n",
+ "\n",
+ "0.4000 0.4228 1.1788\n",
+ "\n",
+ "0.6000 0.6841 1.4680\n",
+ "\n",
+ "y(0.8)=1.023869\n",
+ "\n",
+ "y(0.8)=1.029403\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.13:pg-320"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.13\n",
+ "#milne's method\n",
+ "#page 320\n",
+ "def f1(x,y):\n",
+ " return x**2+y**2-2\n",
+ "x=[-0.1, 0, 0.1, 0.2]\n",
+ "y=[1.0900, 1.0, 0.8900, 0.7605]\n",
+ "Y1=[0,0,0,0]\n",
+ "h=0.1\n",
+ "for i in range(0,4):\n",
+ " Y1[i]=f1(x[i],y[i])\n",
+ "print \" x y y1=x^2+y^2-2 \\n\\n\"\n",
+ "for i in range(0,4):\n",
+ " print \" %0.2f %f %f \\n\" %(x[i],y[i],Y1[i])\n",
+ "Y_3=y[0]+(4*h/3)*(2*Y1[1]-Y1[2]+2*Y1[3])\n",
+ "print \"y(0.3)=%f\\n\" %(Y_3)\n",
+ "Y1_3=f1(0.3,Y_3)\n",
+ "Y_3=y[2]+h*(Y1[2]+4*Y1[3]+Y1_3)/3 #corrected value\n",
+ "print \"corrected y(0.3)=%f\" %(Y_3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " x y y1=x^2+y^2-2 \n",
+ "\n",
+ "\n",
+ " -0.10 1.090000 -0.801900 \n",
+ "\n",
+ " 0.00 1.000000 -1.000000 \n",
+ "\n",
+ " 0.10 0.890000 -1.197900 \n",
+ "\n",
+ " 0.20 0.760500 -1.381640 \n",
+ "\n",
+ "y(0.3)=0.614616\n",
+ "\n",
+ "corrected y(0.3)=0.614776\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.14:pg322"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.14\n",
+ "#initial-value problem\n",
+ "#page 322\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "def f(x):\n",
+ " return 13*math.exp(x/2)-6*x-12\n",
+ "s1=1.691358\n",
+ "s3=3.430879\n",
+ "print \"the erorr in the computed values are %0.7g %0.7g\" %(abs(f(0.5)-s1),abs(f(1)-s3))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the erorr in the computed values are 0.0009724169 0.002497519\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.15:pg-328"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#boundary value problem using finite difference method\n",
+ "#example 8.15\n",
+ "#page 328\n",
+ "import math\n",
+ "from numpy import matrix\n",
+ "def f(x):\n",
+ " return math.cos(x)+((1-math.cos(1))/math.sin(1))*math.sin(x)-1\n",
+ "h1=1/2\n",
+ "Y=f(0.5)\n",
+ "y0=0\n",
+ "y2=0\n",
+ "y1=4*(1/4+y0+y2)/7\n",
+ "print \"computed value with h=%f of y(0.5) is %f\\n\" %(h1,y1)\n",
+ "print \"error in the result with actual value %f\\n\" %(abs(Y-y1))\n",
+ "h2=1/4\n",
+ "y0=0\n",
+ "y4=0\n",
+ "#solving the approximated diffrential equation\n",
+ "A=matrix([[-31/16, 1, 0],[1, -31/16, 1],[0, 1, -31/16]])\n",
+ "X=matrix([[-1/16],[-1/16],[-1/16]])\n",
+ "C=A.I*X\n",
+ "print \"computed value with h=%f of y(0.5) is %f\\n\" %(h2,C[1][0])\n",
+ "print \"error in the result with actual value %f\\n\" %(abs(Y-C[1][0]))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "computed value with h=0.500000 of y(0.5) is 0.142857\n",
+ "\n",
+ "error in the result with actual value 0.003363\n",
+ "\n",
+ "computed value with h=0.250000 of y(0.5) is 0.140312\n",
+ "\n",
+ "error in the result with actual value 0.000818\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.16:pg-329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#boundary value problem using finite difference method\n",
+ "#example 8.16\n",
+ "#page 329\\\n",
+ "from numpy import matrix\n",
+ "import math\n",
+ "def f(x):\n",
+ " return math.sinh(x)\n",
+ "y0=0 #y(0)=0\n",
+ "y4=3.62686 #y(2)=3.62686\n",
+ "h1=0.5\n",
+ "Y=f(0.5)\n",
+ "#arranging and calculating the values\n",
+ "A=matrix([[-9, 4, 0],[4, -9, 4],[0, 4, -9]])\n",
+ "C=matrix([[0],[0],[-14.50744]])\n",
+ "X=A.I*C\n",
+ "print \"computed value with h=%f of y(0.5) is %f\\n\" %(h1,X[0][0])\n",
+ "print \"error in the result with actual value %f\\n\" %(abs(Y-X[0][0]))\n",
+ "h2=1.0\n",
+ "y0=0 #y(0)=0\n",
+ "y2=3.62686 #y(2)=3.62686\n",
+ "y1=(y0+y2)/3\n",
+ "Y=(4*X[1][0]-y1)/3\n",
+ "print \"with better approximation error is reduced to %f\" %(abs(Y-f(1.0)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "computed value with h=0.500000 of y(0.5) is 0.526347\n",
+ "\n",
+ "error in the result with actual value 0.005252\n",
+ "\n",
+ "with better approximation error is reduced to 0.000855\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.17:pg-330"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#cubic spline method\n",
+ "#example 8.17\n",
+ "#page 330\n",
+ "def f(x):\n",
+ " return math.cos(x)+((1-math.cos(1))/math.sin(1))*math.sin(x)-1\n",
+ "y=[f(0), f(0.5), f(1)]\n",
+ "h=1/2\n",
+ "Y=f(0.5)\n",
+ "y0=0\n",
+ "y2=0\n",
+ "M0=-1\n",
+ "M1=-22/25\n",
+ "M2=-1\n",
+ "s1_0=47/88\n",
+ "s1_1=-47/88\n",
+ "s1_05=0\n",
+ "print \"the cubic spline value is %f\" %(Y)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the cubic spline value is 0.139494\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.18:pg-331"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#cubic spline method\n",
+ "#example 8.18\n",
+ "#page 331\n",
+ "from numpy import matrix\n",
+ "from __future__ import division\n",
+ "#after arranging and forming equation \n",
+ "A=matrix([[10, -1, 0, 24],[0, 16, -1, -32],[1, 20, 0, 16],[0, 1, 26, -24]])\n",
+ "C=matrix([[36],[-12],[24],[-9]])\n",
+ "X=A.I*C;\n",
+ "print \" Y1=%f\\n\\n\" %(X[3][0])\n",
+ "print \" the error in the solution is :%f\" %(abs((2/3)-X[3][0]))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Y1=0.653890\n",
+ "\n",
+ "\n",
+ " the error in the solution is :0.012777\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.19:pg-331"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#boundary value problem by cubisc spline nethod\n",
+ "#example 8.18\n",
+ "#page 331\n",
+ "from numpy import matrix\n",
+ "h=1/2\n",
+ "#arranging in two subintervals we get\n",
+ "A=matrix([[10, -1, 0,24],[0, 16, -1, -32],[1, 20, 0, 16],[0, 1, 26, -24]])\n",
+ "C=matrix([[36],[-12],[24],[-9]])\n",
+ "X=A.I*C\n",
+ "print \"the computed value of y(1.5) is %f \"%(X[3][0])\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the computed value of y(1.5) is 0.653890 \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter_5_8.ipynb b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter_5_8.ipynb new file mode 100644 index 00000000..596a4b43 --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/chapter_5_8.ipynb @@ -0,0 +1,357 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:89741588c56fb27d4c06c1e31b9bbf710d58f1c753c73dbe7d7d76f17583522e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter05:Spline Functions"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.1:pg-182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#linear splines\n",
+ "#example 5.1\n",
+ "#page 182\n",
+ "from numpy import matrix\n",
+ "X=matrix([[1],[2], [3]])\n",
+ "y=matrix([[-8],[-1],[18]])\n",
+ "m1=(y[1][0]-y[0][0])/(X[1][0]-X[0][0])\n",
+ "m2=(y[2][0]-y[1][0])/(X[2][0]-X[1][0])\n",
+ "def s1(x):\n",
+ " return y[0][0]+(x-X[0][0])*m1\n",
+ "def s2(x):\n",
+ " return y[1][0]+(x-X[1][0])*m2\n",
+ "print \"the value of function at 2.5 is %0.2f: \" %(s2(2.5))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of function at 2.5 is 8.50: \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.3:pg-188"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#cubic splines\n",
+ "#example 5.3\n",
+ "#page 188\n",
+ "from numpy import matrix\n",
+ "import math\n",
+ "X=matrix([[1],[2],[3]])\n",
+ "y=matrix([[-8],[-1],[18]])\n",
+ "M1=0\n",
+ "M2=8\n",
+ "M3=0\n",
+ "h=1\n",
+ "def s1(x):\n",
+ " return 3*math.pow(x-1,3)-8*(2-x)-4*(x-1)\n",
+ "def s2(x):\n",
+ " return 3*math.pow(3-x,3)+22*x-48\n",
+ "h=0.0001\n",
+ "n=2.0\n",
+ "D=(s2(n+h)-s2(n))/h;\n",
+ "print \" y(2.5)=%f\" %(s2(2.5))\n",
+ "print \"y1(2.0)=%f\" %(D)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " y(2.5)=7.375000\n",
+ "y1(2.0)=13.000900\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.4:pg-189"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#cubic spline\n",
+ "#example 5.4\n",
+ "#page 189\n",
+ "from numpy import matrix\n",
+ "import math\n",
+ "x=matrix([[0],[math.pi/2],[math.pi]])\n",
+ "y=matrix([[0],[1],[0]])\n",
+ "h=x[1][0]-x[0][0]\n",
+ "M0=0\n",
+ "M2=0\n",
+ "M1=((6*(y[0][0]-2*y[1][0]+y[2][0])/math.pow(h,2))-M0-M2)/4\n",
+ "X=math.pi/6.0\n",
+ "s1=(math.pow(x[1][0]-X,3)*(M0/6)+math.pow(X-x[0][0],3)*M1/6+(y[0][0]-math.pow(h,2)*M0/6)*(x[1][0]-X)+(y[1][0]-math.pow(h,2)*M1/6)*(X-x[0][0]))/h;\n",
+ "x=matrix([[0],[math.pi/4], [math.pi/2], [3*math.pi/4], [math.pi]])\n",
+ "y=matrix([[0], [1.414], [1] ,[1.414]])\n",
+ "M0=0\n",
+ "M4=0\n",
+ "A=matrix([[4, 1, 0],[1, 4, 1],[0 ,1 ,4]]) #calculating value of M1 M2 M3 by matrix method\n",
+ "C=matrix([[-4.029],[-5.699],[-4.029]])\n",
+ "B=A.I*C\n",
+ "print \"M0=%f\\t M1=%f\\t M2=%f\\t M3=%f\\t M4=%f\\t\\n\\n\" %(M0,B[0][0],B[1][0],B[2][0],M4)\n",
+ "h=math.pi/4;\n",
+ "X=math.pi/6;\n",
+ "s1=(-0.12408*math.pow(X,3)+0.7836*X)/h;\n",
+ "print \"the value of sin(pi/6) is:%f\" %(s1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "M0=0.000000\t M1=-0.744071\t M2=-1.052714\t M3=-0.744071\t M4=0.000000\t\n",
+ "\n",
+ "\n",
+ "the value of sin(pi/6) is:0.499722\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.5:pg-191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#cubic spline\n",
+ "#example 5.5\n",
+ "#page 191\n",
+ "import math\n",
+ "from numpy import matrix\n",
+ "x=[1,2,3]\n",
+ "y=[6,18,42]\n",
+ "m0=40\n",
+ "s1=0\n",
+ "m1=(3*(y[2]-y[0])-m0)/4\n",
+ "X=0\n",
+ "s1=m0*((x[1]-X)**2)*(X-x[0])-m1*((X-x[0])**2)*(x[1]-X)+y[0]*((x[1]-X)**2)*(2*(X-x[0])+1)+y[1]*((X-x[0])**2)*(2*(x[1]-X)+1)\n",
+ "print \"s1= %f+261*x-160X^2+33X^3\" %(s1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "s1= -128.000000+261*x-160X^2+33X^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.7:pg-195"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#surface fitting by cubic spline\n",
+ "#example 5.7\n",
+ "#page 195\n",
+ "import math\n",
+ "from numpy import matrix\n",
+ "def L0(y):\n",
+ " return math.pow(y,3)/4-5*y/4+1\n",
+ "def L1(y):\n",
+ " return (math.pow(y,3)/2)*-1+3*y/2\n",
+ "def L2(y):\n",
+ " return math.pow(y,3)/4-y/4\n",
+ "A=[ [1,2,9], [2,3,10], [9,10,17] ]\n",
+ "x=0.5\n",
+ "y=0.5\n",
+ "S=0.0\n",
+ "S=S+L0(x)*(L0(x)*A[0][0]+L1(x)*A[0][1]+L2(x)*A[0][2])\n",
+ "S=S+L1(x)*(L0(x)*A[1][0]+L1(x)*A[1][1]+L2(x)*A[1][2])\n",
+ "S=S+L2(x)*(L0(x)*A[2][0]+L1(x)*A[2][1]+L2(x)*A[2][2])\n",
+ "print \"approximated value of z(0.5 0.5)=%f\\n\\n\" %(S)\n",
+ "print \" error in the approximated value : %f\" %((abs(1.25-S)/1.25)*100)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "approximated value of z(0.5 0.5)=0.875000\n",
+ "\n",
+ "\n",
+ " error in the approximated value : 30.000000\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.8:pg-200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#cubic B-splines\n",
+ "#example 5.8\n",
+ "#page 200\n",
+ "import math\n",
+ "k=[0.0, 1, 2, 3, 4]\n",
+ "pi=[0.0, 0, 4, -6, 24]\n",
+ "x=1\n",
+ "S=0\n",
+ "for i in range(2,5):\n",
+ " S=S+math.pow(k[i]-x,3)/(pi[i])\n",
+ "print \"the cubic splines for x=1 is %f\\n\\n\" %(S)\n",
+ "S=0\n",
+ "x=2\n",
+ "for i in range(2,5):\n",
+ " S=S+math.pow(k[i]-x,3)/(pi[i])\n",
+ "print \"the cubic splines for x=2 is %f\\n\\n\" %(S)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the cubic splines for x=1 is 0.041667\n",
+ "\n",
+ "\n",
+ "the cubic splines for x=2 is 0.166667\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.9:pg-201"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#cubic B-spline\n",
+ "#example 5.9\n",
+ "#page 201\n",
+ "k=[0, 1, 2, 3, 4];\n",
+ "x=1 #for x=1\n",
+ "s11=0\n",
+ "s13=0\n",
+ "s14=0\n",
+ "s24=0 \n",
+ "s12=1/(k[2]-k[1])\n",
+ "s22=((x-k[0])*s11+(k[2]-x)*s12)/2.0 #k[2]-k[0]=2\n",
+ "s23=((x-k[1])*s11+(k[3]-x)*s13)/(k[3]-k[1])\n",
+ "s33=((x-k[0])*s22+(k[3]-x)*s23)/(k[3]-k[0])\n",
+ "s34=((x-k[1])*s23+(k[4]-x)*s24)/(k[4]-k[1])\n",
+ "s44=((x-k[0])*s33+(k[4]-x)*s34)/(k[4]-k[0])\n",
+ "print \"s11=%f\\t s22=%f\\t s23=%f\\t s33=%f\\t s34=%f\\t s44=%f\\n\\n\" %(s11,s22,s23,s33,s34,s44)\n",
+ "x=2 #for x=2\n",
+ "s11=0\n",
+ "s12=0\n",
+ "s14=0\n",
+ "s22=0\n",
+ "s13=1/(k[3]-k[2])\n",
+ "s23=((x-k[1])*s12+(k[3]-x)*s13)/2.0 # k[3]-k[1]=2\n",
+ "s24=((x-k[2])*s13+(k[4]-x)*s14)/(k[2]-k[0])\n",
+ "s33=((x-k[0])*s22+(k[3]-x)*s23)/(k[3]-k[0])\n",
+ "s34=((x-k[1])*s23+(k[4]-x)*s24)/(k[4]-k[1])\n",
+ "s44=((x-k[0])*s33+(k[4]-x)*s34)/(k[4]-k[0])\n",
+ "print \"s13=%f\\t s23=%f\\t s24=%f\\t s33=%f\\t s34=%f\\t s44=%f\\n\\n\" %(s13,s23,s24,s33,s34,s44)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "s11=0.000000\t s22=0.500000\t s23=0.000000\t s33=0.166667\t s34=0.000000\t s44=0.041667\n",
+ "\n",
+ "\n",
+ "s13=1.000000\t s23=0.500000\t s24=0.000000\t s33=0.166667\t s34=0.166667\t s44=0.166667\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex1.2_3.png b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex1.2_3.png Binary files differnew file mode 100644 index 00000000..9dd9ad02 --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex1.2_3.png diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex3.7.png b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex3.7.png Binary files differnew file mode 100644 index 00000000..81986fc3 --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex3.7.png diff --git a/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex6.5.png b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex6.5.png Binary files differnew file mode 100644 index 00000000..1628bc09 --- /dev/null +++ b/Introductory_Methods_Of_Numerical_Analysis__by_S._S._Sastry/screenshots/ex6.5.png |